Table 3.
Models | Train | Test (cross-validation) | |||||||
---|---|---|---|---|---|---|---|---|---|
Metric | AUC (95% CI) | SN | SP | Opt.Thr | AUC (95% CI) | ACC | Kappa | SN | SP |
EARLY PD VS. HC | |||||||||
GLM | 0.920 (0.888-0.953) | 0.912 | 0.812 | 0.462 | 0.907 (0.849-0.964) | 0.898 | 0.764 | 0.909 | 0.872 |
GAM | 0.946 (0.922-0.970) | 0.923 | 0.850 | 0.534 | 0.928 (0.878-0.978) | 0.898 | 0.768 | 0.898 | 0.897 |
Treea | 0.872 (0.831-0.913) | 0.857 | 0.879 | 0.586 | 0.860 (0.799-0.922) | 0.842 | 0.659 | 0.818 | 0.897 |
RFa | 0.999 (0.999-1.00) | 0.990 | 1.00 | 0.534 | 0.913 (0.858-0.968) | 0.898 | 0.764 | 0.909 | 0.872 |
XGBa | 0.958 (0.937-0.979) | 0.898 | 0.901 | 0.660 | 0.923 (0.875-0.972) | 0.882 | 0.736 | 0.875 | 0.897 |
EARLY PD VS. SWEDD | |||||||||
GLMb | 0.938 (0.863-0.972) | 0.909 | 0.841 | 0.504 | 0.779 (0.677-0.880) | 0.744 | 0.265 | 0.667 | 0.755 |
GAMb | 0.955 (0.916-0.994) | 0.886 | 0.909 | 0.437 | 0.787 (0.689-0.886) | 0.756 | 0.299 | 0.714 | 0.762 |
Treea, b | 0.932 (0.894-0.971) | 0.864 | 0.920 | 0.486 | 0.743 (0.617-0.869) | 0.798 | 0.343 | 0.667 | 0.816 |
RFa, b | 1.00 (1.00-1.00) | 1.00 | 1.00 | 0.461 | 0.822 (0.746-0.899) | 0.732 | 0.302 | 0.809 | 0.721 |
XGBa, b | 0.997 (0.993-1.00) | 0.977 | 0.954 | 0.542 | 0.863 (0.777-0.948) | 0.768 | 0.381 | 0.905 | 0.748 |
Superscript a, 10-fold, 5 repeats resampling of the model tuning parameter(s), whereby the optimal hyper-parameter setting was determined by the AUC; ACC, accuracy; superscript b, synthetic minority oversampling technique (SMOTE); AUC, receiver operating characteristic area under the curve; CI, DeLong confidence interval; Kappa, Cohen's Kappa; SP, specificity; SN, sensitivity; GAM, general additive model; GLM, logistic regression generalized linear model; RF, random forest; Tree, decision tree; XGBoost, Extreme gradient boosting; thr, threshold; Bold model names, highest cross-validated AUC.