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Abstract

Background: Epidemiological studies report fairly consistent associations between various air 

pollution metrics and autism spectrum disorder (ASD), with some elevated risks reported for 

different prenatal and postnatal periods.

Objectives: To examine associations between ASD and ambient fine particulate matter (PM2.5) 

and ozone concentrations during the prenatal period through the second year of life in a case-

control study.

Methods: ASD cases (n=428) diagnosed at Cincinnati Children’s Hospital Medical Center were 

frequency matched (15:1) to 6,420 controls from Ohio birth records. We assigned daily PM2.5 and 

ozone estimates for 2005–2012 from US EPA’s Fused Air Quality Surface Using Downscaling 

model to each participant for each day based on the mother’s census tract of residence at birth. We 

calculated adjusted odds ratios (aORs) using logistic regression across continuous and categorical 

exposure window averages (trimesters, first and second postnatal years, and cumulative measure), 

adjusting for maternal- and birth-related confounders, both air pollutants, and multiple temporal 

exposure windows.

Results: We detected elevated aORs for PM2.5 during the 2nd trimester, 1st year of life, and a 

cumulative period from pregnancy through the 2nd year (aOR ranges across categories: 1.41–1.44, 

1.54–1.84, and 1.41–1.52 respectively), and for ozone in the 2nd year of life (aOR range across 

categories: 1.29–1.42). Per each change in IQR, we observed elevated aORs for ozone in the 3rd 
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trimester, 1st and 2nd years of life, and the cumulative period (aOR range: 1.19–1.27) and for 

PM2.5 in the 2nd trimester, 1st year of life, and the cumulative period (aOR range: 1.11–1.17).

Discussion: We saw limited evidence of linear exposure-response relationships for ASD with 

increasing air pollution, but the elevated aORs detected for PM2.5 in upper exposure categories and 

per IQR unit increases were similar in magnitude to those reported in previous studies, especially 

for postnatal exposures.

Keywords

air pollution; environmental neurology; environmental psychology; environmental epidemiology

INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition 

characterized by impaired communication and social interaction and a pattern of repetitive 

behaviors or restricted interests. Approximately 1 in 59 children in the US have ASD, with 

the prevalence about 4.5 times higher for boys (1 in 38) than girls (1 in 152) (Biao et al. 

2018). Recent studies suggest that the etiology of ASD likely involves a complex interplay 

of genetic and environmental factors. Twin studies have found ASD to have strong 

heritability (Lichtenstein et al. 2010; Ronald et al. 2006), though current estimates including 

the largest twin study to date (Sandin et al. 2014) suggest equally strong roles for genetic 

and environmental factors (Hallmeyer et al. 2011).

Epidemiologic studies have reported associations between ASD and several environmental 

exposures during the prenatal and early postnatal periods, with some of the strongest 

evidence for late pregnancy and early life exposures to air pollution (Raz et al. 2018; Ritz et 

al. 2018; Kalkbrenner et al. 2014; Talbott et al. 2015a; Volk et al. 2013). Of the fifteen 

epidemiological studies we identified on ASD and air pollution, all but two (Gong et al. 

2017; Guxens et al. 2016) reported some positive associations, with some of the strongest 

evidence being for PM2.5 during late pregnancy and the postnatal period (Morales-Suárez-

Varela et al. 2017; Flores-Pajot et al. 2016; Becerra et al. 2013; Raz et al. 2015; Ritz et al. 

2018; Talbot et al. 2015a; Volk et al. 2013). Other air pollutants including ozone, nitrogen 

dioxide, sulfur dioxide, and PM10 have also been linked to ASD in some epidemiological 

studies (Morales-Suárez-Varela et al. 2017; Ritz et al. 2018; Raz et al. 2018), though fewer 

epidemiological and toxicological studies have examined these and the evidence is less 

consistent. Overall, the strongest associations for these pollutants have also been seen for 

early life exposures.

Despite fairly consistent evidence demonstrated for some air pollutants in ASD studies, it is 

not known how the timing or duration of pre- or post-natal environmental insults to the 

developing brain could contribute to the onset of ASD. Also, given that air pollution is a 

complex time-varying mixture of gases and particulates often occurring in correlated 

concentrations, it is important to assess health outcomes in relation to multiple air pollutants 

for different exposure windows that susceptible populations may encounter. We examined 

associations between ASD and ambient PM2.5 and ozone levels during pre- and post-natal 

exposure periods in the greater Cincinnati, Ohio metropolitan area from 2005–2012, based 
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on cases born from 2006–2010 identified from a large regional ASD diagnostic and 

treatment center. We used daily air pollution estimates for census tracts that combine air 

monitoring data and atmospheric model data to create exposure averages during each 

trimester of pregnancy and the first two years of life. We adjusted for multiple exposure 

windows and both pollutants in the same models, which improved our ability to isolate 

specific associations.

METHODS

Outcome Data

For this case-control study, we identified ASD cases in the four-county metropolitan 

Cincinnati area in southwest Ohio (Butler, Clermont, Hamilton, and Warren counties) using 

two approaches. First, we queried the electronic medical records (EMR) of Cincinnati 

Children’s Hospital Medical Center (CCHMC) to identify all patients with a diagnosis of 

ASD. We included all patients born from 2006–2010 with a 299 ICD-9 diagnostic code in 

their EMR that was recorded by CCHMC’s Division of Developmental and Behavioral 

Pediatrics (DDBP). We also searched EMR records for other developmental disabilities 

cases diagnosed at DDBP (ICD-9 codes for attention deficit hyperactivity disorder (314.), 

general delay (315.), including global developmental delay, delays in motor skills or speech 

language, and aphasia and apraxia (784.)) to exclude them from the control selection 

process. Second, we employed natural language processing techniques to glean clinical 

concepts including diagnoses from free-text office visit notes at the DDBP. DDBP’s Kelly 

O’Leary Center for Autism Spectrum Disorders has a rigorous and well-established 

standard-of-care ASD assessment process that involves the completion of comprehensive, 

multidisciplinary evaluations, including psychological testing (cognitive, adaptive skills, and 

behavioral assessments), speech/language evaluations, and an autism-specific assessment 

with the Autism Diagnostic Observation Schedule. As the only free-standing pediatric 

institution in the region that evaluates >1000 suspected ASD incident cases per year and 

provides medical care to >2500 ASD patients per year, CCHMC’s EMR database is believed 

to cover most of the ASD cases diagnosed in the metropolitan area. CCHMC’s DDBP 

patients represent a wide socioeconomic spectrum, with approximately 60% of patients on 

private insurance and 40% on public insurance, and patients from urban and rural areas from 

Ohio and neighboring Kentucky, Indiana, and West Virginia.

We matched the EMR data with vital records data provided by the Ohio Department of 

Health in order to identify the residence at delivery of mothers of ASD cases, to obtain 

demographic and health covariates, and to identify a comparison group of control 

pregnancies not affected by ASD. Due to a lack of overlapping unique identifiers between 

the datasets, EMR case records were linked to their corresponding birth records through a 

20-digit string containing the child’s eight-digit birth date, the mother’s eight-digit birth 

date, and the child’s four-digit birth weight in grams. Birth records that did not match a child 

with ASD or other developmental disability provided the control group. Fifteen birth record 

controls from the four-county area were frequency matched to each of 428 cases based on 

birth year for a total study population of n=6,848. We excluded multiple births, siblings who 

both had ASD diagnoses, and subjects with missing data on gestational age, birthweight, or 
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census tract of mother’s residence at delivery. ASD cases and other developmental 

disabilities cases diagnosed at DDBP were also excluded from the pool of potential birth 

records controls. We conducted data cleaning efforts to identify errors or implausible values 

in the key covariate data reported on birth records. Additionally, duplicate case entries 

recorded in the ASD database were identified and deleted.

Exposure Data

We used census tract-level estimates for daily maximum eight-hour average ozone and 24-

hour average PM2.5 concentrations from the United States Environmental Protection 

Agency’s (EPA’s) Fused Air Quality Surface Using Downscaling (FAQSD) model (USEPA 

2017). This model creates estimates for US census tracts by combining air pollutant 

monitoring data from the National Air Monitoring Stations/State and Local Air Monitoring 

Stations with 12 km2 gridded output from the Community Multiscale Air Quality (CMAQ, 

version 4.6) atmospheric model (USEPA 2016). The FAQSD model combines the accuracy 

of monitoring data with the completeness of the CMAQ model data, as monitoring data may 

be sparsely collected in some areas. Census tracts vary in geographic size based on 

population density, with more densely populated tracts encompassing smaller areas.

Exposure Assessment

Study participants were linked to daily estimates of 8-hour maximum ozone and 24-hour-

average PM2.5 for years 2005–2012 based on the census tract containing their mother’s 

residential address at delivery, as listed on state birth records. EPA’s FAQSD data for 2005–

2008 are estimated for year 2000 census tracts, while data for 2009–2012 are estimated for 

year 2010 census tracts. In cases where tracts were divided or merged between the 2000 and 

2010 censuses, we used geographic relationship files from the US Census Bureau (US 

Census Bureau 2017) to compare census tracts. To provide exposure estimates for study 

subjects with exposure periods overlapping 2008–2009, we linked tracts from 2000 and 

2010 by using the geographically smaller tract accounting for the largest percentage of the 

geographically larger tracts. We compared census tract maps from the US Census Bureau 

(US Census Bureau 2015) to birth record addresses mapped in Google Maps to ensure that 

we assigned the correct tract for addresses that fell within a tract that had changed 

boundaries between the 2000 to 2010 censuses.

Averages of daily maximum eight-hour average ozone estimates and 24-hour-average PM2.5 

estimates were calculated across the 1st, 2nd, and 3rd trimesters, the entire pregnancy period, 

the 1st and 2nd years after birth, and for a cumulative exposure index (CEI) based on 

pregnancy through the 2nd year after birth. Trimester-specific exposure periods were 

calculated based on each child’s estimated gestational ages and dates of birth (DOB) listed 

in birth records. Dates of conception (DOC) were estimated as [(DOB) - (gestational age in 

days) + 14]. The first trimester was assumed to begin with the DOC and ended 93 days later; 

the second trimester began 94 days after the DOC and ended 186 days after the DOC; third 

trimesters were calculated from 187 days after the DOC to the DOB.
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Statistical Analysis

SAS (version 9.4; SAS Institute, Inc., Cary, NC) was used for the statistical analysis. We 

used Spearman correlation coefficients to compare the different air pollution measures. We 

used ninety-five percent confidence intervals (95% CIs) to evaluate precision. We used 

unconditional multivariable logistic regression (Pearce 2016) to estimate adjusted odds 

ratios (aORs) and 95% CIs based on different exposure categories (sextile-based categories 

based on the distribution of exposures among the controls) for the two pollutants, as well as 

continuous exposures per IQR change to allow for better comparisons to other air pollution 

studies that commonly use this metric. To better contrast larger differences in exposure 

concentrations, we isolated the high and low exposure extremes and collapsed the middle 

four sextiles into one group (i.e. from the 17th percentile to the 83rd percentile). This 

approach provided better contrasts than more conventional categorical approaches such as 

quartiles or quintiles given the very narrow ranges in the middle categories, particularly for 

PM2.5. This approach should also help reduce potential exposure misclassification that may 

occur from the use of implausibly narrow intermediate categorical ranges.

We assessed confounding for a priori selected covariates identified from the literature using 

a >10% change-in-estimate approach comparing bivariate (birth year and exposure) to 

trivariate models (birth year, exposure, and the 3rd variable being assessed). Covariates 

obtained from birth records included child’s sex, mother’s and father’s age at delivery, 

mother’s and father’s highest educational attainment, mother’s and father’s race/ethnicity 

(non-Hispanic white, non-Hispanic black, Hispanic, other), mother’s marital status at 

delivery (married or unmarried), maternal smoking during pregnancy (yes or no), mother’s 

pre-pregnancy body mass index (BMI; underweight <18, healthy 18–24, overweight 25–30, 

obese >30), mother’s birth country (U.S. or outside of U.S.), whether the mother received 

WIC (federal food and nutrition assistance; yes or no), insurance type (private, public, 

other), child’s gestational age in weeks (preterm birth defined as <37 weeks), birth weight in 

grams (low birth weight defined as <2500g), season of conception (derived from month of 

conception; Dec-Feb=winter, Mar-May=spring, Jun-Aug=summer, Sep-Nov=fall), month of 

conception, parity, years since previous birth (1st birth, <2 years, 2–6 years, >6 years), 

number of prenatal care visits, and whether prenatal care began in the first trimester. We 

only included covariates in models that had less than 10% missing data (see Table 3 for 

percent of data missing for each variable by case status). We calculated aORs for ASD with 

ozone and PM2.5 during each trimester of pregnancy, the first and second years of life, and 

for the CEI. Based on our confounding analysis, we included models with different 

adjustment sets to demonstrate the impact of confounding. We included the same set of five 

maternal and birth covariates (year of birth, mother’s education, birth spacing, maternal pre-

pregnancy BMI, and month of conception) in all models and focus the presentation of results 

primarily on the fully adjusted models, which also included adjustment for the other air 

pollutant and different exposure windows (except for CEI models). As a sensitivity analysis, 

we ran models restricted to 2006–2008 births to examine if results changed when using a 

subset expected to have more complete case ascertainment. We also ran models restricted to 

male cases and controls to examine possible differences by sex.
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RESULTS

Air Pollution Distributions and Spearman Correlations

Trimester average exposure scores ranged from approximately 18–65 ppb for ozone and 4–

22 μg/m3 for PM2.5 (Table 1). The mean CEI value was 39.2 ppb for ozone and 12.5 μg/m3 

for PM2.5. IQR values varied across different averaging time windows, with trimester IQRs 

of approximately 16.0 ppb for ozone and 3.5 μg/m3 for PM2.5 (Table 4). Cut-points for 

exposure sextiles also varied for different exposure time periods. For example, 1st trimester 

cut-points for the highest sextiles were 48.6 ppb for ozone and 14.9 μg/m3 for PM2.5 (Table 

4). We detected moderate to strong negative correlations between average ozone scores in 

the 1st and 3rd trimesters (r = −0.72), between ozone and PM2.5 in the 2nd year of life (r = 

−0.64), between ozone and PM2.5 in the 1st year of life (r = −0.56), between 1st trimester 

ozone and 3rd trimester PM2.5 (r=−0.39), and between 3rd trimester ozone and 1st trimester 

PM2.5 (r=−0.33). We detected moderate positive correlations between PM2.5 in the 1st and 

3rd trimesters (r=0.38), between ozone in the 1st and 2nd years of life (r=0.33), and between 

PM2.5 in the 3rd trimester and 1st year (r=0.32) (Table 2).

Study Characteristics

The cases (n=428) and controls (n=6420) were similar in most sociodemographic and health 

characteristics, except that cases were more likely than controls to be male (82% vs 50%) 

and to be the first child born to their mother (48% vs 39%) (Table 3). Cases were also less 

likely than controls to have missing paternal data (e.g. 13% vs 23% for paternal education) 

and less likely to be born between 2 and 6 years since their mother’s previous birth (22% vs 

32%). In the fully adjusted models, we included year of birth, mother’s education, birth 

spacing, maternal pre-pregnancy BMI, month of conception, multiple pollutants, and 

multiple exposure time windows (except in the CEI models).

Multivariable Regression Models

PM2.5 models—Based on the fully adjusted models, we detected elevated aORs for the 

highest sextiles compared to the referent (i.e. the lowest exposure sextile) for PM2.5 in the 

2nd trimester (aOR: 1.41, 95% CI: 0.89, 2.24), 1st year (aOR: 1.54, 95% CI: 0.98, 2.40), and 

CEI (aOR: 1.52, 95% CI: 1.00, 2.31) (Table 4). A positive exposure-response relationship 

was detected across CEI PM2.5 exposure categories. Similar results were detected for 

continuous PM2.5 models per each IQR change in the 2nd trimester (aOR=1.13; 95% CI: 

0.93, 1.38), 1st year (aOR=1.11; 95% CI: 1.00, 1.23), and CEI (aOR=1.17; 95% CI: 0.98, 

1.40) metrics (Table 4). As presented in Supplemental Table 3, model results for the entire 

study population using all six exposure sextiles rather than the collapsed categories show 

similar general trends as our main results, though some intermediate exposure categories 

have very narrow concentration ranges which may increase the likelihood of exposure 

misclassification. Supplemental Table 4 presents similar patterns of model results using 

exposure quartiles, with an exposure-response relationship seen for first year of life PM2.5.

Ozone models—Compared to the lowest sextile, we detected elevated aORs in the full 

models for 2nd year ozone (aOR range: 1.29–1.42) and reduced aORs for 1st trimester ozone 

(aOR range: 0.56–0.70) (Table 4). An exposure-response relationship was detected for the 
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entire pregnancy categorical data. Based on continuous models per change in IQR, fairly 

consistent aORs were detected for the CEI (aOR=1.19; 95% CI: 0.95, 1.49), 3rd trimester 

(aOR=1.19; 95% CI: 0.80, 1.77), the 1st year (aOR=1.22; 95% CI: 0.96, 1.54) and the 2nd 

year (aOR=1.27; 95% CI: 0.96, 1.69) metrics (Table 4). Supplemental Table 4 presents 

similar patterns of model results using exposure quartiles, with an exposure-response 

relationship seen for ozone CEI.

Sensitivity Analyses

When restricting cases and controls to birth years 2006–2008 for more complete ASD 

ascertainment (children born earlier would have more time to receive a diagnosis before data 

were collected for the study), categorically analyzed aORs were predominately elevated for 

the same exposure metrics as when as 2006–2010 births were included, as shown in 

Supplemental Table 1. The strongest results were seen for PM2.5 in the 2nd trimester (highest 

sextile aOR=1.52, 95% CI: 0.86, 2.70), 1st year of life (highest sextile aOR=1.84, 95% CI: 

1.11, 3.05), and CEI (highest sextile aOR=1.57, 95% CI: 0.95, 2.59), and for ozone in the 1st 

year of life (highest sextile aOR=1.67, 95% CI: 0.98, 2.87), 2nd year of life (highest sextile 

aOR=1.40, 95% CI: 0.75, 2.67), and CEI (highest sextile aOR=1.40, 95% CI: 0.80, 2.46). 

We did not observe consistent exposure-response relationships in these multivariate models.

To ensure that the commonly used covariates sex and race did not affect our estimates, in 

addition to the confounding analysis we ran models adjusting for race and sex with the other 

covariates, individually and together. These statistical adjustments did not materially or 

consistently change aOR estimates, including for the highest aORs that were detected 

(results not shown). We also ran models restricted to male cases and controls only and 

observed a similar pattern of results as for the entire sample, shown in Supplemental Table 2. 

For PM2.5, in addition to elevated aORs for the 2nd trimester (highest sextile aOR: 1.44, 95% 

CI: 0.86, 2.41), 1st year of life (highest sextile aOR=1.53, 95% CI: 0.92, 2.53), and CEI 

(highest sextile aOR=1.72, 95% CI: 1.08, 2.76), we observed elevated aORs for the 3rd 

trimester (highest sextile aOR=1.36, 95% CI: 0.82, 2.25).

DISCUSSION

Across covariate combinations and in both categorical and continuous exposure models, we 

observed the strongest associations between ambient air pollution and ASD in the first two 

years of life, with mixed results for different trimesters of pregnancy. For ozone, aORs were 

elevated for categorical models in the 2nd postnatal year, and for continuous models in the 

3rd trimester, 1st and 2nd postnatal years, and the CEI covering the prenatal and postnatal 

periods. For PM2.5, aORs in both categorical and continuous exposure models were elevated 

during the 2nd trimester, 1st postnatal year, and the cumulative exposure period.

Particulate Matter

We observed aORs of 1.41 (95% CI: 0.89, 2.24), 1.54 (95% CI: 0.98, 2.40) and 1.52 (95% 

CI: 1.00, 2.31) for the highest sextiles of PM2.5 in the 2nd trimester (≥14.9 vs <10.1 μg/m3), 

1st year of life (≥13.8 vs <11.7 μg/m3), and CEI measures (≥13.2 vs <11.8 μg/m3), 

respectively. Our continuous exposure measure results based on IQR changes of 0.87 to 0.94 
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μg/m3 for the 2nd trimester, 1st year, and CEI PM2.5 metrics were smaller in magnitude (aOR 

range: 1.11–1.17) than the 1.37 to 1.51 reported in a case-control study from Pittsburgh, 

Pennsylvania (Talbott et al. 2015a) per 2.8 μg/m3 change in IQR. These differences may 

partially reflect the relatively low variability in PM2.5 exposures in our study. However, our 

IQR-based results for 2nd trimester, 1st year, and CEI PM2.5 are similar in magnitude to the 

aOR of 1.15 (95% CI: 1.06, 1.24) for pregnancy average PM2.5 (per 8.25 μg/m3 IQR 

increase) exposures adjusted for ozone in a Los Angeles, California study (Becerra et al. 

2013), and to results from a large Danish case-control study (Ritz et al. 2018) for PM2.5 

exposures in the nine months after birth (aOR=1.06, 95% CI: 1.01, 1.11). A California-wide 

case-control study (Volk et al. 2013) also detected their strongest results per 8.7 μg/m3 IQR 

increase in PM2.5 during the 1st year of life (aOR=2.12, 95% CI: 1.45, 3.10) and entire 

pregnancy (aOR=2.08, 95% CI: 1.93, 2.25), while trimester-specific estimates were smaller 

(aOR range: 1.22–1.48). While we did not observe an association with entire pregnancy 

average PM2.5 exposures, our categorical PM2.5 exposure results are similar in magnitude to 

trimester-specific (aOR range: 1.23–1.49) and entire pregnancy (aOR=1.50, 95% CI: 1.16, 

1.94) results reported by Raz et al. (2015) for each 4.4 μg/m3 increase in PM2.5 exposures. 

Our exposure contrasts were narrower than this study, which likely resulted in smaller aORs 

for our continuous exposure metrics. Nonetheless, the findings across our study and the six 

prior studies examining ASD and PM2.5 are fairly consistent, with the exception of one 

multi-cohort study (Guxens et al. 2016) that may be subject to increased misclassification of 

both disease and exposure in comparison to other studies.

Ozone

We observed the highest aORs for ozone in categorical models in the 2nd year of life (≥41.5 

vs <36.6 ppb), and in continuous IQR-based models for the 3rd trimester, 1st and 2nd years of 

life, and the CEI. Similar to our 3rd trimester ozone per-IQR-change based model with 

multi-window and multipollutant adjustment (per 16.5 ppb increase; aOR=1.19; 95% CI: 

0.80, 1.77), Becerra et al. (2013) reported their strongest results for 3rd trimester ozone for 

each 11.5 ppb IQR increase (aOR=1.12; 95% CI: 1.06, 1.19 including adjustment for 

PM2.5). Comparable results were detected in a California-wide case-control study (Volk et 

al. 2013) based on 1st year of life ozone IQR increases (aOR=1.15; 95% CI: 0.72, 1.86 per 

16.1 ppb). We also detected our strongest IQR-based results for ozone in the postnatal 

period, with aORs of 1.22 (95% CI: 0.96, 1.54) and 1.27 (95% CI: 0.96, 1.69) for the 1st and 

2nd years of life. A cohort study from Taiwan (Jung et al. 2013; Jung et al. 2018) reported an 

adjusted hazard ratio of 1.59 (95% CI: 1.42, 1.78) per 100 ppb increase in early childhood 

ozone exposures in the one to four years preceding diagnosis, as well as a positive exposure-

response relationship for postnatal ozone quartiles (hazard ratio range: 1.72–5.88; referent 

<97 ppb). Though effect estimates vary somewhat in magnitude across studies of ozone and 

ASD, our elevated results for IQR-based and categorical ozone exposures in the 3rd trimester 

and the postnatal period are fairly consistent with three previous studies (Morales-Suárez-

Varela et al. 2017; Flores-Pajot et al. 2016).

We also saw some evidence of inverse associations between first trimester ozone estimates 

and ASD. We are not aware of any evidence that would suggest that these are biologically 

plausible findings, including a previous meta-analysis (Flores-Pajot et al. 2016) of first 
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trimester ozone exposures that reported no association (OR=1.00; 95% CI: 0.98, 1.02) based 

on two studies. Thus, these may be due to chance alone or alternative explanations including 

positive confounding by an inversely correlated pollutant that is also an ASD risk factor. One 

possibility of the latter is nitrogen dioxide (NO2), a marker of traffic-related air pollution 

that is scavenged in the formation of ground-level ozone. Although we did not have data to 

examine it, NO2 appears unlikely to be a strong confounder of this relationship since only 

one ASD study reported elevated associations for first trimester NO2 measures (Volk et al. 

2013). Another study also showed that ozone results were robust to additional adjustment for 

NOx in joint air pollutant models (Jung et al. 2013).

Case Ascertainment

Case ascertainment is an important strength of our study, as CCHMC’s DDBP is the primary 

diagnostic and treatment center in our study area for childhood neurodevelopmental 

disorders. A documented ASD diagnosis in the CCHMC EMR database is based on 

consistent diagnostic criteria, as recommended in a recent systematic review of the ASD-air 

pollution literature (Morales-Suárez-Varela et al. 2017). Additionally, the database likely 

includes most of the ASD cases in the study area. Compared to the corresponding ICD-9 

code in the encounter diagnosis list, we found nearly perfect agreement in our manual 

review of approximately 100 clinical notes (Connolly et al. 2016). As part of our study 

design, we also excluded children diagnosed with non-ASD developmental disabilities at 

CCHMC from our control pool. It is possible that some children in our study area were 

diagnosed elsewhere or had not been diagnosed at the time data were compiled, though these 

scenarios are more likely for the non-ASD developmental disabilities cases than for the ASD 

cases. Additionally, while ASD diagnosis rates tend to be higher among groups with better 

access to healthcare (Liptak et al. 2008), we did not observe large differences between cases 

and controls by socioeconomic status including type of primary source of payment for 

delivery that was reported (Table 3).

Some cases might have been missed if they were too young to have been diagnosed when 

our dataset was compiled. Although some ASD cases can be diagnosed as early as two years 

of age, the median age at diagnosis varied for the three subtypes of ASD previously 

diagnosed under the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition 

(used prior to 2013): 3.8 years for autistic disorder, 4.1 years for pervasive developmental 

disorder not otherwise specified, and 6.2 years for Asperger disorder (Christensen et al. 

2016). Thus, the cases from later years of our study period may be more likely to represent 

children with certain ASD presentations, since these children are more likely to be 

diagnosed at a younger age, potentially resulting in some under-ascertainment for the later 

years of our study period. We observed similar patterns in the results of our sensitivity 

analysis restricted to 2006–2008 births compared to the full dataset, with the most consistent 

elevated results for PM2.5 in the 2nd trimester (aOR range: 1.43–1.52), 1st year of life (aOR 

range: 1.84–2.00), and CEI (aOR range: 1.39–1.57), and for ozone in the 2nd year of life 

(aOR range: 1.33–1.42) and the highest sextile in the 1st year (aOR=1.67, 95% CI: 0.98, 

2.87). These results suggest that there was sufficient time for cases to be detected across the 

study period. The consistency in diagnostic criteria in using a single hospital database and 
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our high case ascertainment are strengths in our study that likely reduce misclassification of 

disease and improve our ability to detect associations for ASD.

Confounding

We identified eight confounders based on our change-in-estimate confounding analysis. 

Confounding by factors related to socioeconomic status (SES) is of particular concern in 

autism and air pollution studies, as SES indicators (e.g., income, education, healthcare 

access) can influence both the ascertainment and potential causes of ASD, and air pollution 

exposures have been shown to vary with SES (Weisskopf et al. 2015). Except for parental 

education, which was a confounder identified in 11 of the 14 previous studies on ASD and 

air pollution, we saw no evidence of confounding by SES or related sociodemographic 

characteristics. Though residual confounding by SES is possible in our study given the 

complex pathways by which SES can relate to both ASD and air pollution, our confounding 

analysis as well as the relative homogeneity of examining a single metropolitan area are 

strengths that help reduce the likelihood of confounding. This homogeneity should also 

increase the generalizability of study results, as our study population was comparable with 

national statistics (ADDMN 2014), with the exception of not detecting any differences in 

ASD status by race or ethnicity (Table 3). Adjusting for race in our models did not 

materially or consistently change aOR estimates, including for the most elevated estimates 

(data not shown). Additionally, while male sex is an established risk factor for ASD, sex was 

not associated with air pollution estimates in our study and adjusting for sex in models did 

not change aOR estimates. Models restricted to males produced similar patterns of aORs, 

with some results more highly elevated for PM2.5, in particular for the 3rd trimester. The 

extensive data available from birth records allowed us to assess numerous ASD risk factors 

identified in the literature (e.g., Gardener et al. 2009), though, as with most observational 

studies, it is possible that residual confounding remains from unknown risk factors that may 

be associated with both ASD and air pollution.

We examined seasonality as a potential confounder, since ozone levels vary seasonally due 

to chemical reactions with solar ultraviolet radiation, with peaks occurring in summer in the 

northern hemisphere. Seasonality in ASD risk has been reported in some previous studies 

(Zerbo et al. 2011; Lee et al. 2008), with various temporal associations hypothesized in 

relation to exposures such as pesticides (Eskenazi et al. 2007), maternal allergies (Croen et 

al. 2005), and influenza infection (Deykin and MacMahon 1979). Month of conception, our 

marker of seasonality, was identified as a confounder and led to average changes in aORs of 

−10%, −14%, and +14% for the first, second, and third trimester ozone estimates, 

respectively. Three previous studies on ASD and air pollution also adjusted for seasonality to 

control for confounding using birth week (Kalkbrenner et al. 2015) and birth month 

windows (Raz et al. 2015; Raz et al. 2018). Additionally, the associations between ASD and 

pre- and post-natal air pollution estimates for time periods of one year or longer (e.g., the 

CEI) observed in our study and three previous studies (Talbott et al. 2015a; Volk et al. 2013; 

Jung et al. 2013) would be less influenced by time-varying confounding. Although the 

underlying etiology for an association between ASD and season is unknown, our inclusion 

of month of conception should help control for confounding by seasonality.
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Exposure scores in our data represent a wide temporal range of averaging windows that we 

would not necessarily expect to have particular correlation patterns, though we did detect 

moderate to strong negative correlations between some metrics, and moderate positive 

correlations between others. In the few comparisons we could make to other studies of ASD 

and air pollution that included correlation data for exposure scores, the direction (positive or 

negative) of correlations in our data was generally in agreement (Becerra et al. 2013; Volk et 

al. 2013; Kalkbrenner et al. 2015). Variations in the magnitude of exposure score 

correlations between our study and others may be related to regional differences (i.e. 

seasonal effects in California compared to in the eastern US) in climate and geography, or 

differences in particular years due to changes in emissions.

Air pollution is a complex mixture of gases containing metals, semivolatile and volatile 

organic compounds, and particulates that vary in size and composition. It remains unclear 

whether specific components or whole mixture combinations are most relevant to ASD 

etiology. Of the 15 previous epidemiological studies on ASD and air pollution that examined 

various individual pollutants, all but two (Gong et al. 2017; Guxens et al. 2016) reported 

associations for some individual pollutants. Including our study, six out of seven studies 

observed elevated results for PM2.5, which may be more etiologically relevant for health 

impacts compared to coarser measures (e.g. PM10). Although the chemical composition of 

PM varies across different geographical areas with different sources and can contain a 

combination of organic and inorganic pollutants and biological materials, the five previous 

studies to examine ASD with PM chemical composition reported elevated results for various 

metals, solvents, and other volatile organic compounds (Talbott et al. 2015b; Kalkbrenner et 

al. 2010; Roberts et al. 2013; von Ehrenstein et al. 2014; Windham et al. 2006). 

Additionally, five of seven studies observed elevated results for NO2 (Raz et al. 2018; Ritz et 

al. 2018; Volk et al. 2013; Becerra et al. 2013; Jung et al. 2013), which is highly correlated 

(r=0.7–0.9) with PM2.5 in some urban areas (Carlsten et al. 2011; Gehring et al. 2010; 

Oftedal et al. 2009), and often negatively correlated with ozone (Sillman et al. 1990). 

Relative to individual contaminants, Volk et al. (2013) observed strong associations with 

ASD for traffic-related air pollution, a summary measure representing a mixture of 

pollutants which may be more indicative of the effects of multiple interacting pollutants. Our 

joint pollutant model results showed that simultaneous adjustment for ozone and PM2.5 had 

minimal impact on our effect estimates (all aORs were impacted by ≤14%). These small 

differences likely result from weak correlations detected between ozone and particulate 

matter in our study. So, while other pollutants such as NO2 could potentially confound these 

associations, they would have to be strongly correlated with both ASD and either PM2.5 or 

ozone levels to fully explain the results detected in our study. Lastly, our adjustment for 

PM2.5 in the ozone models should control for some of the potential confounding by NO2 if 

they spatially and temporally co-occur. Though we focused on two pollutants with evidence 

of associations with ASD reported in previous studies, future research would benefit from 

examining a broader range of pollutants and further elucidation of potential interactive 

effects.

We adjusted for multiple temporal exposure windows in all models except for the CEI to 

examine specific periods of etiological relevance and to help control confounding across the 

time windows examined (Weisskopf et al. 2015). After adjusting for the nine months before 
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and after pregnancy, Raz et al. (2015) observed a small increase (aOR range: 1.50 to 1.63) in 

the entire pregnancy for their PM2.5 estimate. In contrast, this adjustment in the pre- and 

post-pregnancy periods led to null results compared to single window regression models 

(from 1.32 and 1.29 to 0.83 and 0.96). In a separate study, Raz et al. (2018) mutually 

adjusted for exposures during pregnancy and the first nine months after birth, which led to a 

lower OR for pregnancy (from 1.08 to 0.77) and higher OR for the first nine postnatal 

months (from 1.09 to 1.40). Our PM2.5 results increased 7% on average for the 2nd trimester 

following multi-window adjustment but remained largely unchanged for the other exposure 

windows. Another study of ASD and PM10 (Kalkbrenner et al. 2015) adjusted for multiple 

three-month-long windows in all models from three months before pregnancy to the 4th 

quarter of the 1st year after pregnancy. They only observed consistently elevated results for 

the 3rd trimester, with the largest increase of 16% (aOR=1.38; 95% CI: 1.03, 1.84) following 

additional adjustment for 1st trimester exposures. Mutual adjustment for different temporal 

exposure windows likely improved both our ability to control for confounding and enhanced 

the temporal specificity of our results (Weisskopf et al. 2015), though differences in multi-

window adjustment approaches between studies make direct comparisons less interpretable. 

Future studies with improved exposure assessment data should consider distributed lag 

models that could use daily air pollution data to further examine more specific temporal 

windows of vulnerability and that may be better able to address the potential for 

confounding by seasonality (Wilson et al. 2017).

Exposure Measurement

A primary limitation in many epidemiological studies of air pollution is the lack of 

individual-level exposure data, which can lead to measurement error and exposure 

misclassification. Our air pollution estimates were developed from the EPA FAQSD model, 

which combines modeled atmospheric chemistry data from the CMAQ model with measured 

data from air monitoring stations to create daily estimates for census tracts. These exposure 

estimates provided better spatial resolution for urban areas, where denser populations result 

in geographically smaller tracts. Based on normalized median bias estimates, the overall 

CMAQ model predictions for ozone appear to be within 5% of the observed measures 

reported during January 2006 (a winter month in the northern hemisphere) and August 2006 

(a summer month) in the eastern U.S (Appel et al. 2010). A similar comparison for PM2.5 

showed that overall CMAQ model predictions appear to be within 10% and 30% of 

observations reported during January 2006 and August 2006, respectively, in the eastern 

U.S. These are likely over-estimates of the uncertainty, as Appel et al. (2010) did not make 

these comparisons using a downscaler, a post-processing step that the FAQSD model applies 

to the CMAQ outputs. The downscaler uses mathematical models to adjust spatial and 

temporal model estimates based on observational measures, thereby improving model 

predictions (Berrocal et al. 2010). A study comparing the impact of ozone on birth weight 

using both CMAQ and FAQSD models found that results using FAQSD had less variability, 

with data more closely resembling actual monitoring station measurements (Warren et al. 

2013). Therefore, while our analyses did not account for variability in modeled air pollutant 

estimates, these data represent the best publicly available spatially modeled data and should 

accurately reflect the ambient levels near the study population’s residences.
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The use of ambient data to estimate individual-level exposures is a study limitation given the 

lack of data on intra- and inter-individual variability in activity patterns of study participants. 

For example, Americans spend 93% of their time indoors (Klepeis et al. 2001), and both 

indoor sources and infiltration of outdoor sources vary for ozone and PM2.5. Although there 

can be indoor ozone sources, for most buildings indoor ozone is largely transported from 

outside (Weschler 2000). Daily inhalation intakes of indoor ozone typically account for 25–

60% of total ozone exposure (Weschler 2006). Infiltration of outdoor ozone to indoor 

environments is greatly reduced by central air conditioning, which is typically more 

common in newer buildings. Therefore, our ambient ozone estimates might better 

approximate exposures for residents of older buildings more common in Cincinnati’s central 

neighborhoods, compared to newer, suburban buildings. Indoor concentrations of PM2.5, in 

contrast, vary widely depending on indoor sources (Wallace 1996). Indoor PM levels may be 

affected by air conditioning, which will generally decrease outdoor PM infiltration (Bell et 

al. 2009), though there is evidence that microbial PM (e.g., mold spores, airborne bacteria) 

could increase in humid conditions where air conditioning filters can provide suitable 

growing environments (Moritz et al. 2001). A study of six Cincinnati households in 2004 

found indoor-to-outdoor ratios for PM2.5 concentrations ranging from 0.5–2.9 in spring and 

0.7–4.7 in fall, with ratios >1 (concentrations higher indoors than outdoors) due to indoor 

smoking, cooking, and cleaning (Martuzevicius et al. 2008). In our study population, 25% of 

mothers reported ever smoking before pregnancy and 19% reported ever smoking during 

pregnancy, though these variables were not identified as confounders. Though our smoking 

data may be underreported, previous research has indicated general agreement between 

cotinine levels and self-reported cigarette smoking during pregnancy from birth records data 

(Searles Nielson et al. 2014). Additionally, we did not have information on post-natal 

maternal smoking habits or whether others smoked in the primary residence during or after 

pregnancy. Due to the wider variety of factors affecting indoor PM2.5 concentrations 

compared to ozone, there may be more potential measurement error in our PM2.5 estimates. 

Time-activity studies have found that pregnant women tend to spend more time at home as 

pregnancies progress (Nethery et al. 2009, Clarke et al. 2005), which may result in more 

accurate third trimester estimates compared to the first or second trimester measures. 

Generally, exposure mismeasurement due to lack of data on intra-individual mobility would 

be expected to be non-differential and largely bias measures of association towards the null 

(Setton et al. 2011).

Another exposure assessment limitation is that our ambient pollutant concentration estimates 

for census tracts were based on residential addresses at birth and do not account for 

residential mobility. A review article of 14 environmental epidemiology studies with 

residential mobility data found that 9–32% of pregnant women moved residences, with the 

median distance moved <10 km (6.2 miles), most during the second trimester (Bell and 

Belanger 2012). The two previous epidemiological studies of ASD and air pollution that 

measured mobility indicated that the majority of women did not change residences during 

pregnancy or during the post-natal period. Talbott et al. (2015a) reported that 85% of 

subjects did not move during their pregnancy and reported their strongest results for 

exposure metrics furthest removed from when addresses were recorded at birth (i.e. CEI and 

the 2nd year of life). In an analysis of pre- and post-pregnancy addresses, Raz et al. (2013) 
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reported that 65% of cases and controls did not move during pregnancy or the 9 months 

afterward. They also found very little difference in aORs for PM2.5 quartiles between non-

movers (aOR=2.06, 95% CI: 1.17, 3.63) and those with exposure estimates based on the first 

known post-pregnancy address (aOR=1.99, 95% CI: 1.27, 3.10). These data on mobility 

suggest that given the various sources of exposure assessment uncertainty, this source of 

measurement error may be minimal. Although the lack of individual-level exposure data and 

low variability in intermediate exposure categories limited the ability to examine exposure-

response relationships, our results are fairly comparable to several previous studies.

Biological Plausibility

The actual mechanisms related to ASD onset are unknown. Hypotheses include epigenetic 

changes to patterns of DNA methylation in the developing brain (Keil and Lein 2016) and 

immune alterations leading to neurologic inflammation (Noriega and Savelkoul 2013). 

Several studies have reported relationships between DNA methylation variations influencing 

immune responses and air pollution exposures, including for PM2.5 (Panni et al. 2016) and 

ozone (Fry et al. 2014). Toxicology studies in rodents have examined ASD-like 

characteristics following exposures to air pollution, particularly PM2.5. For example, a study 

in mice exposed to PM2.5 throughout early neurodevelopment found ASD-like decreased 

sociability, with more extensive impacts among males (Church et al. 2018). Another study of 

mice exposed to PM2.5 in the early postnatal period reported behavioral features consistent 

with ASD including poor communication and social interaction, as well as differences in 

gene expression and markers of inflammation in the brain (Li et al. 2018). Though there is 

less research examining ozone as a risk factor specifically for ASD, there is evidence for the 

neuron-damaging potential of ozone-induced oxidative stress in rodent experiments, with 

documented effects on motor activity (Pereyra-Muñoz et al. 2006) and social recognition 

memory (Guevara-Guzmán et al. 2009).

Genetic studies have not identified causal mechanisms underlying a large majority of ASD 

cases, and there is not complete ASD concordance among monozygotic twins, thus there is a 

general consensus that genetic susceptibilities and environmental stressors are both involved 

in ASD development (Schwartzer et al. 2013). For example, one study of twin pairs with 

ASD reported that shared environmental factors could explain about 55% of the variability 

in behavioral deficits, a higher figure than previously estimated (Hallmayer et al. 2011). In 

an attempt to reduce genetic influences in our ambient air pollution study, we excluded 

multiple births from cases and controls, and excluded siblings who both had ASD from our 

cases. While most studies on environmental contributions to ASD have focused on in utero 

exposures, some toxicological evidence supports the biological plausibility of ASD 

development from exposures including particulate matter in the late prenatal and very early 

postnatal period, when considerable neurodevelopment occurs (Church et al. 2018, Chang et 

al. 2018, Allen et al. 2014, Wagner et al. 2006). Although the lack of established 

biologically-based critical exposure windows is a key source of uncertainty, the use of 

trimester- or year-long averaging timeframes for assessing possible health effects of air 

pollution allows for direct comparison to other studies using these common averaging 

windows. Animal studies or other experimental evidence can provide biological plausibility 
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to the epidemiological findings and can help narrow the specific critical windows of interest 

and the combination of pollutants that are examined in future studies.

Future Directions

Our use of daily air pollution estimates allowed us to examine specific time windows for 

each study subject. By averaging estimates across longer time periods, however, we may 

miss the impact of peak exposures, which have not been examined in previous studies. A 

previous study by Kalkbrenner et al. (2015) examined two-week averages while Raz et al. 

(2018) examined one-week averages, which may be more relevant to elucidate specific 

critical windows of exposure and potential biological mechanisms. In addition to peak 

exposures and critical windows, future studies of ASD and air pollution should examine 

specific ASD phenotypes in relation to different air pollution components. Lastly, collection 

of indoor air monitoring and personal measurements for various air pollutants, which can be 

more time-consuming and expensive, would also help provide more accurate estimates of 

exposure and potential risk.

Our study adds to the epidemiologic evidence demonstrating elevated associations between 

ambient air pollution and ASD, with our highest results observed for the early postnatal 

period and late pregnancy. Our study benefited from the use of daily estimates for two 

common pollutants, high expected case ascertainment, consistent diagnostic criteria, and the 

ability to adjust for relevant potential confounders, co-exposures, and multiple critical 

exposure windows. Future epidemiological research should focus on further identifying 

specific developmental time periods of susceptibility for a broader range of co-pollutants, 

and on examining the impact of cumulative versus peak exposures. Future studies would 

also benefit from tracking residential mobility during critical exposure periods and by 

including samples sizes sufficient to detect associations small in magnitude (Flores-Pajot et 

al. 2016). Additional mechanistic studies are needed to inform the biological plausibility of 

postnatal exposures contributing to ASD, and on the mechanisms of environmental 

contributions to ASD more generally.
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Highlights

• Highest results for ASD with PM2.5 were for exposures in 1st year of life.

• Highest results for ASD with ozone were for exposures in 2nd year of life.

• Stronger postnatal results in agreement with most prior ASD-air pollution 

studies.
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Table 1:

Ozone and PM2.5 Exposure Distributions for All Study Participants

Exposure Metrics N Mean Std Dev Min Max IQR

Ozone (ppb)
a

Trimester 1 6848 39.3 9.6 18.5 65.3 15.5

Trimester 2 6848 38.8 9.6 18.5 65.4 15.7

Trimester 3 6787 39.9 10.1 17.5 65.2 16.5

Year 1 of life 6848 39.1 2.5 32.8 48.5 3.8

Year 2 of life 6848 39.1 2.3 32.8 45.4 3.7

Cumulative exposure index (CEI), pregnancy through year 2 6848 39.2 2.0 33.1 45.6 2.8

PM2.5 (μg/m3)
b

Trimester 1 PM2.5 average 6848 12.3 2.5 3.9 21.8 3.4

Trimester 2 6848 12.3 2.4 4.2 20.7 3.3

Trimester 3 6787 12.3 2.6 3.9 24.4 3.7

Year 1 of life 6848 12.6 1.3 5.3 17.5 0.9

Year 2 of life 6848 12.5 1.2 8.7 17.4 0.9

Cumulative exposure index (CEI), pregnancy through year 2 6848 12.5 0.7 7.2 14.8 0.9

IQR=Interquartile Range

a
Averages of daily 8-hour maximum ozone values

b
Averages of 24-hour-average PM2.5 levels
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Table 2:

Spearman Correlations across Ozone and PM2.5 Exposure Window Averages

Ozone Tri1 Ozone Tri2 Ozone Tri3 PM2.5 Tri1 PM2.5 Tri2 PM2.5 Tri3 Ozone 
Yr1

Ozone 
Yr2

PM2.5 
Yr1

Oz Tri2 0.07

Oz Tri3 −0.72 0.22

PM2.5 Tri1 0.09 −0.19 −0.33

PM2.5 Tri2 −0.08 0.14 −0.10 0.32

PM2.5 Tri3 −0.39 −0.08 0.15 0.38 0.23

Oz Yr1 0.05 0.13 0.20 −0.03 −0.13 −0.24

Oz Yr2 −0.14 0.08 0.09 −0.03 0.04 0.09 0.33

PM2.5 Yr1 −0.02 0.04 −0.10 −0.03 0.12 0.32 −0.56 −0.23

PM2.5 Yr2 0.15 0.08 −0.02 −0.10 −0.19 −0.21 −0.27 −0.64 0.12

Tri=trimester; Yr=year; PM2.5=fine particulate matter
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Table 3:

Characteristics of Study Participants by Case Status

Study Population, n (%) ASD Cases, n (%) Controls, n (%)

Total Births 6848 (100) 428 (6.3) 6420 (93.7)

Child’s sex

Male 3563 (52.0) 350 (81.8) 3213 (50.0)

Female 3285 (48.0) 78 (18.2) 3207 (50.0)

Mother’s age at delivery

<20 709 (10.4) 26 (6.1) 683 (10.6)

20–24 1672 (24.4) 96 (22.4) 1576 (24.5)

25–29 2001 (29.2) 131 (30.6) 1870 (29.1)

30–34 1542 (22.5) 92 (21.5) 1450 (22.6)

35–39 772 (11.3) 68 (15.9) 704 (11.0)

>40 152 (2.2) 15 (3.5) 137 (2.1)

Mother’s education level

Did not complete high school 1165 (17.0) 43 (10.0) 1122 (17.5)

High school diploma or GED 1554 (22.7) 105 (24.5) 1449 (22.6)

Some college 1498 (21.9) 100 (23.4) 1398 (21.8)

Associates degree 505 (7.4) 57 (13.3) 448 (7.0)

Bachelors degree 1347 (19.7) 80 (18.6) 1267 (19.7)

Masters or professional degree 712 (10.4) 39 (9.1) 673 (10.5)

Missing 67 (1.0) 4 (0.9) 63 (1.0)

Mother’s race

White 5104 (74.5) 310 (72.4) 4794 (74.7)

Black 1458 (21.3) 98 (22.9) 1360 (21.2)

Other 230 (3.4) 16 (3.7) 214 (3.3)

Missing 56 (0.8) 4 (0.9) 52 (0.8)

Mother of Hispanic origin

Yes 326 (4.8) 15 (3.5) 311 (4.8)

No 6462 (94.4) 412 (96.3) 6050 (94.2)

Missing 60 (0.9) 1 (0.2) 59 (0.9)

Mother’s marital status

Married 3895 (56.9) 268 (62.6) 3627 (56.5)

Unmarried 2953 (43.1) 160 (37.4) 2793 (43.5)

Primary source of payment for delivery

Private 3821 (55.8) 260 (60.7) 3561 (55.5)

Public 2407 (35.1) 141 (32.9) 2266 (35.3)

Other 454 (6.6) 20 (4.7) 434 (6.8)

Missing 166 (2.4) 7 (1.6) 159 (2.5)

Trimester prenatal care started
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Study Population, n (%) ASD Cases, n (%) Controls, n (%)

1st 3159 (46.1) 200 (46.7) 2959 (46.1)

After 1st 1086 (15.9) 62 (14.5) 1024 (16.0)

Missing 2603 (38.0) 166 (38.8) 2437 (38.0)

Number of prenatal care visits

0 – 6 955 (13.9) 52 (12.1) 903 (14.1)

7 – 10 1491 (21.8) 89 (20.8) 1402 (21.8)

11 – 13 1280 (18.7) 77 (18.0) 1203 (18.7)

14 – 60 938 (13.7) 56 (13.1) 882 (13.7)

Missing 2184 (31.9) 154 (36.0) 2030 (31.6)

Number of cigarettes mother reported smoking during pregnancy

0 5572 (81.4) 353 (82.5) 5219 (81.3)

1–20 463 (6.8) 29 (6.8) 434 (6.8)

21–40 450 (6.6) 29 (6.8) 421 (6.6)

>40 363 (5.3) 17 (4.0) 346 (5.4)

Number of previous births

0 2735 (39.9) 204 (47.7) 2531 (39.4)

1 2193 (32.0) 132 (30.8) 2061 (32.1)

2 1098 (16.0) 63 (14.7) 1035 (16.1)

3 or more 775 (11.3) 25 (5.8) 750 (11.7)

Missing 47 (0.7) 4 (0.9) 43 (0.7)

Maternal prepregnancy Body Mass Index

<18.5 (under weight) 280 (4.1) 15 (3.5) 265 (4.1)

18.5–25 (healthy weight) 3205 (46.8) 177 (41.4) 3028 (47.2)

>25–30 (overweight) 1591 (23.2) 101 (23.6) 1490 (23.2)

>30 (obese) 1409 (20.6) 118 (27.6) 1291 (20.1)

Missing 363 (5.3) 17 (4.0) 346 (5.4)

Time since previous delivery

No previous births 2713 (39.6) 201 (47.0) 2512 (39.1)

<2 years 1025 (15.0) 61 (14.3) 964 (15.0)

2–6 years 2152 (31.4) 92 (21.5) 2060 (32.1)

>6 years 549 (8.0) 47 (11.0) 502 (7.8)

Missing 409 (6.0) 27 (6.3) 382 (5.6)

Gestational length

17 – 36 weeks 757 (11.1) 62 (14.5) 695 (10.8)

37 – 47 weeks 6091 (88.9) 366 (85.5) 5725 (89.2)

Birth weight in grams

115 – 2496 (low, <2500 g) 483 (7.1) 37 (8.6) 446 (6.9)

2500 – 5510 (normal, ≥2500 g) 6365 (92.9) 391 (91.4) 5974 (93.1)

Month of conception
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Study Population, n (%) ASD Cases, n (%) Controls, n (%)

January 595 (8.7) 36 (8.4) 559 (8.7)

February 507 (7.4) 35 (8.2) 472 (7.4)

March 550 (8.0) 36 (8.4) 514 (8.0)

April 478 (7.0) 29 (6.8) 449 (7.0)

May 582 (8.5) 28 (6.5) 554 (8.6)

June 587 (8.6) 35 (8.2) 552 (8.6)

July 609 (8.9) 43 (10.0) 566 (8.8)

August 571 (8.3) 34 (7.9) 537 (8.4)

September 526 (7.7) 34 (7.9) 492 (7.7)

October 622 (9.1) 37 (8.6) 585 (9.1)

November 598 (8.7) 43 (10.0) 555 (8.6)

December 623 (9.1) 38 (8.9) 585 (9.1)
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Table 4:

Multivariable Regression Models for Categorical Exposures and Per IQR Increases in Ozone and PM2.5

Exposure categories
a Cases / Controls Model 1

b
Model 2

c

aOR (95% CI) aOR (95% CI)

PM2.5 1st trimester (μg/m3)

3.9 – <10.1 (referent) 64/932 1.00 1.00

10.1 – <14.9 256/3819 0.98 (0.72, 1.32) 0.93 (0.67, 1.30)

14.9 – 21.8 65/941 1.06 (0.72, 1.56) 0.99 (0.66, 1.51)

Per IQR increase (3.39) -- 1.03 (0.86, 1.23) 1.05 (0.86, 1.28)

PM2.5 2nd trimester (μg/m3)

4.2 – <10.1 (referent) 50/923 1.00 1.00

10.1 – <14.9 269/3810 1.36 (0.98, 1.89) 1.44 (1.01, 2.05)

14.9 – 20.7 66/959 1.30 (0.85, 1.99) 1.41 (0.89, 2.24)

Per IQR increase (3.34) -- 1.08 (0.91, 1.29) 1.13 (0.93, 1.38)

PM2.5 3rd trimester (μg/m3)

3.9 – <9.9 (referent) 62/936 1.00 1.00

9.9 – <15.1 254/3763 0.99 (0.73, 1.35) 0.98 (0.70, 1.37)

15.1 – 24.4 65/951 1.05 (0.70, 1.58) 1.04 (0.67, 1.61)

Per IQR increase (3.72) -- 0.98 (0.81, 1.20) 0.96 (0.77, 1.20)

PM2.5 entire pregnancy (μg/m3)

5.3 – <10.8 64/944 1.00 1.00

10.8 – <14.0 252/3800 0.95 (0.69, 1.30) 0.87 (0.63, 1.21)

14.0 – 18.3 69/948 1.07 (0.75, 1.53) 0.99 (0.67, 1.46)

Per IQR increase (2.02) -- 1.01 (0.98, 1.04) 1.01 (0.97, 1.04)

PM2.5 1st year of life (μg/m3)

5.2 – <11.7 (referent) 44/946 1.00 1.00

11.7 – <13.8 277/3807 1.67 (1.17, 2.38) 1.84 (1.26, 2.69)

13.8 – 17.5 64/939 1.40 (0.94, 2.09) 1.54 (0.98, 2.40)

Per IQR increase (0.90) -- 1.07 (0.98, 1.17) 1.11 (1.00, 1.23)

PM2.5 2nd year of life (μg/m3)

8.7 – <11.5 (referent) 63/991 1.00 1.00

11.5 – <13.2 268/3835 1.10 (0.82, 1.48) 1.10 (0.81, 1.50)

13.2 – 17.4 54/866 0.97 (0.61, 1.55) 1.13 (0.67, 1.94)

Per IQR increase (0.87) -- 0.98 (0.88, 1.09) 1.07 (0.93, 1.23)

PM2.5, CEI (μg/m3)

7.2 – <11.8 (referent) 51/982 1.00 1.00

11.8 – <13.2 267/3798 1.37 (1.00, 1.86) 1.41 (1.02, 1.95)

13.2 – 14.8 67/912 1.45 (0.98, 2.15) 1.52 (1.00, 2.31)
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Exposure categories
a Cases / Controls Model 1

b
Model 2

c

aOR (95% CI) aOR (95% CI)

Per IQR increase (0.94) -- 1.10 (0.94, 1.28) 1.17 (0.98, 1.40)

Ozone 1st trimester (ppb)

18.5 – <27.8 (referent) 76/970 1.00 1.00

27.8 – <48.6 259/3825 0.76 (0.52, 1.10) 0.70 (0.47, 1.04)

48.6 – 65.3 50/897 0.59 (0.35, 1.00) 0.56 (0.33, 0.96)

Per IQR increase (15.54) -- 0.87 (0.61, 1.25) 0.87 (0.60, 1.26)

Ozone 2nd trimester (ppb)

18.5 – <28.1 (referent) 70/964 1.00 1.00

28.1 – <49.2 252/3780 0.93 (0.64, 1.36) 0.96 (0.65, 1.42)

49.2 – 65.4 63/948 0.94 (0.57, 1.55) 0.92 (0.54, 1.55)

Per IQR increase (15.66) -- 0.92 (0.62, 1.35) 0.85 (0.56, 1.29)

Ozone 3rd trimester (ppb)

17.5 – <27.6 (referent) 62/935 1.00 1.00

27.6 – <49.7 246/3784 0.94 (0.65, 1.37) 0.92 (0.62, 1.35)

49.7 – 65.2 73/931 1.16 (0.71, 1.88) 1.17 (0.71, 1.93)

Per IQR increase (16.50) -- 1.22 (0.82, 1.80) 1.19 (0.80, 1.77)

Ozone entire pregnancy (ppb)

23.7 – <34.3 (referent) 62/967 1.00 1.00

34.3 – <44.6 259/3784 1.16 (0.83, 1.63) 1.23 (0.86, 1.75)

44.6 – 59.4 64/941 1.18 (0.74, 1.86) 1.28 (0.78, 2.10)

Per IQR increase (7.39) -- 1.00 (0.99, 1.00) 1.00 (0.99, 1.01)

Ozone 1st year of life (ppb)

32.8 – <36.5 (referent) 66/924 1.00 1.00

36.5 – <41.6 251/3818 0.94 (0.70, 1.25) 0.95 (0.69, 1.31)

41.6 – 48.5 68/950 1.04 (0.72, 1.49) 1.19 (0.79, 1.81)

Per IQR increase (3.83) -- 1.05 (0.87, 1.27) 1.22 (0.96, 1.54)

Ozone 2nd year of life (ppb)

32.8 – <36.6 (referent) 49/887 1.00 1.00

36.6 – <41.5 273/3836 1.41 (1.00, 1.99) 1.42 (0.98, 2.05)

41.5 – 45.4 63/969 1.28 (0.84, 1.96) 1.29 (0.81, 2.05)

Per IQR increase (3.66) -- 1.19 (0.95, 1.48) 1.27 (0.96, 1.69)

Ozone CEI (ppb)

33.1 – <37.3 (referent) 67/927 1.00 1.00

37.3 – <41.4 252/3789 0.95 (0.71, 1.28) 1.02 (0.76, 1.37)

41.4 – 45.6 66/976 0.99 (0.66, 1.47) 1.16 (0.76, 1.78)

Per IQR increase (2.79) -- 1.07 (0.88, 1.29) 1.19 (0.95, 1.49)

CEI=Cumulative Exposure Index (pregnancy through 2nd year of life)

a
Sextiles with middle 2–5 categories collapsed into one group.
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b
Model 1 adjusted for year of birth, mother’s education, birth spacing, maternal pre-pregnancy body mass index, month of conception.

c
Model 2 adjusted for year of birth, mother’s education, birth spacing, maternal pre-pregnancy body mass index, and month of conception, multi-

window (except for CEI models), and multi-pollutant. Multi-window models: 1st trimester models adjusted for 3rd trimester average exposure; 2nd 

trimester models adjusted for 3rd trimester average exposure; 3rd trimester models adjusted for 1st trimester average exposure; 1st year of life 

models adjusted for pregnancy average exposure; 2nd year of life models adjusted for pregnancy average exposure. Multi-pollutant models: ozone 
models adjusted for PM2.5 average exposures for the same time period; PM2.5 models adjusted for ozone average exposure during the same time 

period.
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