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Abstract
The default network (DN) is a brain network with correlated activities spanning frontal, parietal, and temporal cortical
lobes. The DN activates for high-level cognition tasks and deactivates when subjects are actively engaged in perceptual
tasks. Despite numerous observations, the role of DN deactivation remains unclear. Using computational neuroimaging
applied to a large dataset of the Human Connectome Project (HCP) and to two individual subjects scanned over many
repeated runs, we demonstrate that the DN selectively deactivates as a function of the position of a visual stimulus. That is,
we show that spatial vision is encoded within the DN by means of deactivation relative to baseline. Our results suggest that
the DN functions as a set of high-level visual regions, opening up the possibility of using vision-science tools to understand
its putative function in cognition and perception.
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Introduction
Functional magnetic resonance imaging (fMRI) allows the mea-
surement of activation and deactivation in large-scale brain net-
works relative to a baseline (Gusnard and Raichle 2001). While
the roles of sensory, attention, and limbic networks have been
identified (Yeo et al. 2011), much less is known about the role
of the default network (DN). Nevertheless, this network encom-
passes wide, evolutionarily recent swaths of frontal, parietal,
and temporal lobes. DN activation reflects high-level cognition
such as mind-wandering (Mason et al. 2007; Christoff et al. 2009),
leading different authors to conclude that the DN is a domain
general associative network (Gusnard and Raichle 2001; Raichle
2015). But our limited knowledge about its role partly resides in
the fact that most studies to date show that the DN activates
when humans or monkeys passively rest in a scanner (Raichle
et al. 2001; Mantini et al. 2011), making experimental inferences
based on its activation hard or impossible.

Conversely, deactivation of the DN can be robustly elicited
by different visual tasks, including visual attention (Mayer et al.

2010; Ossandón et al. 2011) as well as visual working memory
and episodic memory (Mayer et al. 2010; Foster et al. 2012; Lee et
al. 2017; Sormaz et al. 2018) or visual perception tasks (González–
García et al. 2018). Based on these results, we hypothesized that
DN deactivation may be driven by the presentation of localized
visual stimuli.

To test our hypothesis, we took advantage of a computa-
tional neuroimaging method previously used to model blood-
oxygenation-level-dependent (BOLD) signal increases in the
visual system (Dumoulin and Wandell 2008; Dumoulin and
Knapen 2018). Using repeated sequences of spatially modulated
visual stimuli (Fig. 1a), we estimate the spatial tuning properties
of neural populations, their population receptive field (pRF).
Following a traditional approach in the field, we first estimated
pRFs from BOLD “activation” and will refer to these as “positive”
population receptive fields (+pRFs).

Combining +pRF properties on the surface of the cortex
allows researchers to noninvasively reveal human retinotopic
maps in both low- and high-level visual areas (Kay et al. 2015;
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Figure 1. Task, models and polar angle maps. (a) HCP dataset task. About 181 subjects fixated a fixation point at the screen center and viewed a bar composed of

different visual objects and noise patterns. They reported color changes of the fixation dot (see blue, red and white fixation dots, in the left, center, and right panel,
respectively). (b) HCP dataset visual design and time samples. The bar traversed the screen following the same sequence across runs and subjects. The averaged time
samples across the HCP subjects (“sub-999”) were modeled with isotropic Gaussian pRFs (represented as red or blue circles put in the screen coordinates, see right

panels) predicting either positive (+pRF, top panel) or a negative (−pRF, bottom panel) modulations of the signal as a function of the bar position overt time. (c) Inflated
and flat views of the cortex. The inflated lateral, dorsal, and medial views as well as the flat view of the cortex depict the best explained polar angle of the +pRFs
obtained with sub-999. +pRF polar angle progression on the cortex (see color wheel) and anatomical references were used to determine low-level (V1/V2/V3: visual
areas 1, 2, and 3; VO/LO/DO: visual occipital, lateral, and dorsal occipital areas) and high-level visual areas (SUP_PAR: superior parietal area; TPJ: temporal parietal

junction; mPCS/sPCS/iPCS: medial, superior, and inferior pre-central sulcus areas; INS: insula; DLPFC: dorso-lateral prefrontal cortex). DN areas were defined using an
atlas (highlighted in dark gray, ANG: angular gyrus; LAT_TEMP: lateral temporal area; MED_PAR: medial parietal area; SUP_MED_FR: superior medial frontal area). The
explained variance (R2) of the model is depicted with color transparency. See Supplementary Figure S1 for individual subjects dataset polar angle maps (sub-001 and
sub-002).

Benson et al. 2018). In particular, this method has been used to
reliably determine the linear relationship between +pRF eccen-
tricity and size parameters (Winawer et al. 2010; Harvey and
Dumoulin 2011; Sprague and Serences 2013; DeSimone et al.
2015; van Es et al. 2019). Such a relationship is inherited through-
out the visual system from the organization of the retinal pho-
toreceptors themselves (Curcio et al. 1990) and predicts that
receptive field size depends on the distance between its center
and the gaze position: the larger this distance, the bigger the
receptive field size.

In contrast to previous work, our analysis allowed the pRF
model to capture both BOLD signal increases and decreases
(Fig. 1b). We observed that the DN signals are best predicted by
deactivation as a function of the stimulus position, with what
we call “negative” population receptive fields (−pRFs). We first
analyzed the averaged time courses across 181 subjects (a total
of 108 600 time samples, see “HCP dataset” in Methods), made
available by the Human Connectome Project (Van Essen et al.
2013; Benson et al. 2018). All subjects viewed a bar traversing
the screen in different directions (Fig. 1a) while being scanned
using state-of-the-art ultra-high field (7T) methods (Benson and
Winawer 2018). We present these average-subject results as our
first dataset: “sub-999.” We next confirmed these results at the
individual level, replicating our results with a different stimulus
and 7T scanner. As the first dataset involved several hours of
recording, we aimed at maximizing the data collection with

two volunteers extensively scanned over 25 (sub-001, 3000 time
samples) and 33 averaged runs (sub-002, 3960 time samples) of
a similar retinotopy experiment. Further, to provide population-
level assessments of our findings, we finally analyzed the 181
subjects individually (600 time samples per subject) and present
their average results as “sub-000.” While datasets differ in sev-
eral parameters (e.g., repetition time, time points per run) they
were both analyzed with the same model and compared at the
level its outputs (see Material and Methods).

We found, consistently across datasets, that DN deactivation
signals can be explained based on the position of visual inputs,
with the DN acting as a negatively modulated, high-level visual
network.

Materials and Methods
Experimental Model and Subject Details

HCP Dataset
The publicly available HCP young adult 7T retinotopy dataset
was used for analyses. Please see the accompanying publication
for details on subjects (Benson et al. 2018). A total of 181 subjects
(109 females, 72 males, age 22–35) took part in a retinotopy
experiment. All subjects had normal or corrected-to-normal
visual acuity. Each subject has been assigned a number (sub-003
to sub-183), the averaged time series is referred as “sub-999,” and
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the average of parameter estimates across subjects after fitting
as “sub-000.”

Individual Subject Dataset
Two staff members (one author) from the Spinoza Centre for
Neuroimaging participated in the experiment (sub-001 and sub-
002, 2 males, 29 and 40 years old). Both subjects had normal
vision. The experiment was undertaken with the understand-
ing and written consent of both subjects and was carried out
in accordance with the Declaration of Helsinki. Experiments
were designed according to the ethical requirement specified by
the Amsterdam University Medical Centre institutional review
board ethics approval.

MRI Data Acquisition

HCP Dataset
Please see the accompanying publication for details on MRI
acquisition (Benson et al. 2018). Briefly, structural scans were
acquired at the Washington University on a customized Siemens
3T Connectom scanner (Siemens Healthcare, 0.7-mm isotropic
resolution) and used as the anatomical substrate for the func-
tional data. Functional data were acquired at the Center for
Magnetic Resonance Research at the University of Minnesota
on a Siemens 7T Magnetom actively shielded scanner (Siemens
Healthcare) and a 32-channel receiver coil array with a single-
channel transmit coil (Nova Medical). Whole-brain functional
data were collected at a resolution of 1.6 mm isotropic and 1 s
time repetition (TR), a multiband acceleration factor of 5, an in-
plane acceleration factor of 2 and 85 slices covering the whole
brain.

Individual Subject Dataset
T1-weighted structural scans were acquired at the Spinoza
Centre for Neuroimaging on a Philips Achieva 3T scanner
(Philips Medical Systems, 1.0 mm isotropic resolution) and a
32-channel receiver coil array with a single-channel transmit
coil. Functional data were collected at the same center on a
Philips Achieva 7T scanner (Philips Medical Systems) with a
32-channel receiver coil array with eight-channel transmit coil
(Nova Medical). Functional data were collected at a resolution
of 2.0 mm isotropic, 1.5 s TR, flip angle of 62◦, in-plane
anterior-posterior SENSE and SMS acceleration factors of 2
and 60 slices covering the occipital, the parietal, and partly
the frontal and temporal cortical lobes. To estimate and later
correct induced susceptibility distortion, we separately acquired
opposite phases encoding direction images. The phases of the
transmit channels were set to provide good signal homogeneity
over the entire brain.

Retinotopy Tasks

HCP Dataset
Please see the accompanying publication for more details on
the visual stimuli (Benson et al. 2018). Briefly, the experimental
software controlling the task was implemented in Matlab
(MathWorks), using the Psychophysics toolboxes (Brainard 1997;
Pelli 1997). Stimuli were presented at a viewing distance of
101 cm, on a back projection screen displaying images from
a NEC NP4000 projector (Tokyo, Japan) viewed through a mirror
mounted on the radiofrequency coil. The screen had a spatial
resolution of 1024 by 768 pixels and a vertical refresh rate of
60 Hz. Button responses were collected using a MRI compatible

button box (Current Designs). The experiment analyzed here
consisted of two identical runs of 300 s (300 TRs). During each
run, a slowly moving bar aperture was presented on a uniform
gray background (Fig. 1a). The bar aperture contained a 15 Hz
dynamic texture composed of visual objects of different sizes
placed on pink noise background. Visual objects of different
size were placed on the pink noise background and include
human and nonhuman animate objects (body parts or faces)
and natural or artificial imamate objects from Kriegeskorte
et al. (2008). The bar aperture was constrained within a virtual
circle of about 8◦ of visual angle (dva), had a width of ∼ 2 dva,
and a duty cycle of ∼3 s. The runs started with a blank period of
16 s, followed by four visual stimulation periods of 32 s each, a
blank period of 12 s, four visual stimulation periods of 32 s each,
and a final blank period of 16 s. In the visual stimulation periods,
the bar aperture moved in the same direction during the first
28 s before being blanked for 4 s. The bar aperture movement
direction was sequentially 0◦ (right), 90◦ (up), 180◦ (left), 270◦
(down), 45◦ (right-up), 315◦ (left-up), 225◦ (left-down), and 135◦
(right-down). A semitransparent central fixation dot (0.15 dva
radius) and fixation grid were superimposed on the display
throughout the run. The fixation dot color changed every 1–5 s
randomly between three colors (black, white, and red). Subjects
were instructed to maintain fixation on the dot and to report
the color change via a button press.

Individual Subject Dataset
The experimental software controlling the task was imple-
mented in Python using Psychopy toolbox (Peirce 2008). Stimuli
were presented at a viewing distance of 225 cm, on a 32-inch LCD
screen (BOLDscreen, Cambridge Research Systems) situated at
the end of the bore and viewed through a mirror. The screen had
a spatial resolution of 1920 by 1080 pixels and a refresh rate of
120 Hz. Button responses were collected using a MRI compatible
button box (Current Designs). The experiment consisted of 25
(sub-001) and 34 (sub-002) identical runs of 180 s (120 TRs)
collected within two to three experimental sessions. During
each run, a slowly moving bar aperture was presented on a
uniform gray background. The bar aperture contained small
drifting Gabor elements (100% contrast; standard deviation of
the Gaussian window: 0.2 dva). Gabor elements were updated
every 0.5 s at a random location uniformly distributed over
the bar aperture, with a random orientation, a random spatial
(between 0.5 and 5.0 cycles per dva) and temporal frequency
(between 7 and 12 Hz). Gabor elements were in grayscale, except
during the middle 0.5 s of each TR, when they were colored
in cyan/magenta or blue/yellow. The bar aperture could either
be horizontally or vertically oriented and their centers moved
on every TR by discrete steps to traverse the entire screen
perpendicular to the bar direction (17.8 by 10 dva). The vertically
oriented bar aperture had a width of ∼2.25 dva and traverse the
screen in 20 steps. The horizontally oriented bar aperture had
a width of ∼1.25 dva and traverse the screen in 13 steps. The
runs started with a blank period of 24 s, followed by horizontally
and vertically oriented stimulation periods of 22.5 and 33 s,
respectively, a blank period of 22.5 s, vertically and horizontally
oriented stimulation periods of 33 and 22.5 s, respectively, and
a final blank period of 22.5 s. In the stimulation periods, the
bar aperture moved in the same direction before being blanked
during the last 3 s. The bar aperture movement direction was
sequentially 270◦ (down), 180◦ (left), 0◦ (right), and 90◦ (up). A
central fixation bull’s eye dot (0.1 dva radius) was superimposed
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on the display throughout the runs. Subjects were instructed
to keep their eyes on the fixation dot and to report after each
TR the ratio between the cyan/magenta and blue/yellow colored
Gabor elements via button presses. The difficulty of the task was
titrated at a performance of 79% (three-up and one-down stair-
cases) across the visual field by controlling the ratio between
the colored elements independently at three equally divided
distances of the bar aperture center from the fixation dot.

fMRI Preprocessing

HCP Dataset
Brain surfaces were reconstructed from the structural scans
using the HCP Pipelines (Glasser et al. 2013) and aligned on the
surface using “Multimodal Surface Matching All” registration
(Robinson et al. 2014, 2018; Glasser et al. 2016). The data were
processed using the HCP pipelines (Glasser et al. 2013) to correct
head motion and EPI spatial distortion. The data were later regis-
tered with the HCP standard surface space. The functional data
were denoised for spatially specific structured noise using mul-
tirun “sICA-þFIX” (Glasser et al. 2018). The HCP pipeline produces
for each subject Connectivity Informatics Technology Initiative
files (CIFTI) containing 91 282 grayordinates covering both corti-
cal and subcortical brain regions with 2.0 mm spatial resolution.
As we were interested to cortical regions, we converted the CIFTI
files to Geometry format under the Neuroimaing Informatics
Technology Initiative (GIfTI) hemisphere surface files containing
32 492 vertices per hemisphere. Low frequency drifts of the time
series were removed using a third order Savitzky–Golay filter
(window length of 210 s). Arbitrary functional signal units were
converted to BOLD percent signal change and averaged across
runs and across subjects (sub-999).

Individual Subject Dataset
We used fMRIPrep (Esteban et al. 2019) to preprocess the
functional scans. Briefly, based on the estimated susceptibility
distortion, an unwarped BOLD reference was calculated for a
more accurate coregistration with the anatomical reference.
The BOLD reference was then coregistered to the T1-weighted
images. Coregistration head-motion parameters with respect
to the BOLD reference were next estimated. The functional
time series were next resampled to “fsaverage6” space and
saved as GIfTI hemisphere surface files composed of 81 924
vertices. Low frequency drifts of the functional time series
were removed using a third order Savitzky–Golay filter (window
length of 210 s and polynomial order of 3). Arbitrary functional
signal units were converted to BOLD percent signal change
and averaged across runs. Registrations to T1-weighted images
and “fsaverage6” were inspected; one run was excluded due to
incorrect registration.

PRF Model

We analyzed time series of both datasets using an isotropic
Gaussian pRF model (Dumoulin and Wandell 2008). The model
was implemented using “Popeye” (DeSimone et al. 2015) and
included the position (x, y), the size (standard deviation of the
Gaussian), as well a signal amplitude (beta) and signal baseline
as parameters. The time series were fitted in two parts. The
first part was a coarse spatial grid search of six linear steps
constraining the position and size parameters of the model.
A linear regression between the predicted and measure time
series signal was used to determine the baseline and ampli-

tude parameters. The best-fitting parameters of the first step
were next used as the starting point of an optimization phase
to produce finely tuned estimates. The visual stimulus was
downsampled by a factor 4 for the first of these fitting stages.
The grid search position parameters were distributed linearly
within 150% of the stimulus size, giving 12 (“HCP dataset”) and
13.4 dva (“individual subject dataset”) to the left and right of
the screen center for the vertical position parameter and 12
(HCP dataset) and 7.5 dva (“individual subject dataset”) for the
vertical position parameter. The grid search size parameters
were bounded between 0 and 187.5% of the smallest stimulus
side, giving bounds between 0 and 15 dva (“HCP dataset”) and
between 0 and ∼9.4 dva. In the fine search stage, we used
a downhill simplex algorithm starting from the obtained grid
search parameters, leaving the parameter ranges essentially
unconstrained. Estimated parameter values for grayordinates
in the HCP dataset were converted to “fsaverage” using con-
nectome workbench after fitting (Marcus et al. 2011). Estimated
values for each vertex of the “fsaverage6” cortical surface were
used for visualization converted to “fsaverage” using Freesurfer
mri_surf2surf (Dale et al. 1999).

Data Analyses

PRF polar angle maps (Fig. 1c and Supplementary Fig. S1) were
derived with the best explained pRF position parameters. The
polar angle of each vertex was drawn using “Pycortex” (Gao et
al. 2015) on an inflated and a flattened cortical visualization of
“fsaverage.” The coefficient of determination of the model (R2)
was used to determine color transparency.

PRF coefficient of determination (R2) of each vertex was
computed by dividing the sum of squared differences between
the best predicted model and the observed time samples by
the sum of the squared demeaned observed time samples.
pRF R2 values of each vertex were drawn on an inflated and
a flat cortical visualization of “fsaverage” as a function of the
sign of the best explained amplitude parameters (Fig. 2a and
Supplementary Fig. S2). −pRFs (pRF with a negative amplitude
parameter) were represented with a color scale going between
black (R2 = 0) and blue (R2 = 1). +pRFs (pRF with a positive
amplitude parameter) were represented with a color scale
going between black and red (R2 = 1). The averaged and standard
deviation of pRF R2 were computed across the vertices observed
within each region of interest for +pRF and −pRF separately
(Fig. 2b, left panels).

pRF polarity ratio was derived from the proportion within
a region of interest of vertices with a positive or a negative
amplitude parameter (Fig. 2b, right panels).

The coefficient of correlation (r) between the pRF eccentricity
and pRF size (Fig. 3b, left panels) was obtained by computing
for each region of interest, the covariance between these
pRF parameters weighed by the explained variance (R2). The
coefficient describes the degree to which the eccentricity and
size parameters of a region are related or associated with each
other. It varies between −1 and 1, with positive values indicating
that pRF size increase as a function of the increase of the pRF
eccentricity.

The pRF laterality index (Fig. 3b, right panels) was derived
from the ratio of pRF vertices representing the ipsilateral or
contralateral visual hemifield (using the best explained pRF hor-
izontal position parameter) relatively to the brain hemisphere
each vertex belongs. The index varies between −1 (100% con-
tralateral) and +1 (100% ipsilateral).
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Figure 2. Positive and negative pRF. (a) Inflated and flat views of the cortex. The inflated lateral, dorsal, and medial views as well as the flat view of the cortex depict
the coefficient of determination of the pRF model prediction (pRF R2) multiplied by the sign of the estimated amplitude parameter (color scale: +pRFs: red colors;
−pRFs:blue colors), for the averaged time samples across the subjects of the HCP dataset (sub-999). (b) Averaged pRF R2 (left panels) and pRF polarity ratio (right panels)

observed with +pRF (top parts) and −pRF (bottom parts), respectively, within low-level visual areas (top panels), high-level visual areas (middle panels), and default
network areas (bottom panels). The results of “sub-999,” “sub-001,” “sub-002,” and “sub-000” are shown per region of interest in order from the leftmost to the rightmost
bar. Note that results from “sub-001” and “sub-002” most frontal areas (mPCS, INS, DLPFC and SUP_MED_FR) are not reported. These areas were not covered with our
partial field of view (see MRI Data Acquisition). Colors are determined with the scale used in panel A, error bars show the STD across the HCP subjects.

To avoid outlier effects, the coefficients of correlation and
laterality indices were computed from vertices where the pRF
was not located too close to the fixation target (<0.1 dva) or well
outside the visual stimulus (>12 dva). We also excluded vertices
from which the pRF size was small considering that a recorded
voxel included thousands of visual neurons (<0.1 dva), and from
which the pRF size was too big to properly distinguish the visual
bar position over time (>12 dva).

Results from the most frontal areas (mPCS, INS, DLPFC and
SUP_MED_FR) of the individual subject dataset are not reported.
These areas were not well covered with the partial field of view
used for the functional scans (see MRI Data Acquisition).

For statistical comparisons, we drew 10 000 bootstrap sam-
ples (with replacement) from the original pair of compared
values. We then calculated the difference of these bootstrapped
samples and derived two-tailed P values from the distribution of
these differences.

Code Availability

HCP Retinotopy Dataset
The HCP functional dataset was published online (https://balsa.
wustl.edu/study/show/9Zkk). We make available online our
pRF analysis codes (https://github.com/mszinte/HCP_dataset_
analysis) and our pRF parameters estimates (https://osf.io/y4
hfn/).

Individual Subject Dataset
We published online the individual subject dataset imaging
data (https://osf.io/5bmdn/), our pRF analysis codes (https://

github.com/mszinte/Indiv_dataset_analysis/), and pRF parame-
ters estimates (https://osf.io/5bmdn/).

Results
We first analyzed the resulting time series of the average across
HCP subjects by fitting a model predicting signal modulations as
a function of the bar position over time multiplied by isotropic
Gaussian pRFs, of which position and size parameters can be
varied (Fig. 1b). Converting these best-fitting parameters to polar
angle and eccentricity (i.e., the angle and distance relative to the
fixation point, see Fig. 1c) and combining these with anatomical
references (Wandell et al. 2007), we determined the boundaries
of low- and high-level visual areas (Fig. 1c). DN cortical areas
(Fig. 1c) were, on the other hand, defined using an atlas obtained
by intrinsic functional connectivity analysis of 1000 human
subjects performing a resting state task (Yeo et al. 2011). We
took a conservative approach to our analysis, applying the same
region-of-interest definitions to the HCP (sub-999 and sub-000),
as well as our individual subject datasets (sub-001 and sub-002).
We further did not tailor our analyses to either our datasets or
subjects specifically. Instead, we used an automated workflow
to make our results robust across different individuals, datasets,
scanners, and protocols.

We first quantified the quality of the model fit for both
positive and negative pRFs. Figure 2a shows different cortical
views of the pRF coefficient of determination (R2) derived from
the average across HCP subjects (see Supplementary Fig. S2 for
individual subjects dataset).

https://balsa.wustl.edu/study/show/9Zkk
https://balsa.wustl.edu/study/show/9Zkk
https://github.com/mszinte/HCP_dataset_analysis
https://github.com/mszinte/HCP_dataset_analysis
https://osf.io/y4hfn/
https://osf.io/y4hfn/
https://osf.io/5bmdn/
https://github.com/mszinte/Indiv_dataset_analysis/
https://github.com/mszinte/Indiv_dataset_analysis/
https://osf.io/5bmdn/
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Figure 3. DN visual characteristics. (a) pRF eccentricity and size relationship. Size as a function of the eccentricity of +pRFs within low- (top left panel) and high-
level visual areas (top right panel) and of −pRFs of the DN areas (bottom left panel), for the averaged time samples across the HCP subjects (sub-999). Dots represent
individual cortical vertex (see color legend) and lines show the best explained linear function weighted by the pRF explained variance (R2). (b) Correlation and laterality

index. Left panels show the correlation coefficient (r) between the pRF eccentricity and size parameters weighted by the pRF explained variance (R2) and right panels
show the laterality index of +pRFs within low- (top left panel) and high-level visual areas (middle left panel) and of −pRFs of the DN areas (bottom left panel). The
results of sub-999, sub-001, sub-002 and sub-000 are shown per region of interest in order from the leftmost to the rightmost bar. The most frontal areas of sub-001
and sub-002 (mPCS, INS, DLPFC and SUP_MED_FR) are not reported. Error bars show the STD across the HCP subjects.

First, we found that overall V1 signal variance was extremely
well explained by our model in the average HCP subject (Fig. 2b,
sub-999: +pRF R2 = 0.84) and in the individual subjects dataset
(+pRF R2: sub-001: 0.74; sub-002: 0.79). As expected from
the limited scanning duration per participant, V1 explained
variance was reduced when the analysis relied on signals
from individual subjects of the HCP dataset (+pRF R2: sub-000:
0.47 ± 0.09—mean ± STD across subjects—). Positive amplitude
pRF parameters best explained V1 signals across all datasets
(Fig. 2b, +pRF polarity ratio: sub-999: 99.7%; sub-001: 87.7%; sub-
002: 89.0%; sub-000: 93.8 ± 5.2%). Moreover, similar results were
found across nodes that we defined as low-level visual areas
(+pRF R2: sub-999: 0.69 ± 0.14; sub-001: 0.61 ± 0.13; sub-002:
0.63 ± 0.14; sub-000: 0.33 ± 0.14; +pRF polarity ratio: sub-999:
97.6 ± 2.1%; sub-002: 78.7 ± 7.2%; sub-000: 87.6 ± 4.4%; sub-001:
78.0 ± 7.4% —mean ± STD across areas—).

Next, we found that the average HCP subject variance
within what we defined as high-level visual areas were also
best explained with +pRFs (sub-999: +pRF R2 = 0.41 ± 0.06,
+pRF polarity ratio: 93.1 ± 2.4%). A similar range of explained
variance across high level visual areas was obtained for the
individual subjects dataset (+pRF R2: sub-001: 0.39 ± 0.02; sub-
002: 0.40 ± 0.08), with, however, a less pronounced proportion of
+pRF than that observed for low level visual areas (+pRF polarity
ratio: sub-001: 59.2 ± 9.2%; sub-002: 50.4 ± 9.0%). Explained
variance dropped significantly in high-level as compared to
low-level visual areas also in individual subjects of the HCP
dataset (sub-000: +pRF R2 = 0.08 ± 0.02, +pRF R2 of low vs. high
visual areas: P < 0.0001), with nevertheless a large predominance

of +pRFs over −pRFs remaining (sub-000: +pRF polarity ratio:
66.7 ± 6.2%, +pRF polarity ratio of low vs. high visual areas:
P < 0.0001). Thus, we found that both low- and high-level visual
areas were best explained with pRF models predicting a positive
amplitude modulation (+pRF).

We then turned our attention to the DN. There, we found
that the majority of vertices (brain units) included in atlas-
defined DN areas were best explained with pRF models
predicting negative amplitude modulations (−pRF). This effect
was observed both with the average HCP subject (Fig. 2b, sub-
999: −pRF ratio: 62.5 ± 18.9%) as well as with the analysis of
the individual subject datasets (sub-001: 50.8 ± 9.8%; sub-002:
77.6 ± 15.8%) and individual subject of the HCP dataset (−pRF
ratio: sub-000: 51.9 ± 4.5%). DN explained variance of −pRF for
individual subjects of the HCP dataset was, however, diminished
(sub-000: DN −pRF R2 = 0.05 ± 0.01) as compared to that observed
for +pRF of the low- (P < 0.0001) and high-level visual areas
(P < 0.0001). This indicates that visual pRF signal-to-noise in
the DN is lower than in the canonical visual system. This
notion is confirmed by the fact that, when using the average
HCP subject (−pRF R2: sub-999: 0.20 ± 0.04) or our two highly
sampled individual subjects (−pRF R2: sub-001: 0.21 ± 0.03; sub-
002: 0.43 ± 0.15), the explained variance of −pRFs within the
DN is comparable to what observed with +pRF in high-level
visual areas. Nevertheless, we found that our model of visually
selective BOLD responses explained high levels of time series
variance in the angular gyrus (−pRF R2: sub-999: 0.19; sub-001:
0.24; sub-002: 0.51), the medial parietal area (−pRF R2: sub-999:
0.25; sub-001: 0.18; sub-002: 0.54), the lateral temporal area
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(−pRF R2: sub-999: 0.18; sub-001: 0.22; sub-002: 0.26), and the
superior medial frontal area (−pRF R2: sub-999: 0.18), all well-
known nodes of the DN.

Together, these results suggest that the DN encoded the
visual stimulus position over time by means of systematic
reductions in BOLD signals relative to the baseline. We reasoned
that the large datasets of high quality at our disposal, combined
with our modeling methods, could allow us to determine some
potential visual–spatial characteristics of this selectivity.

Specifically, we aimed at comparing some known visual
characteristics of +pRFs of the visual network to what observed
with −pRFs of the DN. We first studied the relationship between
+pRF eccentricity and size parameters across visual areas (see
Methods). As expected, we found that the size of +pRFs within
the low-level visual areas depended on their eccentricity, with
bigger +pRFs in the periphery than near the fovea. Across low-
level visual areas, we observed a strong positive relationship
between these parameters for the average HCP subject (Fig. 3,
sub-999: +pRF r = 0.62 ± 0.19) and the individual subject datasets
(Supplementary Fig. S3, +pRF r: sub-001: 0.44 ± 0.12, excluding
V1: −0.27; sub-002: 0.51 ± 0.13). We found a similar relationship
when analyzing individual subjects of the HCP dataset (+pRF
r: sub-000: 0.62 ± 0.19) with positive correlations across the
low-level visual areas (Ps < 0.0001). Similarly, we found positive
correlations between the +pRF eccentricity and size parameters
across all high-level visual areas (+pRF r: sub-999: 0.70 ± 0.10;
sub-001: 0.38 ± 0.16; sub-002: 0.31 ± 0.24; sub-000: 0.57 ± 0.05,
P < 0.0001).

Interestingly, the best-fitting eccentricity and size parame-
ters of the −pRFs predicting DN deactivation was also positively
correlated, even when analyzing individual subjects of the
HCP dataset (−pRF r: sub-000: 0.48 ± 0.01, P < 0.0001), in both
the angular gyrus (−pRF r: sub-000: 0.48 ± 0.16, P < 0.0001), the
medial parietal area (−pRF r: sub-000: 0.50 ± 0.14, P < 0.0001), the
lateral temporal area (−pRF r: sub-000: 0.48 ± 0.11, P < 0.0001),
and the superior medial frontal area (−pRF r: sub-000: 0.47 ± 0.10,
P < 0.0001). These signatures of visual–spatial structure in
the DN were even more prominent in the across-participant
average HCP data (Fig. 3, −pRF r: sub-999: 0.78 ± 0.06) and
in our own highly sampled individual participants dataset
(Supplementary Fig. S3, −pRF r: sub-001: 0.45 ± 0.21; sub-001:
0.49 ± 0.01). The strong correlations between pRF eccentricity
and size we find in the DN indicate that the way the DN
represents visual space is similar to that of the canonical visual
system.

Next, it is well established that visual neurons in the cere-
bral cortex principally sample contralateral visual locations.
We investigated whether −pRFs represent the visual hemifield
opposite to their cerebral hemisphere by computing a laterality
index (see Methods). +pRFs in low-level visual areas predom-
inantly represent the opposite visual hemifield (+pRF lateral-
ity index: sub-999: −0.78 ± 0.10; sub-000: −0.70 ± 0.11; sub-001:
−0.80 ± 0.11; sub-002: −0.93 ± 0.04). Replicating electrophysio-
logical findings, this contralaterality was present but reduced
in some high-level visual areas (+pRF laterality index: sub-999:
−0.30 ± 0.33; sub-001: −0.35 ± 0.26; sub-002: −0.27 ± 0.30; sub-
000: −0.13 ± 0.16), such as superior parietal and sPCS/iPCS areas
(Schall 2015), with other regions such as TPJ and DLPFC rep-
resenting both visual hemifields in each cerebral hemisphere
(Funahashi et al. 1991).

Akin to these latter regions, we found that −pRFs lateral
temporal area (−pRF laterality index: sub-999: −0.55; sub-001:
−0.05; sub-002: −0.13; sub-000: −0.08 ± 0.13) and the superior

medial frontal area (−pRF laterality index: sub-999: 0.14; sub-
000: 0.01 ± 0.13) bilaterally represent both visual hemifields. But
−pRFs in the more posterior nodes of the DN, the angular gyrus
(−pRF laterality index: sub-999: −0.54; sub-001: −0.26; sub-002:
−0.50; sub-000: −0.14 ± 0.20) and the medial parietal area (−pRF
laterality index: sub-999: −0.14; sub-001: −0.25; sub-002: −0.40;
sub-000: −0.02 ± 0.15) specifically represent the contralateral
visual hemifield, making their spatial sampling similar to that
of +pRFs in neighboring visual regions. Again, we observed
consistent contralaterality within these regions mainly when
analyzing the averaged time samples across the HCP subjects
or our individual subject datasets, suggesting that such level of
detail necessitates a high signal-to-noise ratio.

Discussion
We aimed at determining a putative visual role of the cortical
DN. To do so, we analyzed the cortical activity assessed with
ultra-high field functional imaging methods in 183 subjects
viewing different sequences of a localized visual stimulus. We
assumed that each cortical unit had the potential to treat the
spatial content of the stimulus through a 2D-Gaussian window
(pRF) of varying sizes, polar angles, and visual eccentricities.
Crucially, we allowed our model to predict both BOLD activation
or deactivation as a function of the spatio-temporal sequence
of the stimulus. We observed that the majority of the cortical
units within the DN were best explained by a model predicting
negative BOLD signals, that is, by spatially specific “negative”
population receptive fields.

We found that within four cortical areas of the DN, −pRFs are
spatially selective and that their sizes depend on their eccen-
tricities. These negative pRFs also predominantly represent the
contralateral visual hemifield. These features resemble those
observed across high-level visual areas and suggest that the DN
acts as a negatively modulated high-level visual network.

Negative BOLD signals have previously been studied using
combined electrophysiological and BOLD signals in V1 (Shmuel
et al. 2002, 2006). It was shown that negative BOLD is associated
with decreases in neural firing rate relative to a resting base-
line and was evoked as a function of the retinal position of a
stimulus. Such findings ruled out the possibility that negative
BOLD could be due to correlated noise, head motion, imaging,
or vascular steal artifacts (Shmuel et al. 2006). Other than for
the early visual cortex, negative BOLD signals have often been
reported in the context of DN fMRI studies. Indeed, DN areas
were defined by highly correlated BOLD activation during rest
(Raichle et al. 2001) and BOLD deactivation while subjects par-
ticipated in demanding tasks (Mayer et al. 2010; Sestieri et al.
2011; Sormaz et al. 2018).

We propose that DN deactivation reflects the response of
populations of neurons with what can be considered negative
visual receptive fields. The observed DN deactivation on which
our model fits rely is unlikely to reflect artifactual effects. First,
DN deactivation is readily observed in direct electrical measures
in humans (Miller et al. 2009; Foster et al. 2015). Second, our
results demonstrate that negative BOLD signals are selective:
they depend on the position of the visual stimulus over time.
Third, the ordered patterns of visual–spatial representations in
the DN, and their similarity with the high-level visual system, is
unlikely to be the result of across-subject averaging or imaging
artifact, as we replicate these patterns in individual subjects and
independent experiments.
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The DN is thought to constitute one extreme of a gradient
leading from primary sensory and motor regions to transmodal
association cortex (Buckner and Krienen 2013; Margulies
et al. 2016). Our results suggest that the DN encodes the
spatial content of a visual scene by negative modulations.
Simultaneously, the visual and attention networks also encode
similar information but with positive modulations. What could
be the role of DN deactivation?

The authors have suggested that the DN has a role in high-
level cognition such as mind-wandering (Weissman et al. 2006;
Mason et al. 2007; Christoff et al. 2009), when attention is
directed toward internally generated cognitions, and away from
incoming sensory information. On the other hand, DN deac-
tivation is observed in various visual tasks (Mayer et al. 2010;
Sestieri et al. 2011; Sormaz et al. 2018). The visual selectivity
of the DN that we observe here could thus potentially serve to
store sensory signals before reusing such information to form
visual memory-guided thought such as during mind-wandering.
Importantly, visual space in this framework could serve as a
shared reference frame for interactions between networks.

Second, there is abundant evidence from sensory process-
ing that the interplay between activation and deactivation can
serve to decorrelate neural responses to input patterns and
increase processing efficiency by means of predictive coding
(Srinivasan et al. 1982). That is, there are computational benefits
to representing the same signal with both activation and deac-
tivation. For example, deactivation can “explain away” errant
computational outcomes by explicitly representing “what is not”
(Goncalves and Welchman 2017). By implementing these com-
putational strategies, the DN would be ideally suited and located
to perform integration across modalities (Margulies et al. 2016)
and time (Sestieri et al. 2017).

Importantly, while we tested a putative visual role of the
DN, we cannot exclude the possibility that it also encodes sen-
sory information in other modalities. Indeed, the DN has been
shown to deactivate in auditory tasks (Humphreys et al. 2015;
Simony et al. 2016), with even a modular reconfiguration to the
auditory network as defined with connectivity methods during
a challenging listening task (Alavash et al. 2019). Future work
should determine the sensory reference frames of the DN, for
example by adapting previously developed population receptive
field models for example of audition (Thomas et al. 2015) or
proprioception (Schellekens et al. 2018).

Another important aspect is that our data derived from fMRI
BOLD negative signals. While previous studies have shown that
these signals reliably relate to neural activity (Shmuel et al.
2002, 2006), future work could make use of electrophysiological
methods to confirm or disconfirm our results with direct elec-
trical measures or stimulation in the human (Foster and Parvizi
2017) or animal model (Mantini et al. 2011). Moreover, while 2D-
Gaussian models used here explained well the variance of low
level visual areas activity, more elaborated models might better
apply to higher visual areas and to the DN (Kay et al. 2008, 2013;
Nishimoto et al. 2011; Zuiderbaan et al. 2012). In particular, a
model including a difference-of-Gaussians pRF with in addition
to a negative center a positive surround would account for
the observed positive overshoot of the BOLD signals in the DN
(Fig. 1b), similarly to how this model accounted for the negative
undershot in low-level visual areas (Zuiderbaan et al. 2012).

A dominant research direction in the study of the DN focuses
on connectivity measures by correlating activation and deac-
tivation BOLD signals during the resting state (Raichle 2015).
We here used a functional connectivity atlas to determine DN

cortical boundaries (Yeo et al. 2011), but stress that our findings
are based on forward modeling of visual responses but not
connectivity. That is, our model established the visual selectivity
of many cortical locations in the DN by analyzing time-varying
signals in relation to a visual stimulus alone. Yet, our results
suggest that the correlation patterns between the DN and the
higher-level visual system during the resting state partly reflect
the use of a common sensory reference frame. This indicates
that sensory organizational principles may play a large role in
the structure of higher-level cognition.

We found that fMRI BOLD deactivation within the DN is
well explained by negative population receptive fields tuned to
circumscribed locations in visual space. Our results open up new
“visual” possibilities to study the putative roles of the DN in both
low- and high-level cognitive functions.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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