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Abstract

Cardiac MRI has been widely used for noninvasive assessment of cardiac anatomy and function as 

well as heart diagnosis. The estimation of physiological heart parameters for heart diagnosis 

essentially require accurate segmentation of the Left ventricle (LV) from cardiac MRI. Therefore, 

we propose a novel deep learning approach for the automated segmentation and quantification of 

the LV from cardiac cine MR images. We aim to achieve lower errors for the estimated heart 

parameters compared to the previous studies by proposing a novel deep learning segmentation 

method. Our framework starts by an accurate localization of the LV blood pool center-point using 

a fully convolutional neural network (FCN) architecture called FCN1. Then, a region of interest 

(ROI) that contains the LV is extracted from all heart sections. The extracted ROIs are used for the 

segmentation of LV cavity and myocardium via a novel FCN architecture called FCN2. The FCN2 

network has several bottleneck layers and uses less memory footprint than conventional 

architectures such as U-net. Furthermore, a new loss function called radial loss that minimizes the 

distance between the predicted and true contours of the LV is introduced into our model. 

Following myocardial segmentation, functional and mass parameters of the LV are estimated. 

Automated Cardiac Diagnosis Challenge (ACDC-2017) dataset was used to validate our 

framework, which gave better segmentation, accurate estimation of cardiac parameters, and 
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produced less error compared to other methods applied on the same dataset. Furthermore, we 

showed that our segmentation approach generalizes well across different datasets by testing its 

performance on a locally acquired dataset. To sum up, we propose a deep learning approach that 

can be translated into a clinical tool for heart diagnosis.
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1. Introduction

Cardiovascular diseases (CVDs) are serious health problems as they account for the highest 

rate of mortality worldwide (WHO, 2017). In the US, approximately 836,546 die each year 

suffering from CVDs (Association, 2018). Cardiac magnetic resonance (CMR) is a valuable 

imaging technique that provides the cardiologist with a non-invasive quantitative assessment 

for the heart function. Through segmentation of the LV from short-axis view CMR cine 

images, the cardiologist can obtain functional heart parameters such as end-systolic volume 

(ESV), end-diastolic volume (EDV), ejection fraction (EF), wall mass, and regional indexes 

(e.g., wall thickening) (Frangi et al., 2001). Tissue motion estimation is an established field 

in medical imaging (Gao et al., 2017b,a). Myocardial tissue tracking is a valuable method 

for the assessment of myocardial strain (Amzulescu et al., 2019). The mentioned parameters 

are important for heart diagnosis and treatment. However, they require accurate 

determination of the myocardial walls. Manual segmentation of LV consumes significant 

effort and time and is prone to inter- and intra-subject variability (Souto et al., 2013). 

Therefore, there is a need for developing accurate techniques for automatic extraction of LV 

cavity and myocardium in an effort to provide more accurate estimation of ventricular 

metrics.

Recently, deep learning has achieved outstanding success over traditional image processing 

techniques in many medical image analysis fields (Litjens et al., 2017; Abdeltawab et al., 

2019). Deep learning is a branch of machine learning that has the power of learning the right 

representation from the data itself, avoiding the burden of performing feature engineering on 

the underlying data. The learned representation resembles a hierarchy of progressively 

abstract concepts, where each concept is described by less abstract, simpler concepts 

(Goodfellow et al., 2016). Convolutional neural network (CNN) is a deep learning model 

that is efficient in processing 2D or 3D image data and has performed well in computer 

vision tasks (Krizhevsky et al., 2012; Herath et al., 2017). CNN was initially used for image 

classification, where the whole image is assigned to a certain class. However, CNN is now 

remodeled for image segmentation tasks via building a fully convolutional neural network 

(FCN) that replaces the full connected layers in CNN by convolution layers. In a FCN 

architecture, dense classification is applied in the image domain and each pixel is assigned 

to the class with the highest predicted probability.

The success of CNN in image analysis and the need for accurate estimation of LV 

parameters motivated us to build a framework for heart function quantification with a 
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reasonable accuracy compared with the human operator. In this paper, we propose a novel 

fully automated method for the segmentation of LV cavity and myocardium and the 

estimation of physiological heart parameters from cine CMR images. Our main contribution 

is the accurate quantification of the LV functional parameters and the achievement of a lower 

error compared to previous methods applied on the same cardiac dataset. We reached our 

goal by proposing a novel framework that is based on FCNs and has the following 

contributions:

• The extraction of a region-of-interest (ROI) that encompasses the LV from CMR 

images using an efficient method that is based on FCN. ROI extraction before 

final cardiac segmentation alleviates the class-imbalance problem and reduces 

the computational and memory requirement.

• A novel FCN architecture for cardiac segmentation following ROI extraction. 

The network follows the same idea of the U-net of passing the input to a 

contracting path followed by an expanding path. However, it has several 

bottleneck layers that refer to different representation to the input. The up-

sampling of these layers are combined to obtain the final segmentation. The 

proposed architecture has less number of parameters than the established models 

such as U-net (Ronneberger et al., 2015), yet it demonstrated a better 

performance.

• A novel loss function called radial loss that minimizes the difference between the 

predicted LV contours and the ground truth contours was incorporated with the 

cross-entropy loss.

• The generalization strength of our proposed segmentation approach was 

evaluated by measuring the segmentation performance of our approach when 

trained on the whole ACDC training dataset and tested on another dataset (local 

dataset). We achieved good segmentation accuracy which was comparable to 

another model that used only our local dataset.

2. Related work

Segmentation of the LV from cardiac cine MR images has received considerable attention 

over the past years. Researchers started by proposing semi-automatic segmentation 

approaches as reviewed by Petitjean and Dacher (2011). These methods such as presented in 

Auger et al. (2014), Grosgeorge et al. (2013), Peng et al. (2016), Ayed et al. (2012) used 

active contours, graph cut, dynamic programming, or atlas-based techniques. However, 

semi-automatic methods require significant user intervention which makes it unsuitable for 

applications where segmentation’s speed is crucial. As a remedy of that limitation, fully-

automatic methods have been introduced in heart segmentation literature. Among automatic 

methods are the Level-set approaches proposed in Liu et al. (2016) and Queirós et al. (2014). 

Although their methods result in accurate segmentation, level-set needs initialization and it 

is modeled to segment one anatomical structure only. Traditional image processing 

operations such as thresholding, edge detection and morphology procession, have been 

proposed in Wang et al. (2015), Ringenberg et al. (2014). However these methods do not 

perform well when their prior assumptions are not satisfied. Furthermore, shape priors have 
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been integrated in cardiac segmentation approaches, such as the work in Woo et al. (2013), 

Wu et al. (2013), Bai et al. (2015). However, imperfect prior information does not achieve 

optimal segmentation. The shape prior might be based on specific assumptions that may not 

be valid for a given testing image. On the other hand, deep learning has the power of 

representation learning given enough training dataset. Therefore, in deep learning there is no 

need for shape prior information because the FCN will learn how to segment the LV 

automatically from a test image.

Deep learning achieved good results in many medical imaging domains. For example, the U-

net architecture of Ronneberger et al. (2015) was used for the segmentation of the coronary 

artery border from the coronary CT angiography images (Gao et al., 2020). The authors 

firstly applied Hough Transform for aorta detection and coronary artery localization. Also, a 

CNN was used for vessel border detection in intracoronary images (Gao et al., 2019a). Gao 

et al. (2019b) implemented a deep neural network in a framework aimed to implicit strain 

reconstruction from radio frequency images. They added privileged-information into 

network’s training to help it achieve the actual process of ultrasound elastography. The first 

application of FCN in CMR image segmentation was proposed by Tran (2016) where a 

region of interest (ROI) centered at the heart cavity was extracted from the image before 

segmentation. The cavity center was assumed to be at the image center which might not be 

true in all circumstances. Poudel et al. (2016) proposed a recurrent FCN by modifying the 

U-net. They used the spatial dependencies between slices during the segmentation of the 

endocardium of LV. Tan et al. (2017) segmented the LV by applying linear regression using 

CNN. Their approach consists of two primary stages: finding the LV center followed by the 

estimation of the radiuses of the endo-cardial contour (EnC), and epicardial contour (EpC) 

in polar space. Oktay et al. (2018) presented a regularized CNN by the addition of 

anatomical prior. Their model is suited for cardiac image analysis tasks such as 

segmentation and enhancement. Zheng et al. (2018) proposed an iterative cardiac 

segmentation method that starts from the base to the apex of the LV. In each iteration, a new 

form of the U-net segments the heart and the output is used to predict the segmentation of 

the next slice to maintain 3D consistency. Furthermore, Bai et al. (2018) used a FCN that is 

inspired from VGG-16 network (Simonyan and Zisserman, 2014) to segment the LV and 

right ventricle (RV) from the short axis CMR and the right atrium and left atrium from long-

axis CMR. Khened et al. (2019) presented a new computationally efficient DenseNet that is 

based on FCN for cardiac segmentation. They estimated clinical indices from the 

segmentation maps to develop a system for heart disease classification. Tao et al. (2019) 

used U-net to implement a framework for automated estimation of left ventricular 

parameters from CMR. They assessed the performance of their method by a multi-vendor 

and multi-center datasets.

3. Materials and methods

Fig. 1 shows our framework of automated cardiac segmentation, and estimation of LV 

functional parameters and mass. The steps of our framework are (i) extraction of an ROI 

centered at the center of LV cavity using a deep learning network called FCN1, (ii) ROI 

cropping for all CMR images, (iii) segmentation of the LV cavity and myocardium using a 

Abdeltawab et al. Page 4

Comput Med Imaging Graph. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deep learning network called FCN2, and (iv) estimation of LV functional parameters and 

mass. The following sections illustrate the pipeline in detail.

3.1. Region-of-interest (ROI) extraction

The short-axis CMR images contain the heart and other surrounding tissues that dominate 

most of the image. In such cases, deep learning models that perform dense classification in 

the image spatial domain tend to be biased towards the majority class (the surrounding 

tissues). Therefore, extracting an ROI that localizes the heart tissues is a necessary pre-

processing step before the final segmentation of the heart. Furthermore, ROI extraction 

reduces the computational cost and boosts speed. In our pipeline, the ROI was extracted 

using a bounding box of size 128 × 128 pixels that was centered at the LV cavity center 

point. We estimated the LV center point by a deep learning approach that uses a FCN, called 

FCN1, which is similar to the U-net. The ROI extraction process is depicted in Fig. 2.

The network was trained to segment the LV cavity from the original CMR images. Then, the 

ROI center was set to the center of mass of the segmented region. We expected that the 

output of the network would suffer from the class-imbalance problem that results in a high 

number of false negative (FN) pixels. However, the primary purpose of this network is to 

provide an estimate for the LV center point. The LV cavity in apical slices comprises a very 

small proportion of the whole image. Therefore, the network might fail to segment the cavity 

due to the high degree of class imbalance. To overcome this problem, the center of LV of the 

previous slice was used as a center for the slice that results in a black segmentation map 

from FCN1. By doing so, we maintain the 3D consistency of the LV without harming the 

overall performance because extracted ROIs that truly do not contain LV tissues will again 

result in black segmentation maps from FCN2.

Although training a FCN takes time and effort to tune its hyper-parameters, after training our 

method can extract the LV-ROI in terms of milliseconds which is faster than other methods 

that use Hough Transform (Khened et al., 2019).

3.2. Cardiac segmentation

The proposed network for the segmentation of the LV cavity and myocardium is shown in 

Fig. 3. It is based on the FCN that was adapted for segmentation tasks (Long et al., 2015). 

By convention, the FCN passes the input through a contracting path followed by an 

expanding path. In the contracting path the spatial dimensions are progressively reduced till 

a bottleneck layer with an abstract and dense representation of the input. While in the 

expanding path, the spatial dimensions of the bottleneck are restored to the original input 

dimensions by applying transposed convolutions. By definition, a bottleneck layer lies 

between a contracting and an expanding path and has reduced dimensions compared to the 

previous layer. It contains a representation of the input with a reduced dimensionality 

(Ronneberger et al., 2015). Our proposed network has several expanding paths that 

regenerate the input dimensions from several bottlenecks with different representations to 

the input. Then, the output of each expanding path was concatenated into a single layer 

which was introduced to an inception module inspired from Google research (Szegedy et al., 

2016). The inception module is depicted in Fig. 4. The addition of the inception module 
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which has kernels with different sizes allows the learning of various-scales features. Kernels 

with small sizes detect small cardiac regions while kernels with larger sizes detect larger 

cardiac areas and remove the false positive areas that share similar spatial properties as the 

targeted cardiac area. Finally, the output of the inception module was processed by a 

convolution layer. To obtain a segmentation map, a sigmoid layer was applied on the output 

of the network. Network FCN2 contains multiple versions from FCN1 with different depths. 

In other words, FCN2 has four versions of FCN1’s architecture and they all share the same 

contracting path. The output of each network is concatenated in one layer to form the final 

segmentation Fig. 5 shows the relationship between the FCN1 and FCN2.

3.3. Loss function

The extraction of an LV ROI from CMR images alleviates the class imbalance problem and 

boosts the performance of cross entropy (CE) loss. Therefore, we will use CE to keep its 

advantages, such as smooth training. Furthermore, we propose the radial loss to obtain a 

good segmentation for the LV contours. There are other loss functions that were proposed in 

DL segmentation literature and used segmentation metrics as loss functions such as Dice 

loss (Kamnitsas et al., 2018). However, these approaches produce under-segmented regions 

with many false positive pixels (Kamnitsas et al., 2018). Consequently, they were excluded 

from our analysis. Let W refers to the parameters of the trained network, X = {X1, X2, …, 

XN}refers to the set of training images of size N, and Y = {Y1, Y2, …, YN} refers to the set 

of manual segmentation label maps. The CE loss is given by:

LCE = − logp Y i Xi, W = − ∑
c = 1

C
∑

pj ∈ Xi
Y i, c, pjlogY i, c, pj (1)

Where p(Yi|Xi, W) represents the predicted probabilistic map resulted form the network 

after the sigmoid layer when the network’s input is Xi an its parameters W, c refers to class 

index, pj refers to a pixel in image Xi, Y i, c, pj refers to the true probability that pixel pj 

belongs to class c, and Y i, c, pj refers to the predicted probability that pixel pj belongs to class 

c.

Exploiting the fact that LV has a radial shape, we propose a novel radial loss. The distance 

between the center of mass point of a segmented region to its surface at a certain radial 

direction is defined as the radial distance (RD) at that angel. Hence, if we have a segmented 

region surface S and ground truth surface G, the local radial distance error d at a polar angle 

θ is defined in (2) and is shown in Fig. 6:

d = sθ − gθ (2)

where sθ and gθ are the RDs from the center of mass point to the surfaces S and G, 

respectively. Now, by constructing equi-spaced radial lines, we can estimate the RDs for the 

surfaces S and G and store them in the same radial order in vectors s and g, respectively. The 

RD loss is defined as L2 penalty:
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LRD = 1
M s − g 2 (3)

where M is the number of constructed radial lines. The surfaces S and G for an image Xi can 

be obtained by applying a Sobel filter on the predicted probabilistic map Ŷi and the ground 

truth Yi, respectively. At the beginning of the training, the segmented myocardium from Ŷi 

might be noisy and discontinuous. Therefore, estimating the RDs for a vector s by 

calculating the distance between the previously estimated LV center point from FCN1 and 

the border of a region S that encloses this center point, excludes the scattered regions in Ŷi 

that do not belong to the LV. The loss is an Euclidean norm which can be differentiated by a 

deep learning library. The LRD can be adapted for both the endo-cardial contour (EnC) and 

the epicardial contour (EpC) of the LV as follows:

LRD = 1
M sEnC − gEnC 2 + 1

M sEpC − gEpC 2 (4)

Our final loss function is defined as:

L = LCE+LRD (5)

3.4. Network training settings

Both FCN1 and FCN2 were built using Pytorch deep learning framework (Paszke et al., 

2017). The weights of the convolutional layers were initialized using Kaiming initialization 

(He et al., 2015). Network’s hyper-parameters are the variables that should be set before 

network training. These variables determine network architecture such as the number of 

kernels and network’s training such as the learning rate. We adopted a grid search approach 

to find the optimal values of the hyper-parameters that achieve the best results in terms of 

segmentation metrics. The search space for the initial number of kernels was {8, 16, 32}, the 

learning rate of the Adam (Kingma and Ba, 2014) optimizer was {0.01, 0.001, 0.0001}, the 

learning momentum was {0.9}, the batch size was {8, 16, 32}, the number of epochs was 

100:50:300. Data augmentation is a way to increase the size of the training set and to 

overcome the problem of over-fitting during the training of deep networks. Therefore, we 

employed a data augmentation strategy with random translations, scaling, and rotation.

3.5. Physiological heart assessment

Our methodology aims to provide an automatic and accurate way to evaluate the heart 

function. In this paper, we estimate parameters related to the LV function and mass (Frangi 

et al., 2001), which are defined as follows:

1. Left ventricular volume (LVV): is the preliminary measure that is required for 

the derivation of other important parameters such as EF. We used Simpson’s 

method, which computes LVV as the sum of several smaller volumes with the 

same configuration.

2. Left ventricular mass (LVM): is used to characterize LV hypertrophy. To estimate 

the LVM, two assumptions are made: (i) the interventricular septum is part of the 
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LV and (ii) the volume of the myocardium, Vm, is the total volume delineated by 

EpCs of the LV, VEpC, minus the LV cavity volume, VEnC at the phase of end 

diastole (ED). The LVM can be estimated by multiplying Vm by the density of 

the myocardial tissue ρ = 1.05 g/cm3:

V m = V EpC tED − V EnC tED (6)

LV M = ρ × V m (7)

For inter-patient comparisons, the LVM is normalized by body weight or total 

surface area.

3. Stroke volume (SV): is the blood volume ejected between the phase of end 

diastole (ED) and the phase of end systole (ES).

SV = V EnC tED − V EnC tES (8)

SV can be normalized by the total body surface area to obtain the SV index 

(SVI).

4. Ejection fraction (EF): is one of the most important parameters for the evaluation 

of LV function. It is defined as:

EF = SV
V EnC tED

× 100% (9)

Normal values of EF range from 57% to 78% for the LV (Lorenz et al., 1999).

4. Experimental results

4.1. Cardiac datasets

We performed our LV segmentation and function quantification experiments on two different 

datasets. Namely, a locally-acquired dataset and the publicly available dataset from the 

ACDC MICCAI challenge 2017 (Bernard et al., 2018).

4.1.1. ACDC-2017 dataset—consists of 150 exams for different patients. According to 

the physiological heart parameters, the patients are categorized into five classes with equal 

number of patient. The classes are (i) normal subjects, (ii) patients with previous myocardial 

infarction, (iii) patients with dilated cardiomyopathy, (iv) patients with hypertrophic 

cardiomyopathy, and (v) patients with abnormal right ventricle. The dataset was then divided 

into two sets: (i) a training set consisting of 100 subjects along with their manual annotation 

at the end diastolic (ED) and the end systolic (ES) phases in all captured heart slices; (ii) a 

testing set consisting of 50 patients without annotation. The two sets have even distributions 

of patients classes. The cine CMR images were captured in breath hold with a retrospective 

or prospective gating and with a SSFP sequence in short-axis orientation. The short-axis 
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slices covered the whole LV. The parameters were: slice thickness = 5 or 8 mm, inter-slice 

gap = 5 or 8 mm, and spatial resolution = 1.37–1.68 mm2/pixel.

4.1.2. Locally-acquired dataset—was used to assess the generalizability of our 

segmentation approach across different data distributions. In this dataset, cross-sectional 

CMR images were collected from eleven patients with a history of myocardial infarction and 

who were involved in a study approved by the institutional review board (IRB). The dataset 

consists of 26 CMR scans that cover multiple heart sections and at each section, 25 frames 

were captured to cover the cardiac cycle. The total number of 2D CMR images is about 6K 

images. The dataset’s acquisition device was a 1.5 T Espree system, Siemens Medical 

Solutions Inc., USA with parameters: TR = 4.16 ms, TE = 1.5 ms, angle of flip = 80° and 1 

average, slice thickness = 8 mm, and in-plane resolution = 1.4 × 3.1 mm2.

4.2. Framework training and validation

We analyzed the performance of our proposed pipeline for the automated segmentation of 

LV cavity and myocardium, and the estimation of physiological heart parameters using the 

ACDC dataset, which consists of 100 patients with their manual annotations. We adopted a 

ten-fold cross-validation to train and validate FCN1, and FCN2. Each fold had an equal 

number of cases from the five mentioned cardiac diagnoses by stratified sampling. In other 

words, the networks were trained and tested ten times with a training set of 90 patient data 

(average of 1800 2D images) and a testing set of 10 patients (average of 200 2D images). 

Additionally, we tested the generalization of our segmentation method using the locally 

collected dataset.

The output of the segmentation network is a probabilistic map where each pixel is assigned a 

probability of belonging to the object. To obtain the final segmented binary image, Otsu 

thresholding (Otsu, 1979) was applied on the probabilistic map. Furthermore, connected 

components were determined to remove the false positive pixels. Finally, we applied 

morphological operations, such as gap filling, to fill the gaps in the resulted binary 

segmentation. Segmentation accuracy was assessed in terms of the Dice score and Hausdorff 

distance (HD) metrics.

4.3. Evaluation of LV-ROI extraction

In order to evaluate the performance of our proposed method of LV-ROI extraction, FCN1 

was trained and validated by the ACDC dataset in a ten-fold cross-validation scheme, and in 

each fold the center of mass of the segmented LV cavity Ps was estimated for each image. 

Then, two metrics were used to assess the network performance; namely (1) the Euclidean 

distance between the predicted center point Ps and the manually-annotated center of mass of 

LV cavity Pm, and (2) the percentage of images with predicted ROI that includes all pixels 

related to LV cavity and myocardium. Table 1 shows the statistics of the Euclidean distance 

between Ps and Pm for the 1902 images of the ACDC dataset. Our approach achieved an 

acceptable accuracy and outperformed the approach in Khened et al. (2019). The average 

time to extract the desired ROIs of one subject at ED and ES phases is about 700 ms. Also, 

the extracted ROIs contained all the LV cavity and myocardium tissues.
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4.4. Evaluation of the proposed loss function

After ROI extraction, we performed segmentation using FCN2 with LCE loss only and with 

the proposed loss LCE + LRD. Table 2 shows a comparison between the segmentation 

performance of the two loss functions for LV cavity and myocardium (MYO). We can see 

that LCE alone gave a good performance because the class-imbalance problem was alleviated 

by the ROI extraction step. On the other hand, the proposed loss showed a superior 

performance in terms of both Dice score and HD metrics. Furthermore, the proposed loss 

had a better segmentation quality, as shown in Fig. 7. Thanks to the ability of RD loss to 

minimize the distance between the true LV contours and the predicted contours.

4.5. Evaluation of the proposed network model FCN2

To assess the performance of the proposed model FCN2, we compared it with two other 

models, namely: (1) the original U-net (Ronneberger et al., 2015) with four layers and an 

initial convolution layer that had 64 kernels, (2) the ConvDeconv net introduced in Noh et al. 

(2015). All of the three models were trained with the same settings as described in Section 

3.4 in a ten-fold cross-validation scheme. Table 3 compares the proposed model FCN2 

against the other models in terms of the resulted segmentation accuracy and the required 

computational cost reflected by the number of learnable parameters. As shown, FCN2 

showed the best segmentation quality for all segmented regions. On the other hand, 

ConvDeconv net had the lowest performance, which might be due to the absence of 

concatenation connections that add high-resolution features to the expanding path. FCN2 

performs better than the original U-net that starts with 64 kernels. Therefore we did not 

include a U-net with fewer kernels into comparison. Another advantage for FCN2 is that it 

has fewer parameters, consequently, it needs less GPU memory usage and training time.

Fig. 8 shows FCN2’s segmentation results for three different slices of the same heart along 

with their manual segmentation at ED and ES phases of the cardiac cycle. Overall, the 

proposed approach gave accurate segmentation with some erroneous results at apical slices. 

For all of the mentioned analysis, we chose FCN2 segmentation results for the estimation of 

physiological heart parameters.

4.6. Generalization evaluation

In this section, we evaluate the generalization capability of our proposed segmentation 

approach. Table 4 compares the segmentation performance of two models:

1. Our approach when the local dataset was used both for training and testing.

2. Our approach when trained on ACDC training dataset and tested on the local 

dataset.

For the second model, although ACDC dataset is composed of about 1.4K images captured 

at the ED and ES phases only, our approach achieved good segmentation accuracy for LV 

segmentation at all cardiac phases of the local dataset. The results of the second model are 

slightly inferior than the first that use the same dataset distribution. However, the results 

indicate that our approach generalizes well to different datasets, and it was successful in 
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segmenting the full cardiac cycle image frames when trained only on a dataset that has 

annotations only in ED and ES phases.

4.7. Physiological parameters estimation

Following LV cavity and myocardium segmentations from the CMR images, five functional 

parameters were estimated; namely the EDV, ESV, LVM, SV, and EF, which were described 

in Section 3.5. To assess the degree of agreement between the manual segmentation values 

and the estimated values from the predicted segmentation, Bland-Altman plots (Bland and 

Altman, 1986) were constructed, as shown in Fig. 9. These plots show the bias μ (average 

difference) and the 95% agreement limits (σ± 1.96 SD). In Bland-Altman plot, normality of 

the differences must be verified. Therefore, we applied Shapiro-Wilk test for normality with 

5% significance level and the P-values for EDV, ESV, LVM, SV, and EF were 0.082, 0.052, 

0.061, 0.154, 0.787, respectively. The P-values are larger than 0.05 and the test accepted 

normality. Our estimated parameters have an average of only three outlying points which 

comprise about only 3% of the studied cases.

Table 5 summarizes the error statistics in EDV, ESV, and EF estimations for our method and 

other methods applied on the ACDC dataset. The errors of EDV and ESV measures have the 

lowest bias and standard deviation. Furthermore, error of EF measure has a lower standard 

deviation than the method in Wolterink et al. (2017). In general, our approach showed 

acceptable differences that are comparable to intra- and inter-operator variability in the 

manual estimation of functional parameters from CMR images as reported in Sardanelli et 

al. (2008), Suinesiaputra et al. (2018).

5. Discussion

In this work we seek a method based on deep learning to develop an efficient segmentation 

framework that has the capability of providing accurate and automated segmentation to the 

LV cavity and myocardium in addition to providing accurate quantification of the LV 

functional parameters that are essential for heart functional assessment. The framework has 

a novel network architecture and essential contributions are described below.

First, The idea of having an initial network (FCN1) that performs ROI extraction task from 

original CMR images, established its success by providing accurate estimation of LV center 

point and faster performance during detection. We compared our method with a method that 

has the same objective of LV localization and ROI extraction but uses the Hough transform. 

Table 1 shows how our method outperformed a method that relies on Hough transform for 

LV localization. Furthermore, our method extracts the ROIs of one subject at ED and ES in 

only 700 ms and was able to generate ROIs that encompass the desired LV cavity and 

myocardium tissues. Therefore, our LV-ROI extraction is accurate, fast, and reliable.

The selection of the appropriate ROI size was based on choosing the lowest possible size 

that produces myocardial segmentation without any clipping for accurate further estimation 

of physiological heart parameters. In our experiments, we chose an ROI of size 128 × 128 

because this was the minimum size that encompasses the LV cavity and myocardium in our 

cardiac datasets. This ROI size has two advantages: (i) reducing the time and computations 
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requirements during network training and inference. (ii) alleviating the class imbalance 

problem by removing the unnecessary surrounding tissues. At the end, our implementation 

can handle arbitrary sizes.

Secondly, our network FCN2 constructs the final segmentation from multiple bottleneck 

layers, which are considered different representations to the input with different 

dimensionalities. The network produced accurate segmentation for the LV cavity and 

myocardium as shown in Fig. 8. It also outperformed popular segmentation models, such as 

U-net and the ConvDeconv networks in terms of the Dice Score and HD distance as shown 

in 3. Another advantage of FCN2 is the efficient use of memory and time by requiring a 

lower number of learnable parameters.

Moreover, the careful choice of the deep learning model components is important for the 

overall success of the model. Therefore, we implemented a novel loss function called radial 

loss, which is suitable for the LV segmentation problem due to the underlying radial shape 

of EnC and EpC. Our final loss is a combination from both the radial loss and the baseline 

cross-entropy. The latter is widely used in the domain of deep learning segmentation due to 

its nice differentiable properties and ability to produce smooth training. It is considered the 

standard loss function in many applications, particularly image segmentation. As shown in 

Table 2 and Fig. 6, our loss function resulted in a better performance when compared to a 

loss function composed of cross-entropy alone. The superiority of our method is attributed to 

the fact that the radial loss works on minimizing the distances between the predicted 

contours and the actual contours of the LV. On the other hand, cross-entropy alone works on 

measuring the pixel-wise error between the predicted probability of the predicted mask from 

the network and the ground truth. Then, it sums these errors for all pixels. Data 

augmentation is a smart way to avoid over-fitting and to increase the training samples, which 

is beneficial in the case of limited annotated data. By performing data augmentation, we 

achieved good average Dice and HD values for the segmentation of LV cavity and 

myocardium.

In Bland-Altman plots of Fig. 9, the small negative biases of EDV and ESV measurements 

indicate that they both were slightly underestimated. However, the measurements of ESV 

had a higher bias than of EDV and, consequently, the estimated EF, defined in (9), had a 

positive bias. The errors in measurements that are outside the confidence interval of the 

Bland-Altman plots lead to misdiagnosis for patients with CVD. Therefore, a good heart 

segmentation method should not produce outlying points by minimizing the segmentation 

errors that propagate to the next stage of functional parameters estimation.

Additionally, we compared our framework with other frameworks that tried to estimate 

cardiac parameters from the ACDC dataset to show the advantages of our methods based on 

the reported errors of each method. In general, our approach gave acceptable errors for the 

estimated parameters and outperformed the previous methods, as shown in Table 5. 

Furthermore, it is important to mention that our methodology is not limited to a certain 

dataset; we showed that good results can be obtained from utilizing a different dataset, even 

with a model trained by a sparse dataset (ACDC-2017) and tested on a dataset that covers 

the whole cardiac cycle.
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6. Conclusions

In this paper, we proposed a novel deep learning framework, with the ultimate goal of 

automated quantification of LV function and mass from short-axis CMR images. Our 

designed FCNs for LV-ROI extraction and LV segmentation demonstrated superior results 

when applied on the publicly available ACDC 2017 dataset. Furthermore, we reached our 

goal and our method gives lower error for the estimated parameters when compared to 

previous methods. The estimated LV function and mass global parameters are frequently 

used in the clinical practice of cardiac functional analysis. In fact, recent approaches 

suggested the integration of these parameters with each other for accurate cardiac diagnosis 

and prediction of cardiovascular events (Mewton et al., 2013). It is noteworthy that the errors 

of the estimated parameters are comparable to the errors reported when manual delineation 

of the cardiac structures is the pursued approach. Therefore, our proposed deep learning 

framework has an established potential for easing and automating the cardiac functional 

analysis process. Our future work incorporates a complete computer aided diagnostic system 

for cardiac disease classification and detection.
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Fig. 1. 
The proposed framework for automated cardiac segmentation, and estimation of LV 

functional parameters and mass.
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Fig. 2. 
The LV-ROI extraction process using a fully convolutional network named FCN1. The input 

to the network is the original 2D CMR images which are re-sized to 256 × 256 pixels and 

the output is segmentation maps for the LV cavity, which are re-sized again to the same 

spatial dimension as the input. The blue arrow indicates convolution operation with a kernel 

size 3 × 3, and the number of kernels increases from 32 to 512 in the contracting path, and 

decreases from 512 to 1 in the expanding path. Zero-padding was used to maintain the same 

spatial resolution after convolution. The red (green) arrow refers to max-pooling (up-

convolution) operation that decreases (increases) the spatial dimension by a factor of 2. 

Finally, the dashed arrow copies contextual information from the contracting path and 

concatenates it to the expanding path.
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Fig. 3. 
The proposed network architecture for cardiac segmentation. The input to the network is the 

extracted LV-ROI of size 128 × 128 pixels and the output is the segmentation maps for the 

LV cavity (red) and mayocardium (green). The blue arrow indicates convolution operation 

with a kernel size 3 × 3, and the number of kernels increases from 16 to 256 in the 

contracting path, and decreases from 256 to 1 in the expanding path. Zero-padding was used 

to maintain the same spatial resolution after convolution. The red (green) arrow refers to 

max-pooling (up-convolution) operation that decreases (increases) the spatial dimension by 

a factor of 2. Finally, the dashed arrow copies feature maps from layer to another.

Abdeltawab et al. Page 19

Comput Med Imaging Graph. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The architecture of the used inception module in FCN2. The module has parallel processing 

paths with filters of different sizes, i.e.: 1 × 1, 3 × 3, and 5 × 5 convolutions, and 3 × 3 

average pooling layers. The resulted feature maps are then concatenated in the final layer.
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Fig. 5. 
The relationship between network FCN1 and network FCN2. Network FCN2 has four 

FCN1s with various depths and the output of each network is concatenated to form the final 

segmentation.
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Fig. 6. 
The true contour (solid line) and the predicted contour (dashed line) in polar space where d 
represents the local radial distance error at a polar angle θ.
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Fig. 7. 
Comparison between the manual segmentation of a LV slice in ED and ES phases, the 

predicted segmentation from FCN2 with LCE loss, and the predicted segmentation from 

FCN2 with proposed loss (LCE + LRD). Red, and green regions refer to the LV cavity, and 

myocardium, respectively, while blue color refers to segmentation error. Visual qualitative 

improvements in the segmentation can be noticed with the proposed loss function.
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Fig. 8. 
Segmentation results of the FCN2 network at ED and ES phases of one patient during a ten-

fold cross-validation. Red, and green regions refer to the LV cavity, and myocardium, 

respectively. The letters B, M, and A refer to Basal, Mid-cavity, and Apical slices, 

respectively. The colors red and green indicate LV cavity and LV myocardium, respectively.
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Fig. 9. 
Bland-Altman plots for functional parameters. Top-to-down: EDV, ESV, LVM, SV, and EF, 

where μ is the bias of the estimated values from the ground truth and μ ± 1.96σ represents 

the 95% confidence interval. To achieve a good agreement, bias should approach the zero 

value and the error points should lie within the confidence interval.
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Table 2

Comparison between two different loss functions in terms of the average values of segmentation accuracy 

obtained from a ten-fold cross-validation on the data set.

Loss function Dice coeff. HD (mm)

LV Cavity MYO LV Cavity MYO

LCE 0.93 0.86 9.52 11.41

LCE + LRD 0.94 0.89 6.71 7.13
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Table 3

Evaluation results for three different segmentation techniques. The values of the segmentation metrics (Dice 

and HD) are presented as the average values during a ten-fold cross-validation strategy. The table also shows 

the number of learnable parameters for each model.

Method Dice coefficient HD (mm) # of Param.

LV Cavity MYO LV cavity MYO

ED ES ED ES ED ES ED ES

U-net (Ronneberger et al., 2015) 0.94 0.90 0.83 0.85 8.22 10.53 9.81 11.51 31M

ConvDeconv net (Noh et al., 2015) 0.92 0.88 0.80 0.83 9.14 11.34 10.81 11.95 252M

FCN2 (proposed) 0.96 0.92 0.88 0.89 6.31 7.42 7.11 7.25 2.5M
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Table 4

Comparison between two models for our segmentation performance. Model A: Training and testing on the 

local dataset. Model B: Training on ACDC dataset and testing on the local dataset. The estimates are average 

values.

Model Dice coef. HD (mm)

LV cavity MYO LV cavity MYO

Model A 0.95 0.87 9.31 8.52

Model B 0.94 0.85 11.12 9.74
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Table 5

The differences between the manual and automated estimation of the functional parameters presented as 

average (std.) for the proposed approach and other approaches applied on the ACDC dataset.

Reference EDV (ml) ESV (ml) EF (%)

Wolterink et al. (2017) −1.57 (6.31) −2.51 (7.66) 1.23 (4.99)

Grinias and Tziritas (2017) 1.43 (9.95) 2.61 (17.60) −0.05 (8.61)

Proposed −1.27 (5.31) −2.11 (6.06) 1.03 (5.42)
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