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Abstract

Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The 

interaction between folate status and alcohol consumption in carcinogenesis involves multiple 

mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary 

folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate 

excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is 

involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of 

methyl donors, is considered as a common downstream target of the folate-mediated effects of 

ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with 

high intakes of alcohol are additive in general. For example, low methionine, low-folate diets 

coupled with alcohol consumption could increase the risk for colorectal cancer in men. To 

counteract the negative effects of alcohol consumption, increased intake of nutrients, such as 

folate, providing dietary methyl groups is generally recommended. Here mechanisms involving 

dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms 

and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and 

indirect mediation by oxidative stress, hypoxia, and microRNAs.

Keywords

folate metabolism; alcohol consumption; tumorigenesis; oxidative stress; microRNAs; folate 
enzymes

*Correspondence to: sergey_krupenko@unc.edu. 

Conflicts of interest
The authors declare that there are no conflicts of interest.

Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Chem Biol Interact. Author manuscript; available in PMC 2021 June 01.

Published in final edited form as:
Chem Biol Interact. 2020 June 01; 324: 109091. doi:10.1016/j.cbi.2020.109091.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Folate and alcohol are dietary factors affecting the risk of cancer development in humans [1–

4]. This conclusion is primarily based on numerous epidemiological studies; precise 

molecular mechanisms underlying the link between alcohol consumption or folate 

metabolism and cancer initiation and progression remain largely unknown. The assessment 

of the combined effect of these two dietary components is obviously more intricate and is a 

challenging task at molecular, cellular, organism and population levels [5]. The problem is 

exacerbated by the fact that effects of both folate intake and alcohol consumption are cancer 

type-specific and can be also modified by other dietary components as well as the personal 

genetic and epigenetic landscape [6–9]. Thus, though alcohol consumption has been 

investigated as a potential risk factor for numerous cancers, epidemiological studies have 

linked it more strongly to the increased risk of breast cancer, cancers of digestive tract and 

upper respiratory tract [10, 11]. Even with regard to these cancer types, the relationship 

between alcohol and cancer is not simple. For example, the study of 2812 breast cancer 

cases from the French E3N-EPIC cohort concluded that there were no association between 

high alcohol consumption and increased risk of breast cancer among premenopausal women 

but found a positive linear correlation among post-menopausal women [12]. Of note, this 

study also indicated that low folate intake increased alcohol-associated breast cancer risk 

[12]. Some reports also imply that moderate alcohol consumption could be associated with 

decreased cancer risk especially in the context of specific diets like Mediterranean diet [13–

15]. Nevertheless, the prevalent view in the literature is that alcohol consumption is 

associated with the increased risk of several cancers while folate supplementation can reduce 

this risk [11, 16, 17]. Accordingly, this review considers potential mechanisms underlying 

such effects (schematically depicted in Fig. 1).

2. Role of folate in tumorigenesis and malignancy progression

Several mechanisms for ethanol’s effect on carcinogenesis have been proposed, including 

the induction of oxidative stress, acetaldehyde-associated mutagenesis, perturbation of 

estrogen metabolism, and via folate metabolism (reviewed in [5, 18, 19]). Folate is an 

important dietary component because humans cannot synthesize it [20]. In the cell, folate 

functions as a coenzyme in numerous reactions of one-carbon transfer, which are required 

for the de novo purine and TMP biosynthesis, NADPH generation, and for metabolism of 

several amino acids, including re-methylation of homocysteine to methionine [21–23]. The 

latter reaction is linked to the biosynthesis of S-adenosylmethionine, the universal methyl 

donor involved in more than 100 methylation reactions in the cell [24]. Importantly, it has 

been recently reported that 5-methyltetrahydrofolate, the coenzyme remethylating 

homocysteine, can directly methylate mitochondrial tRNA, an important step in 

mitochondrial protein translation [25]. Another reaction important for the mitochondrial 

protein biosynthesis is the formylation of Met-tRNA by 10-formyltetrahydrofolate [21]. At a 

more general level, folate metabolism regulates such key biological processes as nucleic acid 

biosynthesis, mitochondrial protein biosynthesis, methylation of DNA, RNA, proteins and 

small molecules, DNA repair, and amino acid biogenesis (the role of folate in the cell is 

schematically depicted in Fig. 2) [21, 23, 26]. Accordingly, dietary folate deficiency or 
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insufficient folate intake have been associated with several diseases including neural tube 

defects, cardiovascular diseases and cancer [23, 27, 28].

The link between folate metabolism and the malignant transformation, as well as tumor 

progression, is however, not so simple though. Epidemiological studies provide ample data 

that dietary folate supplementation inversely correlates with the risk of several cancer types 

[2, 3, 29, 30]. At the same time, cancer cells critically depend on folate supplementation to 

support active nucleotide biosynthesis which is linked to the increased demand for nucleic 

acids during the period of rapid proliferation. Studies of the effect of folate on proliferation 

in cell culture and animal models provided experimental support for such mechanism [31–

34]. The importance of folate for cancer cells provided the basis for cancer treatment using 

folate antimetabolites [35–38]. These compounds are structural analogs of folate but 

function as inhibitors of folate metabolizing enzymes. One of the first antifolates 

methotrexate, had been effectively used as chemotherapeutic since late 1940s while newer 

such drugs have been developed recently and approved for the treatment of different types of 

malignant tumors [36, 39]. Overall, folate has opposite effects on tumorigenesis versus the 

effect on cancer cell proliferation, which partially explains inconsistency of epidemiological 

data. To add to this complexity, the effect of folate on cancer metastasis is even less clear. 

For example, in in vivo models of tumorigenesis, folate deficiency suppressed proliferation 

but enhanced metastatic potential likely through the effect on epithelial-mesenchymal 

transition [40]. Of note, a promoting effect of folate on metastasis were also observed [33].

3. Folate transport and ethanol-induced folate deficiency

Folate was one of the factors intensively investigated with regard to the effect of alcohol 

consumption (reviewed in [41–43]). Studies from the early 1960s demonstrated that folate 

deficiency is common among alcoholics and that the positive hematopoietic response to the 

folate intake in these patients could be completely suppressed by excessive alcohol amounts 

[44, 45]. Recent studies in animals have confirmed these findings. Thus, rats subjected to 

chronic ethanol ingestion had decreased levels of folate in serum and red blood cells [46, 

47]. Among other mechanisms, folate malabsorption could be one of the main causes of 

ethanol effect. Folate cannot pass through the cellular membrane on its own. Transport is 

carried out by three transporters, reduce folate carrier (RFC) [48, 49], proton-coupled folate 

transporter (PCFT) [50] and folate receptor alpha (FRα or FOLR1) [51]. PCFT and RFC are 

folate transporters responsible for folate uptake by enterocytes [52] so the effect of ethanol 

on intestinal folate absorption proceeds through regulation of these proteins [53]. Several 

mechanisms of such effect have been demonstrated. Ethanol decreases the expression of 

PCFT and RFC [54–57] most likely through the regulation of gene methylation [58]. Of 

note, methylation of CpG sites in genes encoding all three folate transporters has been 

demonstrated [59]. Chronic alcoholism can also affect the kinetics of folate absorption, 

which could be associated with altered lipid composition and mis-localization of transporters 

within specific lipid domains in the plasma membrane [46, 60]. Renal excretion is also one 

of the major factors contributing to ethanol-induced folate deficiency, due to reduced re-

uptake of folate by kidneys caused by decreased expression of RFC and FRa [61, 62]. All 

three folate transporters are abundantly expressed in cancer cells [63, 64]. The effect of 

ethanol on the folate uptake by tumors is not clear though it has been reported that lower 
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expression of FRα in pancreatic ductal adenocarcinoma was associated with alcohol 

consumption [65]. Interestingly, in this study, high FRα expression in surgically removed 

tumors was significantly associated with favorable prognosis. The mechanism of such effect 

is not clear, and in many cases the opposite phenomenon, a beneficial effect of the FRα 
overexpression on cancer development was reported [64].

4. Folate degradation

Reduced folates are unstable in vitro and rapidly undergo oxidative degradation but they are 

protected from degradation in the cell through binding to numerous folate enzymes [66]. 

Despite of such protection, in vivo folate catabolism is an active process [67–70]. The 

degradation of folate can be non-enzymatic but is also catalyzed by ferritin [71]. As alcohol 

consumption induces folate deficiency, the question has been asked of whether ethanol 

contributes to enhanced folate catabolism [72]. In fact, it has been shown that in vitro 
ethanol metabolism can induce folate degradation [73]. Major enzymatic pathways of 

ethanol metabolism via catalase, alcohol dehydrogenase or CYP450 lead to the formation of 

acetaldehyde, which is further metabolized to acetate by several aldehyde dehydrogenases 

[74, 75]. The oxidation of acetaldehyde can also occur in the reaction catalyzed the 

ubiquitous enzyme xanthine oxidase, which produces superoxide radicals [73]. Superoxide 

radicals in turn cause cleavage of folates with 5-methyltetrahydrofolate being much more 

susceptible to this degradation than folic acid [73].

While it is not clear whether this mechanism takes place in vivo, it has been recently shown 

that spontaneous folate decomposition produces formaldehyde, a cytotoxic metabolite which 

can damage DNA [76]. Formaldehyde is converted to formic acid by a pathway including as 

an intermediate step the catalysis by the alcohol dehydrogenase 5 (ADH5) enzyme [77]. 

Interestingly, it has been shown that ethanol exposure of zebrafish embryos reduces ADH5 

mRNA [78]. Of note, the final step of formaldehyde detoxification in the proposed 

mechanism, which is the clearance of formic acid, requires tetrahydrofolate [76]. In fact, this 

folate-dependent pathway is the main mechanism of formate clearance and methanol 

detoxification in humans, and it requires two folate metabolizing enzymes, MTHFD1 and 

ALDH1L1 [79, 80]. Another recent report underscored the enhanced folate degradation 

associated with the accumulation of specific reduced folate, THF, in the cytosol [81]. This 

study also highlighted the role of folate metabolizing enzyme ALDH1L1 in the prevention 

of THF degradation. The binding of THF was proposed as a likely mechanism for such 

protection. In agreement with the mechanism of folate protection by ALDH1L1, up-

regulation of the ALDH1L1 gene prevented folate degradation and alleviated the oxidative 

stress induced by ethanol exposure in zebrafish embryos [82, 83]. Interestingly, ALDH1L1 

is one of the most down-regulated proteins in several cancers and it has been suggested as 

putative tumor suppressor (reviewed in [84]).

5. Effect of ethanol on folate metabolizing enzymes

Reactions constituting folate metabolism are carried out by about two dozen of specific 

enzymes [21]. The functions of many of these enzymes have been linked to tumorigenesis 

and malignancy progression [20, 84–86]. Several of these enzymes are well-known targets 
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of ethanol [42]. Thus, ethanol has been shown to produce inhibitory effect on the activities 

of MTHFR and MTR in an animal model [87]. This mechanism can contribute to 

carcinogenesis by affecting the liver S-adenosylmethionine pool thus altering methylation 

capacity of the cell [88]. Ethanol also decreases thymidylate synthase mRNA levels in 

regenerating liver after partial hepatectomy [89], which could inhibit DNA biosynthesis and 

diminish the DNA repair capability. Two folate enzymes involved in the metabolism of 10-

formyltetrahydrofolate, ALDH1L1 and ALDH1L2, were also investigated as targets of 

ethanol and in response mechanisms to alcohol consumption (reviewed recently in [42]). An 

OMICS-type study has also reported that prenatal ethanol exposure of mouse embryos leads 

to the decreased DHFR expression [90]. Though the mechanism of this effect is not clear, it 

could have a far-reaching effect on carcinogenesis since DHFR is a key enzyme 

incorporating dietary folic acid into the reduced folate pool [91, 92]. FPGS, the enzymes 

conjugating folate to glutamate, was downregulated in the intestine and kidney of rats fed 

ethanol for 3 month [58]. This effect was likely the result of the FPGS gene 

hypermethylation, observed in this study. The FPGS-catalyzed reaction is crucial for folate 

retention inside the cell and the loss of the enzyme in mice is embryonically lethal [93]. 

Therefore, the decrease of FPGS activity in response to alcohol consumption could be a 

contributor to folate-mediated ethanol toxicity and a factor playing a role in carcinogenesis.

Folate-metabolizing enzymes themselves could also mediate effects of ethanol on the cell. In 

support of this notion, studies indicated that single nucleotide polymorphisms in enzymes of 

folate pathways could modify cancer risk associated with alcohol consumption [94–99]. 

Several studies demonstrated, in a more direct way, that enzymes of folate metabolism are 

involved in cellular response to the ethanol exposure. For example, in a zebrafish model, 

exposure of embryos to ethanol led to the up-regulation of ALDH1L1 (10-

formyltetrahydrofolate dehydrogenase), which alleviated ethanol-induced oxidative stress 

[83]. In another study, mice with mild MTHFR deficiency (heterozygous disruption of Mthfr 
mimicking the Mthfr 677C→T SNP in humans [100]) had lower capacity to repair DNA and 

displayed more neuronal damage in the brain in response to the ethanol feeding [101]. 

Paradoxically, the MTHFR 677TT genotype has been shown to play a protective role against 

alcohol dependence [102]. Furthermore, subjects with the MTHFR 677TT genotype 

constituted a subgroup of alcoholic patients with a decreased risk for developing hepatic 

toxicity [102]. Overall, the mechanistic studies on the interaction between ethanol and folate 

enzyme are limited.

6. Molecular mechanisms underlying effects of ethanol on folate 

homeostasis

The interaction between alcohol consumption and dietary folate intake is relevant not only to 

cancer but also to liver diseases and disorders of embryonic development. Indeed, studies in 

micropigs have shown that folate deficiency enhances perturbations in hepatic methionine 

metabolism, decreases S-adenosylmethionine and glutathione, and increases DNA damage 

and lipid oxidation while promoting alcoholic liver injury [103, 104]. As well, both alcohol 

consumption and dietary folate deficiency have a teratogenic effect. Dietary folate deficiency 

has long been known as a cause of neural tube defects (NTDs) with most common such 
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defect being spina bifida [105]. For the reason of the NTDs prevention, in 1996 the FDA 

mandated the supplementation of grain foods in the US with the synthetic form of the 

vitamin, folic acid. Prenatal exposure to maternal consumption of the ethanol is a common 

cause of developmental abnormalities, known as fetal alcohol spectrum disorder (FASD), 

associated with neurological, behavioral, and cognitive deficits [106–108]. In general, there 

are many common mechanisms regulating embryonic development and tumorigenesis [109–

112]. For example, FASD are linked to an impaired immune system which consequently 

leads to an elevated risk of cancer and other diseases [113]. It has been recently shown that 

the transcriptional repressor Snai2, which is involved in the induction of epithelial-

mesenchymal transition in cancer and development, is deregulated in response to ethanol 

thus causing apoptosis in avian neural crest progenitors [114]. Of note, folate metabolism is 

also involved in the regulation of proliferation, apoptosis and epithelial-mesenchymal 

transition [33, 81, 115–117]. Furthermore, DNA methylation, which is intrinsically linked to 

folate metabolism and plays roles in the regulation of embryonic development and in 

tumorigenesis, is also deregulated by alcohol [88, 118–123]. Thus, analysis of cellular 

responses to ethanol and folate in developmental processes can provide clues for 

mechanistic links between these nutrients and the malignant transformation. Several 

examples of such links are discussed below.

Exposure to ethanol produces a pleiotropic effect on the cell with alcohol consumption 

causing genetic abnormalities, epigenetic dysregulation, induction of cell signaling, and 

metabolic abnormalities, global events activating whole arrays of downstream cellular 

responses [5]. In support of such a wide-spread effect, OMICs studies have shown that 

exposure to ethanol causes dramatic alterations in the overall gene expression [124–128]. 

Interestingly, in one of these studies, a significant number of affected targets were ribosomal 

genes [124]. Inactivating or deleterious mutations of some of these genes cause Diamond-

Blackfan anemia, which are conditions characterized by macrocytic anemia and cancer 

predisposition, and representative of a class of disorders known as ribosomopathies [129]. 

Importantly, it has been recently reported that ribosomal proteins are commonly deleted in 

human cancers and that this phenomenon is often associated with p53 mutations [130]. One 

of the ribosomal proteins involved in the response to ethanol was rps3a [90, 124]. Curiously, 

this protein physically interacts with mitochondrial folate metabolizing enzymes, MTHFD2 

[131]. While this enzyme is a resident of mitochondria, it can translocate to the nucleus 

which is likely a mechanism for the regulation of cellular proliferation [132]. In fact, 

numerous reports linked MTHFD2 expression to enhanced cellular proliferation and 

highlighted upregulation of the enzyme as a cancer trait [132–138]. These findings raise the 

question of whether MTHFD2 could be a mediator of the effect of alcohol consumption on 

malignant transformation or progression of initiated cells.

7. microRNA link between alcohol consumption and dietary folate

Alcohol consumption was also investigated with regard to the role of microRNAs (miRNAs) 

in the teratogenic, liver damaging and carcinogenic effects of ethanol (reviewed in [139–

142]). miRNAs, a diverse class of highly conserved small non-coding RNAs that regulate 

gene expression, play important role in malignant tumor initiation and in metastasis [143–

145]. A recent analysis of RNA-Seq paired-end dataset derived from alcohol-exposed neural 
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fold-stage chick crania suggested that miRNAs significantly contribute to gene expression in 

response to ethanol [127]. Certain dietary components, including folate, can impact 

tumorigenesis and cancer progression by modulating tissue levels of miRNAs [146]. A 

growing body of evidence links folate status to the regulation of a large number of miRNAs 

but also identifies a reverse effect - the regulation of folate metabolizing enzymes by 

miRNAs (reviewed in [147, 148]). One of the early reports demonstrated that folate 

deficiency leads to a pronounced but reversible global increase in miRNA expression in 

human lymphoblastoid cells [149]. In another study, deregulation of miR-122, −23 and −130 

was observed in hepatocellular carcinomas developed in rats kept on the folate- and methyl-

deficient diet [150]. It has been further shown that miR-122 is significantly downregulated in 

human primary hepatocellular carcinomas [150]. Interestingly, in a recent study miR-122 

protected from ethanol-induced liver disease [151]. Thus, the regulation of miR-122 can be a 

point of crosstalk between ethanol and folate. Cross-reference of miRNA responding to both 

the folate status [147] and alcohol consumption or in vitro ethanol exposure identified 

several potential links including miR-21 [152–156], miR-222 [149, 157, 158] and miR- 34a 

[159–161] all of which were implemented in cancer disease [162–164].

While numerous reports link folate and ethanol to the regulation of microRNAs, it is not 

clear yet how the cross-talk between these dietary components regulates progression of 

known pathologies. One study that linked ethanol-induced birth defects to the up-regulation 

of miR-10a/miR-10b and associated down-regulation of transcription factor Hoxa1 also 

demonstrated that folic acid prevented ethanol-induced miR-10a elevation and reduced 

developmental abnormalities [165]. Of note, miR-10a could also have a role in 

carcinogenesis [166]. For example, levels of miR-10a/b were significantly increased in 

peripheral blood mononuclear cells derived from patients with acute myeloid leukemia 

compared with cells derived from healthy donors [167]. Furthermore, miR-10a/b expression 

promoted proliferation and inhibited differentiation of HL-60 cells [167]. miR-10 was also 

suggested as an oncogene involved in breast cancer initiation and progression, with one of 

the downstream mechanisms being modulation of HOXA1 gene expression [168]. Another 

mechanism of miR-10b in tumor promotion is associated with Rho GTPase up-regulation 

leading to Rho-kinase-associated cytoskeleton activation and enhanced tumor cell invasion 

[169, 170]. In this regard, the role of folate in metastasis promotion through the activation of 

Rho GTPase-dependent cytoskeleton rearrangement has been reported [33, 171].

8. Folate, ethanol and oxidative stress

Folate can alleviate oxidative stress [172, 173] while ethanol is a known inducer of such 

stress [174–176]. Ethanol metabolism generates reactive oxygen species and depletes the 

antioxidant molecule glutathione (GSH) which leads to oxidative stress and lipid and protein 

damage and then to growth retardation and neurotoxicity [177, 178]. The relationship 

between alcohol consumption and folate intake is a two-way street: ethanol can decrease 

folate-dependent antioxidative capacity while folate can alleviate ethanol-induced oxidative 

stress [177, 179]. In support of this notion, it has been reported that folic acid protects 

offspring against oxidative stress in the case of ethanol feeding to pregnant rats [180]. The 

effect of folate in this study was observed in liver and pancreas and was attributed to either 

the direct quenching of reactive oxygen species or scavenging capacity toward acetaldehyde. 
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These findings are especially important taking into consideration that prenatal folate 

supplementation can affect the cancer risk later in life [181–186]. While in fact the 

scavenging behavior of folate in vitro has been reported [187], it is unclear whether the 

direct reduction of reactive oxygen species by folate takes place in vivo [172]. Instead, the 

antioxidant effect of folate in vivo is primarily associated with the ability to lower Hcy and 

thus to alleviate hyperhomocysteinemia-induced effects [188, 189]. It has been shown that 

folic acid supplementation attenuates xanthine oxidase activity, restores SOD activity and 

effectively antagonizes oxidative stress in the kidneys of hyperhomocysteinemic rats [190]. 

In in vitro experiments in this study, incubation of tubular cells with 5-

methyltetrahydrofolate abolished Hcy-induced NADPH oxidase activation and reduced the 

intracellular level of superoxide anion, and also reduced the mRNA levels of NOX4 and 

p22phox [190]. Of note, the study indicated that the folate effect on oxidative stress can either 

be associated with Hcy re-methylation or proceed through Hcy-independent mechanisms.

Alcohol consumption has been linked to the induction of hypoxia [191, 192], a state leading 

to increased generation of reactive oxygen species [193]. Several reports have also addressed 

the effect of folate on hypoxia. Thus, folic acid has been shown to protect cultured 

endothelial cells from hypoxia by decreasing both ROS levels and apoptosis linked to the 

ERK1/2 and NOX4 pathways [194]. The protective mechanism of folate in hypoxia is 

primarily associated with the induction of nitric oxide production by endothelial NO 

synthase (eNOS) [195]. This mechanism is linked to the upregulation of DHFR in response 

to folate administration, which enhances BH4 recycling thus promoting eNOS recoupling 

[196, 197]. Since eNOS uncoupling is linked to cardiopulmonary disorders [198], the eNOS-

related mechanism of folate was mainly investigated in endothelial cells as a potential 

therapeutic approach to prevent cardiovascular disease [195]. However, solid malignant 

tumors typically grow under hypoxic conditions and to survive and proliferate in a hypoxic 

environment, cancer cells undergo genetic and adaptive changes that contribute to the 

malignant phenotype and to aggressive tumor behavior [199–203]. Interestingly, it has been 

shown that ubiquitously expressed folate enzymes are downregulated under severe hypoxia 

[204], which suggests folate metabolism as one of the components of such adaptive 

response. In support of the role of folate pathways in this response, the suppression of 

MTHFD2 folate enzyme disturbs NADPH and redox homeostasis and accelerates cell death 

under hypoxia-induced oxidative stress [205]. Furthermore, it has been recently shown that 

folic acid supplementation represses hypoxia- induced inflammatory response in 

promyelomonocytic cells via the elimination of ROS and inhibition of the JAK2/STAT3/NF-

κB pathway [206].

9. Summary

Mountains of literature link alcohol consumption and folate intake to the risk of cancer 

development. While alcohol consumption has positive correlation with the risk of several 

types of cancer, numerous studies support the idea that increased dietary folate has inverse 

correlation with tumorigenesis. However, precise molecular mechanisms underlying the 

effects of ethanol and folate in this respect are diverse and not completely understood. 

Several of these mechanisms involve the effect of ethanol on folate metabolism and it is 

likely that ethanol-induced folate deficiency contributes to tumorigenesis. The obvious 
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conclusion here would be that increased folate intake could alleviate effects of alcohol, and 

numerous studies support such a connection. Ethanol produces folate-dependent as well as 

folate independent effects, and there are also some cellular nodes which are targeted by both 

ethanol and folate independently. Thus, the overall response to the combined effect of 

ethanol and folate will create an intricate circuit, the outcomes of with will further depend 

on other dietary components, genetic and epigenetic modalities, the sites of interaction, and 

numerous other factors. It should be also emphasized that the effect of both these dietary 

constituents is likely different in tumor initiation versus tumor progression and metastasis 

[19, 20, 207–209]. The role of ethanol and folate in tumor progression and metastasis, 

however, is much less investigated and awaits future studies.
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Fig. 1. 
Ethanol suppresses key biological processes directly relevant to folate metabolism (red 
shapes); this effect can be alleviated by dietary folate. Several pathways outside of folate 

metabolism are affected by both ethanol and folate (open shapes).
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Fig. 2. 
Role of folate in the cell. Folate taken up from the diet (Input) functions as a coenzyme in 

reactions of one-carbon transfer (Folate metabolism). These reactions are important for the 

biosynthesis of several essential molecules (Outcome), which are required for key biological 

processes.
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