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Abstract

The cellular complexity and functional diversification of the human immune system necessitates 

the use of high-dimensional single-cell tools to uncover its role in multifaceted diseases including 

many rheumatic diseases as well as other autoimmune and inflammatory disorders. Next-

generation immune monitoring technologies, such as mass cytometry (CyTOF), and analogous 

imaging approaches, including Multiplexed Ion Beam Imaging (MIBI), have evolved from their 

low-dimensional counterparts, flow cytometry and immunohistochemistry. Here, we introduce the 

underlying technologies and discuss aspects necessary for their successful implementation, 

including study design principles and analytical tools for the discovery of stratifying features. We 

highlight successful studies leveraging these technologies to identify functional biomarkers and 

potential therapeutic targets in several rheumatic diseases and conclude with a perspective on 

recent developments and future directions.

Introduction

Technological advances are a major driver of scientific insight across many areas of science. 

Given the complexity of the human immune system, immunology in particular, has 

benefitted from innovations in various single-cell technologies1. Such technologies now 

facilitate the in-depth study of immune cell composition, activation and their relation to 

disease. Dysregulation and aberrant activation of regulatory processes within the immune 

system are believed to play a crucial part in the development of various rheumatic diseases 

(RDs) and autoimmunity in general. RDs comprise a heterogeneous set of disorders 

including diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), 

Sjörgen’s syndrome (SjS) and systemic sclerosis (SSc). Many of these RDs share 

characteristics that point towards the immune system as a central player in their etiology. 

Firstly, genome-wide association studies (GWAS) have uncovered the HLA antigen 

presenting machinery as a major genetic risk factor for the development of many RDs2–4. 

Antigen presentation is often followed by other immune-related genetic associations, e.g. 
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genes regulating cytokine production5. Genetic contribution to disease risk varies across 

different RDs, but in general, a combination of genetic predisposition and additional 

environmental insults are thought to be key events in RD etiology. For example, viral 

infections with the Epstein-Barr virus (EBV) and associated immune activation have been 

found to be associated with many RDs2,3,6–8. Inflammation and other processes can in turn 

prompt protein modifications (e.g. citrullination [ref:5]) or epigenetic modifications4, 

potentially creating novel autoantigens. Given an inflammatory microenvironment, antigen 

presenting cells may display such modified antigens, thus initiating an adaptive immune 

response. For many RDs, these are characterized by the interplay of T cells, in particular 

follicular T helper (TFH) cells, and B cells2,3,5. Production of autoantibodies by terminally 

differentiated plasma cells is a shared feature of many RDs that contributes to disease 

pathology and is often of high diagnostic relevance3,5,6. Lastly, immune-targeted 

interventions such as modulation of tumor necrosis factor (TNF) signaling or B cell 

depletion are therapeutically successful approaches across many RDs, again underlining the 

importance of the immune system in these diseases.

Given this interplay of external factors with innate and adaptive immunity, the ongoing 

interaction and communication within the immune system as well as the pathogenic 

properties of certain subsets, systems-level analysis of the immune system in RD promises 

better understanding of these pathological processes9–11, including: the discovery of novel 

biomarkers to predict treatment response and to guide therapeutic decision making12,13, the 

identification of therapeutic cell targets to reduce risk of infection associated with broadly 

immunosuppressive therapy, as well as to address patients not responding to currently 

available therapeutics. Importantly, identified biomarkers are often not only predictive, but 

also intrinsically linked to the disease mechanism and can therefore serve as new therapeutic 

targets as well14–16.

The complexity of human immune cell compositions, their numerous functional states, and 

localizations requires adequate methodologies for their comprehensive assessment. In this 

context, ‘comprehensive immune monitoring’ refers to the ability to robustly identify all 

major immune cell lineage and their most important functional subsets and to assign all cells 

in a given sample accordingly17. Of note, robustly determining the absence of immune 

populations can also provide valuable insight, e.g. to reveal populations with altered 

trafficking properties or to monitor the success of B cell depleting antibodies. Given their 

high-dimensional capabilities combined with the throughput and robustness to analyze 

samples across large cohorts, mass cytometry (CyTOF) and closely related imaging 

technologies, such as multiplexed ion beam imaging (MIBI), are particularly suited for the 

comprehensive immune monitoring of biospecimens from patients with RD18.

In this Review, we introduce the underlying technologies of these approaches, as well as 

recent developments which have greatly accelerated their adoption in clinical settings. 

Further, we provide a practical guideline and considerations for the design of immune 

monitoring studies and subsequent approaches for the comprehensive and unbiased analysis 

of these datasets. We conclude with examples of successful applications of these 

technologies as drivers for novel insights in RDs and provide our view on future possibilities 

and challenges involved in high-dimensional immune monitoring.
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Mass cytometry for next generation immune-monitoring

For many years, immune monitoring and much of immunological research has relied on 

flow cytometry and immunohistochemistry (IHC) or immune fluorescence (IF) approaches 

to capture and quantify cellular heterogeneity and its relation to disease. The low number of 

parameters that could be analyzed simultaneously forced restricted analyses in terms of 

cellular properties and composition. Consequently, most experiments could only target a 

single cell type with additional answers coming at the sacrifice of time and more clinical 

material. More recently, single-cell parametrization has increased through the development 

of novel fluorophores and laser systems, driving the discovery of new immune cell sub-

classes as well as important functional states. However, physical limitations have impaired 

the addition of further parameters in fluorescence-based cytometry due to the crowding of 

the visible spectrum of wavelengths, resulting in spectral overlap between different analysis 

channels in complex cytometry experiments that still fail to comprehensively capture a 

snapshot of the whole immune state simultaneously. A solution to this problem was found 

by substituting the fluorescence-based reporters used in flow cytometry for non-biological 

elemental isotopes and an inductively coupled plasma mass spectrometry (ICPMS)-based 

readout, subsequently termed mass cytometry or cytometry by time-of flight (CyTOF)19–21.

For mass cytometry, instead of fluorophores, antibodies are tagged with heavy-metal 

reporter ions through covalent conjugation with chelating polymers22–25. Following staining 

with these antibodies, single-cell suspensions are introduced into the CyTOF analyzer where 

they are first nebulized into droplets and subsequently vaporized, atomized, and ionized 

through introduction to an inductively coupled plasma (ICP) (Figure 1A). The resulting ion 

cloud is then mass-filtered to remove biologically abundant ion species and finally analyzed 

by time-of-flight (TOF) mass spectrometry to quantify the abundance of all the isotopic 

reporter masses in parallel, thus enabling quantification of bound antibodies and therefore 

expression of the target of interest (Figure 1A).

Some of the key characteristics of flow and mass cytometry are directly compared in Table 

1. While staining procedures and sample handling are comparable to flow cytometry, mass 

cytometry drastically reduces issues related to spectral overlap between different analysis 

channels (Figure 1B). The heavy-metal isotopes used to tag antibodies for mass cytometry 

possess non-overlapping atomic masses which can be accurately resolved and quantified 

through the above-mentioned time-of-flight mass spectrometry detection system.

The availability of many different heavy metal isotopes increases the multiplexing capacity 

of mass cytometry to currently ≥60 separate analysis channels. This number is steadily 

increasing, for example through advances in conjugation chemistry approaches for the 

chelation of non-lanthanide metals such as yttrium, palladium, indium, bismuth and 

platinum26–28. It should be mentioned that the employed heavy-metal isotopes are not 

commonly found in unstained samples, thus eliminating biological background and issues 

related to autofluorescence. Rare exceptions are the treatment of cancer patients with the 

platinum-containing cytostatic drug cisplatin or the use of gadolinium-containing contrast 

agents employed in medical imaging. Interestingly, residual heavy-metals might be 

detectable in cells isolated from these patients shortly after administration, which has also 

been leveraged to study the biodistribution of these compounds in patients29.
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Since its inception, there have been numerous improvements that have increased the utility 

of mass cytometry for widespread adaptation in immune monitoring and phenotyping21. 

First, adopting cellular barcoding approaches to mass cytometry enables the staining, 

processing and acquisition of multiple samples as a single composite sample. This 

drastically reduces technical variation between samples, reagent consumption, and analysis 

time which is especially beneficial in clinical settings where large groups of samples are to 

be compared. Barcoding can minimize batch effects and thus allows for large screens e.g. of 

phosphorylation states and their perturbations30. Furthermore, it improves the identification 

and exclusion of cellular doublets crucial for single-cell analysis31. Barcoding is now not 

only available for fixed samples but also for live cells including cells of non-hematopoietic 

origin32–34. Furthermore, normalization methods using bead-standards or biological control 

samples greatly improve mass cytometry comparability across time, batches and study 

sites35–37.

Mass cytometry can be employed to analyze a wide variety of cellular features of interest. 

Antibodies targeting surface molecules can be used to obtain lineage identity and in-depth 

phenotypes of heterogeneous cell populations. Furthermore, the chemically stable elemental 

reporters reagents are broadly compatible with common fixation and permeabilization 

procedures, facilitating quantification of a variety of intracellular targets in combination with 

the cellular identity30. For example, quantification of transcription factors can give insight 

into master regulators and their involvement in fate decisions and the maintenance of lineage 

programs38. Furthermore, intracellular cytokine staining can be used to analyze high-

dimensional patterns of cytokine co-production across a wide variety of cell types39,40. 

Another possible intracellular readout are highly multiplexed phosphorylation levels 

reporting on functional cell states and their responses to external stimuli30. Additional 

features regularly assessed in mass cytometry are DNA content through the use of metal-

containing intercalators22 and cellular viability through covalent binding of cisplatin or 

analogous palladium-containing compounds to membrane compromised cells34,41. Further, 

mass cytometry can reveal cell cycle states through the combination of a small number of 

antibodies and the incorporation of 5-iodo-2-deoxyuridine (IdU) which can be directly 

analyzed by CyTOF42. This can be further extended to simultaneously capture de novo 

transcriptional and translational activity in single cells using 5-bromo-2-uridine (BrU) and 

puromycin, respectively43.

Another exciting development is the use of reporter probes for enzymatic activities or 

cellular states such as cellular hypoxia which can be assessed using tellurium containing 

probes44. Phagocytic activity of differentially polarized myeloid cells has recently been 

assessed using metal-labeled targets to quantify their uptake45. Furthermore, making use of 

mRNA hybridization and rolling circle signal amplification, RNA transcripts have been 

analyzed together with proteomic targets by mass cytometry46,47. Lastly, this technology 

allows the multiplexed analysis of a wide array of antigen-specific T cells through the use of 

metal-conjugated tetramers48–52. Taken together, mass cytometry enables in-depth cellular 

characterization across a variety of biological functions which importantly, can be assessed 

simultaneously at a single-cell level, thus providing insights into their co-regulation and 

potential relevance for disease.
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Emergence of high-dimensional imaging technologies

Like conventional flow cytometry, mass cytometry is uniquely suited to perform highly 

multiplexed, single-cell analysis on a wide range of parameters from cell suspensions such 

as blood or other liquid biopsies. Peripheral blood, for instance, is available for many RD 

research scenarios. Still, RD typically manifests in solid tissue itself, thus tissue-based 

imaging methods are required to investigate cells in their native or pathological context. 

Spatial analysis provides insight into the cellular microenvironment as well as cell-cell 

interactions, both important contributors to cellular identity and functional state in assessing 

biological contexts53.

IHC on formalin fixed paraffin embedded (FFPE) samples has been the predominant 

methodology for pathological analysis of human tissues, followed by IF. Relying on 

chromogenic substrates and fluorescence emission respectively, both technologies have a 

limited multiplexing capacity of approximately up to 4 simultaneous measurements under 

routine conditions. To address these limitations, several approaches have recently been 

developed with the aim of increasing the number of parameters represented in these images. 

One set of approaches relies on the serial acquisition of a small set of markers across many 

cycles. Usually, these technologies employ fluorescently labeled antibodies which are read 

in multiple cycles of staining, imaging and quenching54–56. A recent variation of this, 

termed CODEX, restricts cycling to several rounds of imaging, fluorophore reporter removal 

and subsequent acquisition of additional reporters57. While these fluorescence-based 

technologies do have the ability to acquire high-dimensional images, certain limitations and 

challenges remain. Cyclic staining, with repeated exposure to reporter stripping chemicals, 

can lead to changes in epitope accessibility and altered tissue morphology making 

optimization of staining order challenging and reassembly of cyclic image stack less robust. 

Tissues, particularly those that are archival FFPE, suffer from background signal due to 

autofluorescence, limiting assay sensitivity and often requiring additional analytical 

compensation58. Additionally, chromogenic and fluorophore dyes are often not chemically 

stable making stability for long-term storage challenging. Further, the nature of cyclic 

methods is incompatible with subsequent re-acquisitions under different imaging conditions 

(i.e. a first pass low resolution scan followed by a higher resolution acquisition). Analogous 

to the development of mass cytometry from flow cytometry, two related technologies, 

termed imaging mass cytometry (IMC) [ref: 59] and multiplexed ion beam imaging (MIBI) 

[ref: 60,61], have been developed to replace the fluorescence detection with elemental mass 

reporters for epitope quantification in an imaging context.

For both technologies, samples including FFPE and cryopreserved tissues are mounted onto 

a slide and stained with heavy-metal isotope-tagged antibodies or other reporter probes 

similar to IHC or IF procedures (Figure 2). In contrast to cyclic approaches, samples can be 

stained with all antibodies and reporter tags at once, no serial staining steps are necessary. 

Stained slides are then introduced into the respective analyzers. In the IMC, following 

staining, a laser system is used to ablate the stained tissue pixel by pixel. The resulting 

ablated material is then introduced into a CyTOF analyzer where it is ionized through an 

ICP and the elemental masses are quantified similar to whole cells by mass cytometry. The 

current commercial IMC implementation enables 1 μm image resolution and acquires 
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approximately 100 such 1μm pixels per second62,63. In terms of sensitivity, approximately 

50 copies of an epitope are required per pixel for minimal detection.

In contrast to laser-ablation based IMC, MIBI utilizes the principle of secondary ionization 

mass spectrometry. For MIBI, stained slides are introduced into an analysis chamber under 

vacuum where elemental reporters are sputtered with submicron resolution by rastering pixel 

by pixel with a primary ion beam (Figure 2). As the primary ions collide with the sample, 

they liberate secondary ions, including the heavy-metal isotope reporters introduced through 

antibody staining from the tissue. While the laser-based IMC approach completely ablates 

tissue at each pixel, preventing reanalysis and detracting from image quality in thicker tissue 

sections, only few hundred nm of tissue are liberated with each MIBI scan. This allows the 

same cells in the same tissue section to be re-analyzed multiple times, e.g. to create low-

resolution overviews of large tissue areas, identify specific regions of interest and 

subsequently perform high-resolution analysis of these areas, or even create 3-dimensional 

reconstructions.

In MIBI, the liberated secondary ions, already in the vacuum, are directly introduced into the 

detection system without further ionization or transfer which increases its sensitivity to as 

little as a single copy of an epitope per pixel. While the first MIBI implementation made use 

of a magnetic sector mass spectrometer, next-generation instrumentation (termed MIBI-

TOF) now makes use of a full TOF detection system (Figure 2), thus allowing a large range 

of atomic masses to be analyzed, including naturally occurring elements such as phosphorus 

or iron which have important biological functions61. This current MIBI-TOF 

instrumentation can acquire pixel resolutions of ~250 nm at a rate as high 10’000 pixels per 

second61,64.

Given the similarities of the staining procedures to IHC and IF, there is a wide variety of 

commercially available antibodies which can be adopted for their use in IMC and MIBI. 

Besides antibodies, alternative reporter probes as employed in mass cytometry can be 

adapted to these imaging technologies. For example, simultaneous imaging of mRNA and 

protein epitopes has recently been demonstrated by IMC65. To identify broader tissue 

structures and extracellular features, a ruthenium-based dye has been proposed, resulting in 

counterstaining analogously to hematoxylin routinely used in IHC66. In situ detection of 

antigen specific T cells has been previously demonstrated in an IHC and IF context and 

should therefore be also feasible by IMC and MIBI67–69.

Important factors for the implementation of these technologies in clinical settings involving 

large groups of patients are the throughput and robustness of these platforms. Two recent 

publications used IMC to create an image-based map of type 1 diabetes (T1D) spanning 

cohorts of 12–18 patients and multiple areas within each sample62,63. Demonstrating 

throughput and robustness for MIBI, a recent study imaged FFPE samples from 41 patients 

with triple negative breast cancer61. In this example 800 μm2 images each containing 

2048×2048 pixels from all 41 patients were acquired in less than two weeks and new MIBI-

TOF instrumentation and ion sources promise to increase this throughput by another order of 

magnitude64. Together, we believe that high-dimensional imaging methods including IMC 

Hartmann and Bendall Page 6

Nat Rev Rheumatol. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and MIBI provide interesting possibilities to study RD pathology and identify relevant 

cellular interactions and perturbations directly in the tissue microenvironment.

Analytical tools for the discovery of biomarkers and stratifying populations

The analysis of highly multiplexed datasets comprising large groups of samples and dozens 

of measurements provides a unique opportunity to gain insight into biological variation and 

its importance in a therapeutic context. However, they also pose additional challenges since 

their high-dimensional properties make comprehensive manual analysis, e.g. in two-

dimensional space through manual gating approaches, virtually impossible. We here provide 

an introduction of some commonly employed analytic approaches that can be used as a 

starting point for a more unbiased and comprehensive analysis of datasets from such high-

dimensional immune monitoring studies70–73.

Image segmentation and analysis of spatial relationships—As a first level of 

analysis, multiplexed imaging data can be visualized in its native image format or as multi-

color overlays to emphasize the spatial relationships between different epitopes and cell 

types. Beyond this, several approaches can be employed to extract single-cell data from 

high-dimensional images. For example, deep-learning-based segmentation approaches74 (see 

Glossary) have recently been applied to MIBI-TOF images61,75. In this example, a classifier 

was trained to discriminate nuclear from non-nuclear pixels which can then be used to 

automatically identify nuclei and thus cells from a large set of images. Other studies have 

employed a combination of Ilastik-based classification76 and CellProfiler-guided 

segmentation77 and many more deep-learning approaches have been proposed for cellular 

segmentation of high-dimensional image sets62,63,78,79. Once imaging data has been 

segmented, downstream analysis as described below can be performed analogously to other 

types of single-cell data. It should be noted that image segmentation is not limited to the 

identification of single cells. Potentially, larger structures such as extracellular pathological 

deposits but also smaller subcellular structures like nuclei and other cell compartments could 

be automatically identified. Furthermore, information about cellular location and proximity 

to other cells can be assigned to segmented data and leveraged in the downstream analysis. 

Recent examples applied to high-dimensional images are the use of Delaunay triangulation80 

to identify cellular niches in a mouse model of lupus57, spatial enrichment analysis to 

identify a hierarchical organization of tumor and immune cells in triple negative breast 

cancer61 and cellular neighborhood analysis of pancreatic islands from patients with type 1 

diabetes62.

Visualization of high-dimensional single-cell data—As a first step, single-cell 

proteomic data (either directly obtained by mass cytometry or through image segmentation 

as described above) is usually transformed using arcsinh or related logarithmic approaches 

to account for differential variance in protein expression levels observed between low and 

high expressing populations81–83. Following this pre-processing phase, high-dimensional 

datasets are often projected into a human interpretable lower dimensional space with the aim 

of preserving as much of the inherent high-dimensional structure as possible. An effective 

approach optimized to group cells based on the similarity of their high-dimensional 

expression profiles is the t-Stochastic Neighbor Embedding (tSNE) algorithm84,85. tSNE 
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projects high-dimensional data onto a (usually) two-dimensional map, thus providing a 

readily interpretable overview of populations contained in the dataset. The tSNE algorithm 

has been successfully applied to a wide range of single-cell measurements and it is now 

integrated into many major cytometry data processing platforms86. Recently, several 

extensions and modifications of the original tSNE algorithm have further broadened its 

applicability87. Real-time visualizations of embeddings provide users with an feedback 

which can be used to interactively optimize parameters88 and a hierarchical step-wise 

application of tSNE has been shown to improve the identification of rare populations89. 

Furthermore artificial neural networks (NN, see Glossary) can approximate the tSNE 

embedding function, thus enabling the projection and comparison of additional data which 

was not part of the initial embedding90. Alternatively, a novel embedding technique for 

dimension reduction termed uniform manifold approximation and projection (UMAP) has 

been proposed91,92. In comparison to tSNE, UMAP improves the preservation of global 

structure in high-dimensional datasets and provides shorter calculation times, both factors 

contributing to its rapid adoption.

An alternative approach, especially suited to simultaneously comparing the characteristics of 

multiple populations between a set of samples, is spanning-tree progression analysis of 

density normalized events (SPADE)93. SPADE provides an overview of all populations 

present in a sample as clusters on a minimum spanning tree which can be color-coded by 

any marker of interest as well as differential expression when one or more reference samples 

are included86. Further data analysis and visualization approaches make use of force-

directed layouts to provide low dimensional representations of the high-dimensional dataset. 

The Vortex clustering environment combines a clustering algorithm with a single-cell 

representation of cellular heterogeneity through force-directed layouts94. Flowmap follows a 

similar concept, except it incorporates the use of time-course data when building the 

model95. Incorporation of prior biological knowledge about lineage-defining expression 

patters can be further achieved through the use of Scaffold maps38. Here, high-dimensional 

datasets are clustered and subsequently mapped around previously defined landmark 

populations in a force-directed layout. As such, new data from different platforms can be 

integrated and compared to previous analyses.

Population identification and differential abundance analysis—In order to make 

the analysis of high-dimensional datasets more reproducible and to reduce analysis-related 

variability, many algorithms have been developed for the automated population 

identification through clustering96. A prominent example that has high performance and 

computational efficiency is FlowSOM, an adaption of the principle of self-organizing maps 

to cytometry data97. Following population assignment, potential associations of cluster 

frequencies or expression characteristics can be derived. To statistically compare cluster 

characteristics between clinical groups or biological scenarios, Citrus uses a hierarchical 

clustering step and subsequent regularized regression to identify stratifying features between 

cohorts98 and has been integrated into complementary visualization approaches like 

Scaffold99.

While clustering can be a useful approach to identify groups of cells and populations, 

questions arise as to the right choice of clustering parameters, the definition and correct 
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number of clusters in the datasets as well as potential loss of statistical power through over-

clustering. Therefore, several approaches have been developed to identify differentially 

abundant cells or stratifying signatures without the need for clustering. One solution is to 

assign cells to so called hyperspheres and then test for differential abundances for each 

hypersphere100. Alternatively, an approach termed CellCNN relies on a representation 

learning approach to identify cell events associated with differential clinical outcome or 

other characteristics of interest101.

Cellular differentiation and beyond—Cellular developments and lineage decisions can 

be traced using trajectory algorithms which order cells according to progressive changes in 

their phenotype. Initial examples of such algorithms applied to mass cytometry data were 

Wanderlust102 and Wishbone103, however there is now a large number of such trajectory 

algorithms available104. Furthermore, single-cell regulatory networks have been modeled 

and quantified using a conditional density based approach termed DREMI/DREVI [ref: 105] 

and cellular diversity can be quantified by calculating an Inverse Simpson Index106.

In conclusion, the above-mentioned analytical tools provide researches with interpretable 

data representations and correlations with clinical features, thus enabling the identification 

of cellular disease signatures and potential novel therapeutic targets.

Practical considerations for high-dimensional immune monitoring studies

Conception and planning of large immune monitoring studies involves several layers of 

complexity including proper choice and appropriate size of experimental and control groups. 

Most of these are dependent on the specific disease context and biological hypotheses. Given 

this context-dependency, such considerations cannot be comprehensively covered in this 

Review. Instead, we provide a set of practical considerations which cover commonly 

encountered questions when planning studies involving mass cytometry and MIBI.

Studies involving human subjects often leverage existing collections of samples that have 

been acquired over several years (Figure 3). Cell suspensions that have been viably 

cryopreserved (i.e. with DMSO solutions) can be directly entered into the sample 

preparation pipeline for mass cytometry while archival FFPE tissue samples from standard 

pathology workflows have been shown to be compatible with MIBI. If sample collection is 

still ongoing, several considerations can be made. Single-cell suspensions can be stored 

viably, which allow functional assays such as stimulation of intracellular cytokine 

production or induction of protein phosphorylation events. While fixation prior to storage 

can help to recover more cryo-sensitive populations and prevent freeze-thaw dependent 

changes in their functional state, fixation-sensitive epitopes might be less accessible for 

antibody staining, and thus reduce overall analytical quality. It is also advisable to anticipate 

the inclusion of a separate validation cohort by gathering samples not included in the initial 

analysis which can be subsequently used to independently confirm initial findings. Mass 

cytometry is destructive, and cells cannot be recovered post-acquisition, however there a 

numerous examples where populations of interest can be identified in high-dimensional 

space and prospectively isolated by FACS for subsequent orthogonal analysis14,102,107,108. 

For MIBI, serial sections of the same tissue samples could also be used for confirmatory 
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orthogonal assays such as traditional IHC or other imaging modalities or bulk biomolecule 

analysis.

Following sample curation, intra-assay comparison, questions of panel design and the choice 

of antibodies and other probes have to be considered109. We advocate for a backbone panel 

of antibodies able to capture and quantify a broad range of immune cell types beyond the 

hypothesized target population(s) of interest. This backbone can be supplemented with more 

hypothesis-specific targets. A recent publication proposed a validated and commercially 

available set of antibodies that can be easily implemented for such comprehensive immune 

monitoring in RD17.

Next, antibodies against chosen targets have to be distributed to the available mass reporter 

channels. Panel design considerations have been outlined previously110,111. In short, a minor 

source of cross-channel contamination can result from initial isotopic impurities which were 

not completely removed during the purification process, typically generating a signal in the 

mass +1 channel and restricted to around ≤ 3% of the parent isotope (see Figure 1B). 

Further, elements can oxidize and generate signal in the mass +16 channel with similar 

extend to isotopic contamination levels. Both phenomena are often insignificant relative to 

technical variation or compared to fluorescence-based signal overlap. Moreover, it can be 

practically resolved through panel design, reagent titration or through recently developed, 

bead-based, compensation approaches that could be applied to both mass cytometry but also 

imaging applications and which have been shown to further improve data accuracy112.

While the list of commercially available heavy-metal tagged antibodies is steadily growing, 

there is usually a need to perform a set of conjugations in-house. Protocols for heavy-metal 

conjugation of antibodies which can be used in mass cytometry or imaging are available and 

can be performed in a few hours28,113. Antibody specificity should always be confirmed 

using biological controls, i.e. samples known to express the respective epitope and such 

known to not express it. As with many other biological assays, batch processing is 

recommended to minimize technical variation. For mass cytometry, the use of barcoding 

approaches allows for the combined staining and acquisition of multiple samples as 

once30–34. Cells can then be assigned back to their original sample in silico. An analogous 

approach for imaging is the use of tissue microarrays which combine cores of multiple 

patient samples onto a single slide.

If data is generated across long periods of time or multiple instruments, the use of standards 

can improve sample comparability. Metal containing beads can normalize machine 

performance across time for mass cytometry applications35 while repeat aliquots of standard 

sample(s) analyzed with each run can be used in suspension all well as imaging 

technologies36.

In order to improve reproducibility and accelerate research efforts, raw data should be made 

available in public repositories with published studies. Mass cytometry raw data is often 

shared using Cytobank86, Immport114 and flowrepository115 and the MIFlowCyt standard116 

can be adopted to mass cytometry experiments to provide crucial information about 
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experimental design, further allowing meta-analysis approaches117. Analogous databases 

have been proposed for biomedical imaging data in general118.

Immune monitoring technologies enable discovery in rheumatic and autoimmune diseases

Employing these experimental and analytical approaches, several studies have started to 

explore the potential of these technologies to gain insights into disease mechanisms of 

various RD, some examples of which will be discussed here.

RA and spondyloarthritis—Mass cytometry was used to study the activation and 

cytokine production profile of T cells isolated from peripheral blood or directly from 

synovial fluid and inflamed tissues of patients with RA and spondyloarthritis. Employing 

this high-dimensional approach enabled the identification of a pathologically expanded 

population of PD-1hiCXCR5negCD4pos T cells in RA patients seropositive for rheumatoid 

factor or anti-citrullinated peptide antibody119. In-depth phenotyping of these cells revealed 

expression of several proteins enabling B cell help, including IL-21, CXCL13, ICOS and 

MAF and discriminated them from traditional follicular helper T cells while mechanistic 

downstream experiments demonstrated the ability of this population to promote plasma cell 

differentiation. In a related study, peripheral blood of patients with RA and control subjects 

with osteoarthritis was analyzed by mass cytometry120. The authors found that RA patients 

had an expanded population of effector memory CD4+ T cells displaying a CD27- HLA-DR
+ phenotype, suggesting chronic activation of these cells in RA.

Leveraging mass cytometry to study immune activation and cytokine production in 

spondyloarthritis, the authors identified increased frequencies of a variety of immune cell 

types producing the cytokine GM-CSF in the blood and joints of spondyloarthritic 

patients121. Amongst the cell types producing GM-CSF in these patients were CD4+ and 

CD8+ T cells, γδ T cells as well as innate lymphoid cells (ILCs).

Together, these studies provide mechanistic hypotheses for T cell-mediated pathological 

processes in RA and spondyloarthritis. In RA, the identified tissue-infiltrating T cell subset 

offers a mechanism for the recruitment of additional immune cells through their production 

of CXCR5 and IL-21. Identification of such pathological processes additionally provides 

potential targets for therapeutic intervention. For example, GM-CSF expression by T cells as 

identified in spondyloarthritis has been suggested as a key mediator and therapeutic target in 

other autoimmune diseases122,123. Besides these soluble mediators, expression of surface 

epitopes such as PD-1 on the RA-associated population could be targeted to interfere with T-

B-cell interactions using existing therapeutics.

SLE and SjS—In-depth functional and phenotypic analysis by mass cytometry has also 

been employed to study immune cell responses and cytokine networks underlying in SLE 

and SjS. Performing a comprehensive analysis of immune cell subset responses to TLR 

ligands in SLE patients enabled the identification of a disease-associated chemokine 

signature upon Toll-like receptor (TLR) engagement124. More specifically, CD14high 

monocytes from patients with SLE showed an inflammatory chemokine signature, 

characterized by MCP-1, MIP-1β and TNF-α. In a separate study, this monocytic SLE-

signature was also found to be present in pediatric SLE patients and to express IL1RA [ref:
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125]. Interestingly, the presence of this immune signature correlated with clinical disease 

activity and could be abrogated through blockade of IFNAR or JAK inhibition, thus 

providing mechanistic insights into emerging therapeutics for SLE currently evaluated in 

clinical trials126,127. Focusing on B cell biology as a contributor to SLE, a recent study 

identified several cell subtype alterations during treatment with belimumab, an antibody 

neutralizing the soluble B-cell activating factor (BAFF) that has been approved for the 

treatment of SLE128. High-dimensional phenotyping of B cells enabled the longitudinal 

monitoring of a broad range of B cell subsets, including age-associated B cells (ABCs). 

ABCs are a T-bet dependent, alternative-differentiation state of B cells described to appear 

not only with increasing age but also upon repeated viral infections and in patients with 

autoimmunity, including SLE129,130. Using mass cytometry and defining ABCs as 

CD11cposCD21neg B cells, Ramsköld et al. found that a decrease in the frequency of this 

population to correlates with early clinical improvement. In addition to this population, the 

authors identified overall pre-treatment B cell counts as a predictive feature for response to 

belimumab therapy.

Mass cytometry applied to blood samples and salivary gland biopsies of patients with 

primary Sjörgen’s syndrome (pSjS) revealed a multi-population disease signature, 

dominated by activated CD8+ T cell populations and terminally differentiated plasma B 

cells131. Importantly, this immunological signature could predict pSjS diagnosis as well as 

stratify patients based on clinical features and disease activity and thus pose as potential 

targets for future clinical intervention.

Unifying many of these findings across multiple autoimmune and rheumatic diseases, a 

recent study used mass cytometry and metal-conjugated HLA-II tetramers to perform in-

depth phenotyping of antigen-specific autoimmune T cells in celiac disease and other 

autoimmune and rheumatic diseases. The antigen-specific T cells were found to display a 

phenotype strikingly similar to the one described in RA by Rao et al. [ref: 119], including 

expression of multiple activation markers, PD1, IL-21 and absence of CXCR5. Interestingly, 

T cells with this particular phenotype were enriched across many disorders besides celiac 

disease, including systemic sclerosis and SLE132, thus positioning these cells as key disease-

driving T cells across many autoimmune and rheumatic diseases.

Novel insights into RDs—These first studies illustrate some key advantages of mass 

cytometry for in-depth phenotyping of immune cell subsets and how it can provide valuable 

insights into disease mechanisms in RD. Firstly, multiple studies found evidence of chronic 

and/or elevated T cell activation, e.g. expansion of CD27- memory T cells in RA and 

multifaceted T cell activation in spondyloarthritis and SjS. While previous studies have also 

shown immune activation in several RDs, a unique advantage of defining high-dimensional 

protein co-expression patterns is to more precisely identify cellular signatures to better 

understand their functional context and to potentially serve as specific therapeutic targets. 

More specifically, several of the previously mentioned studies underline the importance of 

TFH – B cell interplay and plasma cell differentiation and they define surface phenotypes of 

cell populations involved in these processes. Plasma cells ultimately contribute to 

autoantibody production, an important pathogenic and diagnostic factor for many RDs and 
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thus interfering with plasma cell development might provide a therapeutic strategy for these 

diseases.

Another emerging theme from these studies are altered cytokine expression profile by both 

innate immune cells in SLE and several populations of adaptive immune cells in RA and 

spondylarthrosis, pointing towards the importance of immune communication pathways 

which could be targeted therapeutically. Investigation of such high-dimensional cytokine 

production profiles and other intracellular processes in combination with complex surface 

phenotypes is made possible as heavy-metal reporter conjugated antibodies are compatible 

with commonly used fixation methods.

While its clinical applicability in the context of cancer has been previously demonstrated, we 

are not aware of any published studies employing MIBI in RD research. However, as we 

discuss the following section, we expect major insights to be gained by studying tissue-

based cellular interactions, including sites of active disease.

Together, these studies provide first examples of how increased parametrization allows the 

identification of complex cellular features that are correlated with disease activity and 

clinical improvement as well as the discovery of cellular signatures that could be used 

diagnostically or that can serve therapeutic targets across a range of RDs.

Future research directions and challenges for rheumatic and autoimmune diseases

As laid-out above, continued analytical and methodological developments in both mass 

cytometry and related imaging technologies like MIBI make them core technologies for 

many immune monitoring and related studies. Naturally, technological improvements are 

continuously ongoing, and based on these we outline future research directions.

First, the ability to extract and recognize biologically informative but complex information 

from these high-dimensional datasets will be further enhanced through developments in the 

fields of artificial intelligence and machine learning (see Glossary). For example, the use of 

autoencoders and related tools as already demonstrated on single-cell data133 could be 

directly applied to multiplexed imaging information to enhance identification of relevant 

features there too134,135.

Another exciting area of ongoing development for high-dimensional imaging is the 

transition from imaging a two-dimensional plane to three-dimensional structures, providing 

the opportunity to leverage health and dysfunctional spatial information. For instance, given 

that as little as ~100nm of tissue is consumed with each MIBI scan, multiple scans of the 

same region could be used to reconstruct three-dimensional structures with highly resolved 

multiplexed infomation61,136,137.

For mass cytometry, recent studies have expanded its applicability into new research areas. 

For example, comprehensive immune phenotyping by mass cytometry was performed on as 

little as 100 μl of blood from newborns to follow early immune development138. This study 

additionally performed analysis of plasma protein levels from these samples, highlighting 

the benefits of integrating multiple types of data. Such multi-omics approaches combine 

transcriptomic, epigenetic, metabolomic, microbiome and clinical phenotypes that together 
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can reveal otherwise hidden correlations. Computational analysis of such integrated datasets 

remains challenging but is an area of active research139–141. Using probes against chromatin 

modification marks, researchers have also directly obtained single-cell epigenetic 

information using mass cytometry, observing changes with immunological age142. Multiple 

autoimmune diseases and especially RDs such as SLE, RA and SSc have suspected 

epigenetic contributions to their etiology and it would be of high interest to study these on 

the single-cell level in combination with immune cell phenotype(s) and abundance4,143,144.

A major research interest in RD is the identification of biomarkers that stratify patients into 

clinically relevant groups. For example, early discrimination of patients likely to respond 

well to a given therapeutic option from patients unlikely to benefit, as has been shown in the 

context of cancer therapy145, could contribute to more personalized and tailored therapeutic 

schemes. Importantly, such in-depth monitoring of patients receiving various therapies could 

pinpoint the mechanism of action of currently approved drugs and thus open opportunities to 

directly modulate a specific cellular function instead of broadly targeting complete immune 

cell lineages.

Furthermore, while many autoimmune and RD are chronic diseases that are characterized by 

long-term progressing organ damage, they often in addition display short-term disease 

exacerbations termed flares. Analysis and comparison of affected tissues spanning this cycle 

and including samples from times of disease respite as well as samples taken right before the 

appearance of clinical episodes and during ongoing flares could give insight to the reservoir 

of pathologic cells and together enable the identification of biomarkers that signify the 

timing of such flares. Novel microneedle sampling devices could facilitate such longitudinal 

studies by potentially enabling at-home blood collections146,147. Skin or synovial biopsies or 

samples acquired using other recently developed tissue sampling techniques such as fine 

needle aspirates of various tissues148 or microneedle patches that longitudinally sample cells 

in a minimally invasive manner from the skin149 could be imaged directly or analyzed as a 

single-cell suspension by mass cytometry.

The holy grail of medical intervention in any autoimmune syndrome would be prevention of 

the disease before onset or alternatively, early detection of damage to avoid disease 

exacerbation and the onset of comorbidities150. In SLE for example, anti-nuclear antibodies 

have been found up to 9 years before disease onset in some patients6. Analogously, anti-

citrullinated protein antibodies can precede the onset of RA151 and it would be of great 

interest investigate if associated cellular signatures that predict imminent disease onset in 

subjects at risk of disease development can be identified. Taken together, we believe that 

there are unique opportunities to leverage comprehensive immune phenotyping through 

technologies such as mass cytometry and MIBI to find stratifying and predicting immune 

signatures, reveal novel therapeutic targets and identify biomarkers for therapeutic success.

Conclusions

Many RDs are characterized by a heterogeneous clinical presentation and complex 

pathobiology. The systems immunology perspective offered through the use of mass 

spectrometry-powered single-cell technologies in combination with innovative analytical 
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approaches now provides a unique opportunity to elucidate these mechanisms. Here, we 

discussed the premise of these technologies as well as important practical considerations for 

the planning of such projects. As illustrated by several recent studies, these technologies 

enable the discovery of disease associated cellular signatures that give insight into disease 

pathology and additionally offer perspectives for future treatments of RDs.
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Glossary

Machine learning
Machine learning (ML) constitutes a subset of the field of artificial intelligence. In ML, 

algorithms parse data to learn from it in order to perform certain task such as classification 

or predicting of certain outcomes. Instead of supplying a rigid set of instructions, patterns 

are identified (learned) from the supplied data

Artificial neural networks
Artificial neural networks (NN) are a subset of ML frameworks that are inspired by the 

biological structure of the brain. NN consist of (potentially many) layers of nodes which are 

connected and can transmit information to each other through edges. A node that receives 

input through one or multiple edges then applies a given transformation on this input and 

returns the respective output via its edges. In order to perform classification or prediction 

tasks, the strength of the connections (called weights) are iteratively adjusted based on the 

input data

Deep learning
Deep learning uses NN to learn from large amounts of data. It usually refers to the NN 

having multiple layers of nodes that can be adjusted to enable learning
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Key points

• Human immune monitoring using systems immunology approaches allows 

new insights into pathological processes and therapeutic opportunities for 

many RDs

• Mass spectrometry-based single-cell approaches with elemental reporters 

such as mass cytometry and MIBI are amenable to study a wide array of 

clinical samples

• These technologies enable in-depth analysis of the cellular phenotype and 

functional state on a single-cell level

• MIBI and related approaches use analogous concepts to image cells in their 

histological context

• Combination of these technologies with data driven analytical approaches can 

give predictive insights into disease mechanisms
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Figure 1: Principles of mass cytometry.
(A) Experimental workflow for analyzing single-cell suspensions by mass cytometry. In a 

first step, single-cell suspensions are incubated with heavy-metal labeled antibodies and 

other reporter probes of interest (e.g. MHC multimers to detect antigen-specific cells or 

probes discriminating live from dead cells). Antibodies against intracellular proteins can be 

used following common fixation and permeabilization protocols. Following a series of 

washing steps, cells are introduced into the CyTOF mass cytometer where the suspension is 

first nebulized into small droplets and subsequently introduced into an ICP that breaks down 

Hartmann and Bendall Page 24

Nat Rev Rheumatol. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



droplet-contents into a cloud of elemental ions. Ion species with low atomic masses (e.g. 

hydrogen and carbon) are removed through a quadrupole and the remaining higher atomic 

mass ions (which were conjugated to the respective probes) are subsequently quantified 

using an orthogonal TOF mass spectrometric detection system. Ion counts are then 

integrated to derive levels of bound antibodies and thus single-cell target-abundances. This 

high-dimensional data is then exported for further downstream analysis. (B) In flow 

cytometry (left), the major source of non-specific signal (in some cases >50% of the specific 

signal) is spectral overlap. Fluorophore emission spectra are usually broad and overlap into 

adjacent analysis channels, resulting in unspecific signal in this channel. Additional sources 

are cellular autofluorescence and fluorophore degradation (not shown). Considerable effort 

has to be invested in panel design to account for these effects and signals have to be 

corrected computationally. In mass cytometry (right), antibodies are conjugated to elemental 

isotopes which have non-overlapping masses that can be resolved through their time of 

flight. Minor sources of overlap (usually ~1%) are isotopic impurity of the metal stocks and 

their oxidation, thus facilitating straightforward, “plug-and-play” panel design of large 

panels (up to 50 antibodies).
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Figure 2: MIBI for high-dimensional imaging analysis of tissue sections.
Tissue sections (e.g. FFPE blocks) are placed on a slide with a conductive surface and 

subsequently stained with all antibodies and other reporter-probes in a single staining step. 

Stained sections are then placed into the MIBI analyzer and introduced into a vacuum 

chamber. The MIBI instrumentation rasters the tissue sections with a primary ion beam. 

Upon collision with the stained section, secondary ions (including those introduced through 

the binding of the heavy-metal tagged antibodies) are liberated from the sample. This cloud 

of secondary ions is then focused through a series of lenses and introduced into an 

orthogonal TOF mass spectrometer. Detected signal is then integrated and translated into ion 

counts per pixel. These represent multi-dimensional images that can be directly visualized or 

further analyzed using various image analysis pipelines. Parts of this figure were adapted 

from Keren et al.61.
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Figure 3. Conducting large-scale immune monitoring studies using mass cytometry.
Patient cohorts are selected with regard to the experimental questions to be addressed. Cells 

that were samples at different timepoints can be cryopreserved (either live or fixed) and 

collected prior to their analysis. In order to reduced technical variation, single cell 

suspensions from multiple donors can be barcoded and pooled prior to staining and 

acquisition. In this process, a unique heavy-metal tag (or a combination of several tags) is 

attached to all cells of a sample. These tagged samples can then be pooled and processed 

(stained and acquired) as a single sample. Following acquisition, cells can be assigned back 

to their original sample and analyzed further.
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Table 1.
Key characteristics of currently available flow and mass cytometry analysis platforms.

This table has been adapted and updated from Bendall et al. (2012) Trends in Immunology 152.

Flow Cytometry Mass Cytometry

Measurement basis Fluorescent probes Stable mass isotope probes

Sources of non-specific signal (% of specific 
signal)

High (10–50%) Spectral overlap

Intermediate (5–
10%)

Autofluorescence, Fluorophore 
degradation

Low (<5%) Isotopic impurity, Spectral 
overlap, Oxidation

Maximum no. of measurements 20 (theoretically ~40) 60 (theoretically ~120)

Panel design complexity (no. of probes)

Easy < 8 < 40

Moderate 8–12 40–60

Hard > 12

Relative probe sensitivity (arbitrary units) 0.1–10 1–3

Sampling efficiency > 90% ~ 50%

Throughput: Measured cells/s (typical) 500 – 40 000 (5000) 50 – 1 000 (500)
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