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Abstract

Feeling guilty when we have wronged another is a crucial aspect of prosociality, but its neurobiological bases are elusive.

Although multivariate patterns of brain activity show promise for developing brain measures linked to specific emotions, it

is less clear whether brain activity can be trained to detect more complex social emotional states such as guilt. Here, we

identified a distributed guilt-related brain signature (GRBS) across two independent neuroimaging datasets that used

interpersonal interactions to evoke guilt. This signature discriminated conditions associated with interpersonal guilt from

closely matched control conditions in a cross-validated training sample (N= 24; Chinese population) and in an independent

test sample (N= 19; Swiss population). However, it did not respond to observed or experienced pain, or recalled guilt.

Moreover, the GRBS only exhibited weak spatial similarity with other brain signatures of social-affective processes, further

indicating the specificity of the brain state it represents. These findings provide a step toward developing biological

markers of social emotions, which could serve as important tools to investigate guilt-related brain processes in both

healthy and clinical populations.
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Introduction

Guilt is an experience that arises when we violate norms or

values that we consider important—for example, when we have

wronged someone whose well-being we care about. Guilt is

considered a quintessential moral emotion, as it plays a cru-

cial role in motivating adherence to social norms and pro-

moting conciliation after interpersonal conflict (Zahn-Waxler

and Kochanska, 1990; Baumeister et al. 1994; Hoffman 2001;

Tangney et al. 2007; Tooby and Cosmides 2008; Sznycer 2018;

Vaish and Hepach, 2019). It is also a core feature of several

important clinical conditions.On the one hand, a lack of guilt is a

central feature of psychopathy and is associated with antisocial

behavior (Viding et al. 2009; Blair 2013). On the other hand,

depression, suicidal ideation, and other internalizing disorders

are associated with excessive guilt (Tilghman-Osborne et al.

2012; Ratcliffe 2014). Understanding how the brain represents

this complex moral emotion can then inform the development

of translational applications to clinical settings (Huys et al. 2016).

Emotion theorists have proposed that guilt arises from a

particular type of cognitive appraisal that includes several ele-

ments: 1) the recognition that one’s actions or inaction is causing

suffering, 2) affiliation or identification with the suffering other,

and 3) attribution of blame or responsibility to oneself (Frijda

1993; Baumeister et al. 1994; Chang and Smith 2015). Although

appraisal theory suggests that guilt arises from a unique set

of appraisals with, potentially, a unique “constellation” of brain

ingredients (Moors et al. 2013), such patterns need not neces-

sarily be mapped to brain features in a consistent way across

instances of guilt and across individuals (Barrett and Satpute

2013). Thus, it remains unclear as to whether there is a reli-

able “signature” associated with this particular configuration of

thoughts and beliefs, and whether such processes have consis-

tent brain responses across individuals and tasks. Being able to

identify such stable signature of guilt could inform us about how

similar or dissimilar the neural processes related to guilt are

to those underlying other affective states (e.g., sadness, regret,

etc.). In addition, identifying stable guilt-related brain signature

(GRBS) would be an important step toward understanding the

function and dysfunction of the underlying brain circuitry in

healthy and clinical populations (Woo et al. 2017).

Two recent neuroimaging studies have manipulated guilt in

interpersonal interactions by manipulating the two key guilt-

related appraisals—1) perception of others’ suffering and 2) the

knowledge that one’s actions caused that suffering (Koban et al.

2013; Yu et al. 2014). These studies have shown that both features

are determinants of self-reported guilt (but not other emotions;

Koban et al. 2013) and consistently found that they are asso-

ciated with increased activation of anterior/middle cingulate

cortex (ACC/aMCC) and bilateral anterior insula (AI). However,

the univariate analyses adopted in these studies are not suffi-

cient to provide a brain signature of guilt. First, the univariate

approach seeks each single voxel that shows significant differ-

ence in activation strength across different psychological states.

The differences in psychological states, however, may not be

encoded in the activation strength of any single voxel; rather, it

may be encoded by distinct patterns of activation across a large

number of voxels (or the whole brain). Second, the univariate

analysis is designed to test for nonzero correlations between

psychological states and brain measures, but not to estimate

predictive accuracy (effect size) of the identified brain correlates.

For example, although both Yu et al. (2014) andKoban et al. (2013)

reported the activation of the aMCC and AI in high relative to

medium or low guilt conditions, the activation in each study

cannot be used to predict experimental conditions in the other

study, rendering it difficult to conclude whether the activations

in the two studies are reliably similar.

Here, we address these open questions and develop a neu-

rophysiological signature of guilt-related cognitive appraisals.

To be clear, we do not treat the signature as the necessary

and sufficient neurophysiological conditions for guilt, namely,

capturing all and only neurophysiological states associated with

guilt. However, it is still useful as a provisional marker that

confers information value, as well as a defined brain measure,

for provisional inference, comparisons, and further testing and

validation on the brain bases of social emotions (Kragel et al.

2018). Such a neural signature should satisfy three criteria: sen-

sitivity, specificity, and generalizability (Woo and Wager 2015;

Krishnan et al. 2016; Woo et al. 2017). Specifically, it should: 1)

detect the presence of the “cognitive antecedents” of guilt (i.e.,

sensitivity); 2) not respond to negative experiences elicited by

other affective stimuli, such as physical pain and general nega-

tive affect (i.e., specificity); and 3) generalize across studies and

samples where the cognitive antecedents (i.e., not necessarily

the subjective feelings) on which the signature is trained are

present (generalizability).

To achieve this aim, we used a predictive modeling approach

to identify a whole-brain pattern that is sensitive and specific to

the core antecedent of guilt—being causally involved in harming

others during interpersonal interaction (Koban and Pourtois

2014; Cui et al. 2015). We adopt an analytic approach (Kragel et

al. 2018) that has been successfully applied to investigating the

neural representation of various affective processes, including

physical pain (Wager et al. 2013), vicarious pain (Krishnan et

al. 2016), social rejection (Woo et al. 2014), unpleasant pictures

(Chang et al. 2015), basic emotions (Lindquist and Barrett 2012;

Kragel and LaBar 2015; Wager et al. 2015; Kragel et al. 2016;

Saarimäki et al. 2018), empathy (Ashar et al. 2017), and related

social emotions (Saarimäki et al. 2018). We trained a support

vector machine (SVM) classifier to discriminate brain states

elicited by social contexts that differ only in one’s causal role in

the other’s suffering (Study 1; Yu et al. 2014). We then tested the

model’s generalizability by applying the obtained multivariate

guilt pattern to a second neuroimaging dataset,which employed

a similar interpersonal action-monitoring paradigm in a dif-

ferent population and using a different MRI scanner (Study 2;

Koban et al. 2013). Further convergent and discriminative valid-

ity of the pattern was assessed by examining its performance in

predicting subjective guilt ratings and compensation behavior—

participants’ willingness to voluntarily accept painful shocks in

order to reduce further shocks administered to a person they

believe they harmed—and testing specificity against several

other negative affective states (e.g., physical pain, vicarious pain,

and emotion recall). Altogether, datasets from 4 independent

studies (N= 86 healthy participants) were used for training and

testing the signature.

Materials and Methods

Participants

For Study 1, 24 undergraduate and graduate students (mean age

22.0 years; 11 female) were recruited at the Southwest Univer-

sity, Chongqing, China (Yu et al. 2014). Nineteen adults (mean

age 24.3 years; 9 female) participated in Study 2, conducted in

Geneva, Switzerland (Koban et al. 2013). All participants in the
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final sample (total of N= 43) had normal or corrected-to-normal

vision and none reported any history of psychiatric or neurologi-

cal disorders. All participants provided informed consent before

scanning and were paid for their participation.

Procedure

Both Study 1 and Study 2 adopted an interactive paradigm

where a participant in the scanner and a participant outside

the scanner performed a dot-estimation task that involved esti-

mating the number of dots briefly presented on a screen (for

similar interactive paradigms, see Kédia et al. 2008; Cui et al.

2015; Lepron et al. 2015). Mistakes in the dot-estimation task

would result in the out-of-scanner participant (hereafter, “part-

ner”) receiving mildly painful stimuli. Essentially, both studies

manipulated participants’ responsibility for the harm to the

partner. In Study 1 (Fig. 1A), participants underwent two func-

tional magnetic resonance imaging (fMRI) scanning blocks. In

the first block (i.e., Pain block), participants were told that the

partner (confederate) would receivemild electric shocks if either

the partner, the participant, or both made a mistake in a dot-

estimation task. This allowed us to manipulate increasing levels

of guilt, with some guilt expected whenever a mistake occurred

(“Pain: Partner_Responsible,” “Pain: Both_Responsible”), and the

most guilt when the participant, but not the partner, responded

incorrectly (“Pain: Self_Responsible”). On the trials where the

partner would receive electric shocks, the participants were

given the option to intervene and bear a proportion of pain

for the partner. In the second block (i.e., NoPain block), the

participants were told that they would interact with the same

partners in an almost identical task, with the exception that no

pain stimulation was delivered to either side. The NoPain block

was included as a guilt-free control for psychological processing

of correct/incorrect feedback and the process of making social

comparisons (i.e., comparing one’s own performance with the

partner’s performance).

In Study 2 (Fig. 1B), participants played a similar dot-

estimation task. In alternating blocks, the participant in the

scanner (i.e., Play block) took turns with an actual friend who

was situated outside the scanner (i.e., Observe block) to perform

the dot-estimation task. Both friends would win points for

correct responses and lose points (later converted into bonus

money) for erroneous (incorrect) responses made by either

player (Play or Observe condition). Crucially, the participant

outside the scanner would receive additional painful heat

stimulation on a randomly selected half of the error trials and

nonpainful warmth stimulation on the other half of the error

trials, and were informed when the partner was receiving pain.

This resulted in a 3-by-2 factorial design with three levels of

Feedback (Correct, Error_Warmth, and Error_Pain) and two levels

of Agency (Play vs. Observe). It was expected that the condition

in which the participant inside the scanner caused pain to a

friend by making an error (i.e., Play: Error_Pain) would lead to

the highest levels of guilt.

Post-Scan Manipulation Check (Emotion Self-Reports)

After scanning, an emotion manipulation check was employed

in both studies. In Study 1, participants rated their feelings of

guilt, fear, anger, and distress, for each of the 3 experimental

conditions, in which an incorrect response occurred. In Study

2, participants rated, their feelings of guilt, fear, anger, shame,

and sadness, for each of the 6 experimental conditions.

Neuroimaging Data Acquisition

For Study 1, images were acquired using a 3.0-Tesla whole-

body scanner (Trio TIM, Siemens, Germany). T2∗-weighted

functional images were acquired in 36 axial slices parallel

to the AC–PC line with no interslice gap, affording full-brain

coverage. Images were acquired using an EPI pulse sequence,

with a TR of 2200 ms, a TE of 30 ms, a flip angle of 90◦, an

FOV of 220×220 mm2 and 3.4×3.4×3.5 mm3 voxels. A high-10

resolution, whole-brain structural scan (1×1×1 mm3 isotropic

voxel) was acquired after functional imaging. For Study 2, images

were acquired using another 3.0-Tesla whole-body scanner (Trio

TIM, Siemens, Germany). T2∗-weighted EPI sequence (2D-EP,

repetition time= 2100 ms, echo time= 30 ms flip angle= 80◦,

3.2×3.2× 3.2 mm3 voxel size) for acquisition of functional

images of the whole brain (36 slices). The structural image of

each participant was recorded with a T1-weighted MPRAGE

sequence (repetition time= 1900 ms, inversion time= 900 ms,

echo time= 2.27 ms, 1× 1×1 mm3 voxel size).

Neuroimaging Data Analyses

Preprocessing and Univariate GLM Analyses

Details of preprocessing are described elsewhere (Yu et al. 2014

for Study 1; Koban et al. 2013 for Study 2). In brief, univariate gen-

eral linear model (GLM) analyses were conducted in SPM8. For

both studies, the critical regressors were those corresponding to

the feedback of the visual task. For Study 1, trials from the Pain

block and theNoPain blockweremodeled in separate GLMs.Each

model contained as critical regressors the following conditions,

all modeled with HRF starting at the onset of the feedback

of the dot-estimation task and covering the entire feedback

phase (duration= 3 s): the condition in which the participant

alone made a wrong response (“Pain: Self Responsible”), the

condition in which both players made a wrong response (“Pain:

Both_Responsible”), the condition in which the partner alone

made a wrong response (“Pain: Partner_Responsible”), and the

condition in which both players made a correct response (“Pain:

Both_Correct”). Also included were regressors of no interest: cue

for new trial, random dot presentation, estimation responses,

compensation responses, and pain delivery (the last two were

only included for the Pain block). For Study 2, the relevant

regressors corresponded to the feedback in the six experimental

conditions: Error_Pain, Error_Warmth, and Correct in both the

Play condition and the Observe condition. The contrast images

corresponding to the main effects of these regressors versus

baseline were extracted and used for training and test in the

multivariate pattern analysis.

Guilt Pattern Classification

We trained a linear SVM (slack parameter C = 1 was chosen a pri-

ori) to discriminate “Pain: Self_Responsible” (high guilt; coded as

1 in the classification) versus “Pain: Both_Responsible” (medium

guilt; coded as -1 in the classification) conditions in Study 1 with

a leave-one-subject-out cross-validation procedure (Friedman et

al. 2001; Wager et al. 2013; Woo et al. 2014). The rationale of

training the classifier to discriminate these two conditions is

to avoid as much as possible the classifier capturing processes

that are not essential for detecting guilt. For example, a classifier

trained to discriminate the “Pain: Self_Responsible” and the

“Pain: Partner_Responsible” conditions would not only capture

the responsibility of the participant in causing pain, but would

also capture differences in the outcome feedback of participant’s
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Figure 1. Procedure for Study 1 and Study 2. (A) In Study 1, the participant in the scanner was randomly paired with an anonymous partner on each trial. The task for

the participant and the partner was to quickly estimate the number of dots presented briefly on the screen. The outcome of their performance was presented under

the photo of the participant and under a blurred picture of face representing the partner. If at least one of them estimated incorrectly, the partner would receive a

number of mildly painful electric shocks. The participant then indicated the level of pain he/she would be willing to take for the partner as a compensation. Finally,

the pain stimulation of the participant’s choice was delivered to him/her (see Yu et al. 2014 for details). (B) In Study 2, two participants took turns in either performing

or observing the other’s performance in a dot-estimation task. The dot-estimation task required the player to indicate which side of the screen contained a larger

number of dots. The participant outside the scanning room would receive either painful or nonpainful (i.e., warm) thermal stimulation after each trial, depending on

the performance of the current player. The full 2× 3 factorial design resulting from the different feedback type in the two task conditions (playing or observing) is

displayed in the table (see Koban et al. 2013 for details).

performance (i.e., correct vs. incorrect). In the statistical learning

literature (Friedman et al. 2001), there are many types of clas-

sification algorithms, but they generally perform very similarly

on problems such as the one we pursued here. SVM algorithms

such as the one we used in this study are the most widely

used algorithm for two-choice classification, and are robust and

reasonably stable in the presence of noisy features. Exploring

different algorithms could be interesting, but may lead to an

open-ended, largely methodological pursuit that is not expected

to impact performance in a reproducible or systematic way

in the present datasets. In addition, we wanted to avoid the

trap of fitting multiple algorithms and picking the best one,

thus overfitting the dataset. Therefore, we chose a widely used

algorithm (whole-mask SVM) whose effectiveness has been well

established in previous studies. Matlab codes and fMRI images

needed for training the classifier, computing pattern expression,

and testing generalizability are available at https://github.com/

canlab/.

The images used in this analysis were the whole-brain acti-

vationmapsmasked by an a priorimeta-analyticmap associated

with the term “Emotion” fromNeurosynth (uniformity test map,

thresholded at PFDR < 0.01, accessed as of 7 September 2014, see

Supplementary Figure S1 for details; Yarkoni et al. 2011). This

mask was chosen to select voxels that are presumably impor-

tant for emotional processing in the brain. We acknowledge

that emotions are likely emergent processes from interactions

betweenmany brain regions (Scherer, 2009; Lindquist et al. 2012;

Pessoa, 2017), potentially including those outside typical “emo-

tion” brain regions captured by this Neurosynth mask. However,

there is a trade-off between considering all possible features

(i.e., voxels) and generalizability of the classifier across partic-

ipants and studies, because a classifier may pick up on noisy

dimensions that do not generalize well to new datasets. Thus,

the (methodological) rationale of applying the Emotion mask

before classifier training was feature selection and dimension

reduction, with the aim of decreasing overfitting and of increas-

ing generalizability.We assume that although Study 1 and Study

2 induced guilt with slightly different interactive tasks, the core

underlying emotional processes should overlap. Training and

testing the classifier within the emotion mask could reduce the

possibility of overfitting and, therefore, increase the generaliz-

ability of the classifier to the test dataset. Future research with

larger sample sizes could investigate the role of other areas in

the brain and use nested cross-validation for optimizing feature

selection and the trade-off with generalizability.

The procedure trains the classifier on N-1 participants and

generates a weight map that best classifies the sample, and

tests the classification on the left-out (Nth) participant. This

process is repeated until all participants have served as the test

sample for the classification algorithm exactly once to obtain

their respective cross-validated signature response values. The

classifier obtained thus represents a hyperplane in the feature

https://github.com/canlab/
https://github.com/canlab/


3562 Cerebral Cortex, 2020, Vol. 30, No. 6

space that best separate the observations (i.e., individual brain

activation maps) in the “Pain: Self_Responsible” condition and

the “Pain: Both_Responsible” condition.

Guilt Pattern Expression

The contrast images from the first-level analysis for each par-

ticipant were used to obtain pattern expression values for the

guilt pattern. To obtain single pattern expression values for each

condition and each participant, we computed the dot product of

the cross-validated weightmap of the guilt pattern and the indi-

vidual contrast images. This value reflects the distance between

a given activationmap and the classifier represented by a hyper-

plane in the feature space. These pattern expression valueswere

then tested for differences between experimental conditions.

We calculated the forced-choice classification accuracy for how

well the two conditions in questions were correctly classified

based on their pattern expression values. A sensitive and gen-

eralizable pattern for interpersonal guilt should be not only

able to discriminate the “Pain: Self_Responsible” versus “Pain:

Both_Responsible,” on which the classifier was trained, but also

to separate the “Pain: Self_Responsible” and other less guilty

conditions in Study 1 (i.e., Pain: Partner_Responsible and Pain:

Both_Correct), as well as different guilt states in Study 2. Addi-

tionally, the pattern expression values for the conditions in the

Pain block of Study 1 were regressed against the willingness to

accept the partner’s pain in respective conditions to assess their

ability in predicting guilt-induced compensation behavior. In the

regression model, condition was included as a dummy variable

to covariate out the variability of compensation as a function of

conditions.

For specificity, the predictive power of the interpersonal guilt

pattern should not generalize to other types of negative affect.

To test the specificity of the guilt pattern,we obtained individual

activationmaps for unpleasant experiences other than interper-

sonal guilt, including physical pain and vicarious pain (Study 3,

N=28; Krishnan et al. 2016), and emotion-recall (Study 4, N=15;

Wagner et al. 2011). Study 3 dataset contained three sets ofmaps

corresponding to three levels of thermal pain (high, medium,

and low) applied on the volar surface of the left forearm and

three sets of maps corresponding to viewing three levels of

unpleasant images (high,medium, and low). The emotion-recall

dataset contained 3 sets of maps corresponding to participants’

recall of personalmemories of past experiences of guilt, sadness,

and shame.

Comparison with Other Brain Signatures

To investigate the spatial similarity of the guilt signature with

other patterns (masked by the same Emotionmeta-analyticmap

as the GRBS), we calculated the spatial similarity (Pearson corre-

lation coefficient) between the GRBS and signatures for physical

pain (NPS, Wager et al. 2013), picture-induced negative affect

(PINES, Chang, et al., 2015), social rejection (Woo et al. 2014),

vicarious pain (VPS, Krishnan et al., 2016), empathic distress and

empathic care (Ashar et al. 2017), and skin conductance and

heart rate (Eisenbarth et al. 2016)

Further, we investigated the local pattern similarity of the

GRBD and the PINES within the meta-analytic Emotion mask

and within the three canonical emotion-related brain regions:

ACC, insula, and amygdala. We used enhanced scatter plots

(Koban et al. 2019) to visualize the amount of shared positive,

shared negative, and unique positive and negative voxel weights

for two signatures (z-scored to make them comparable) in those

areas. As described in detail before (Koban et al. 2019), each

voxel’s weights for the two signatures were plotted on the x- and

y-axis, respectively, and this scatter plot was then divided into

eight sectors (octants), reflecting different directions of shared

and unique weights for each pattern. Voxels in Octant 1 had

positive weights for the GRBS, but near-zero weights for the

PINES, voxels in Octant 2 had positive weights for both patterns

(reflecting shared variance), voxels in Octant 3 had positive

weights for the PINES but near-zero weights for the GRBS, and

so on. To quantify number of voxels and their combined weights

in each octant, we compute the sum of squared distances from

the origin (0,0).

Results

Behavioral Results

Supplementary Table S1 summaries the behavioral results of

Study 1 (see also Yu et al. 2014). Essentially, participants felt

the highest level of guilt in the Pain: Self_Responsible condi-

tion, less so in the Pain: Both_Responsible condition and still

less in the Pain: Partner_Responsible condition (F (2, 46) = 33.43,

P< 0.001). This pattern was also observed for the amount of

pain stimulation the participants chose to bear for the partner

(F (2, 46) = 65.09, P< 0.001), and the perceived responsibility in

causing the pain stimulation (F (2, 46) = 35.31, P< 0.001). Post hoc

tests showed that all comparisons between conditions exhibited

significant difference for all the three measures (Ps< 0.007).

Supplementary Table S2 summaries the behavioral results of

Study 2 (see also Koban et al. 2013). Post-scan self-reported guilt,

but not other emotions, was higher for the “Play: Error_Pain”

condition than the “Observe: Error_Pain” condition (Pairwise

Bonferroni-corrected comparisons with sign tests, Z=2.9,

P=0.003). In particular, the emotion shame, which frequently

cooccur and is easily confused with guilt in everyday usage

(Boonin, 1983; Fessler, 2004), showed a dissociable pattern

in response to our manipulation. Specifically, self-reported

guilt was significantly higher than self-reported shame in

the “Play: Error_Pain” condition (mean difference 0.90± 0.40,

P=0.037, Bonferroni-corrected for multiple comparisons), but

not in the “Observe: Error_Pain” condition (mean difference

0.05± 0.05, P=0.331), as supported by a significant Emotion type

(guilt vs. shame) by condition (“Play: Error_Pain” vs. “Observe:

Error_Pain”) interaction (F (1, 18) = 4.45, P=0.049). Taken together,

the self-reports results confirmed our hypothesis that one’s

own responsibility in causing harm to others is a crucial

cognitive process (or antecedent) underlying guilt. Further

details regarding behavioral results can be found in Yu et al.

(2014) and Koban et al. (2013).

Neuroimaging Results

Testing the Sensitivity and Generalizability of the GRBS

To determine whether there is a multivariate pattern that

can distinguish between the social situation where the

participants were solely responsible for others’ harm (i.e., high

guilt state) and the situation where they were less causally

responsible (i.e., low guilt state), we trained a linear SVM to

discriminate the “Pain: Self_Responsible” condition and the

“Pain: Both_Responsible”conditionwith a leave-one-subject-out

cross-validation (Friedman et al. 2001). The reason of choosing

these two conditions for the comparison is that it rules out

potential contamination by the feedback of participants’ own
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Table 1 Activations in the thresholded GRBS map

Regions Hemi Max. z-value Cluster size

(voxels)

MNI coordinates

x y z

Positive weights

aMCC L/R 4.52 256 0 32 20

Insula R 2.92 12 −30 18 −18

Inferior frontal (pars

obitalis)

R 3.02 33 44 24 −10

Negative weights

Inferior temporal

cortex

R 3.09 18 58 −18 −32

Thalamus R 3.01 31 10 −4 8

Cerebellum L 3.41 16 −44 −72 −38

Note: Clusters shown here contain more than 10 voxles significant at P<0.005 uncorrected.

performance (i.e., correct vs. incorrect guess). Figure 2A shows

the unthresholded GRBS weight map within the “Emotion”

meta-analytic map. As can be seen, the aMCC, dorsomedial

prefrontal cortex, bilateral insula, and the midbrain (including

the periaqueductal gray, PAG) exhibited high positive predictive

weights for detecting a guilt state (Table 1). For illustration

purpose, we show a thresholded weight map obtained from

a bootstrap procedure (5000 iterations, z> 2; Fig. 2A inset). It

should be noted that the weight map is a distributed pattern

in which all the voxels in the Emotion mask contribute to the

classification. Examples of unthresholded patternswithin aMCC

and right AI are presented in the insets.

Pattern expression values reflect the distance between a

given activation map and the classifier represented by a hyper-

plane in the feature space. To obtain single pattern expression

values for each condition and each participant, we computed

the dot product of the cross-validated weight map of the guilt

pattern and the individual contrast images. These pattern

expression values were then tested for differences between

experimental conditions (Fig. 2B). We computed the forced-

choice classification accuracy for how well the two conditions

in questions were correctly classified based on their pattern

expression values. Receiver operating characteristic (ROC) curve

was created based on the performance of the classification.

Pattern expression of GRBS for the eight conditions in Study

1 showed a significant Block (Pain vs. NoPain) by Outcome

(Self_Responsible, Both_Responsible, Partner_Responsible, and

Both_Correct) interaction, F (3, 69) = 7.68, P< 0.001. Planned

comparisons showed that the pattern expression for the “Pain:

Self_Responsible” was significantly higher than all the other

three conditions in the Pain block (Ps< 0.05; Fig. 2C), while

the pattern expression of the other three Pain conditions did

not differ significantly between one another. As shown by

the ROC curves in Figure 2C, the GRBS discriminated “Pain:

Self Responsible” versus “Pain: Both Responsible” with 88%

(±7%) accuracy (P< 0.001), “Pain: Self Responsible” versus “Pain:

Partner Responsible” with 71% (±10%) accuracy (P=0.064),

and “Pain: Self Responsible” versus “Pain: Both Correct” with

75% (±11%) accuracy (P=0.023). For the NoPain block, the

only significant difference in the pairwise comparison was

between NoPain: Self_Responsible and NoPain: Both_Correct

(P=0.021).

The majority of the participants (21 out of 24) exhibited

larger pattern expression for the Self_Responsible than for

the Both_Responsible conditions (Pain block; Fig. 2D). Moreover,

regression analysis showed that the pattern expression values

in the Pain block was predictive of pain sharing choice (i.e.,

reparation) (bpattern =0.092± 0.036, t=2.55, P=0.015), suggesting

that the GRBS contains information for atonement in guilt states

(Fig. 2E).

We then testedwhether the predictive power of the GRBS can

be generalized to Study 2, another fMRI dataset using a similar

interpersonal transgression paradigm (Koban et al. 2013). To

this end, we computed pattern expressions of the guilt pattern

applied to each condition of Study 2. Pattern expression of the

GRBS for the six conditions showed a significant Feedback-by-

Agency interaction, F (2, 36) = 4.59, P=0.013 (Fig. 3A). Pairwise

comparisons showed that the pattern expression for the Play:

Error_Pain was significantly higher than the Play: Correct

(P=0.002), the Observe: Error_Pain (P=0.016), and marginally

significantly higher than the Play: Error_Warmth condition

(P=0.075). Pattern expression of the Observe conditions did not

differ significantly between one another (Fig. 3A).We then tested

the classification accuracy based on these pattern expression

values. As shown in Figure 3B, the GRBS discriminated “Play:

Error_Pain” versus “Observe: Error_Pain” with 74% (±10%) accu-

racy (P=0.064), “Play: Error_Pain” versus “Play: Error_Warmth”

with 74% (±10%) accuracy (P=0.064), “Play: Error_Pain” versus

“Play: Correct” with 79% (±9%) accuracy (P=0.019), and “Play:

Error_Pain” versus “Observe: Correct” with 79% (±9%) accuracy

(P=0.019). In sum, these results show that the predictive power

of GRBP generalizes to a novel and completely independent

dataset of interpersonal guilt.

In Study 1 and Study 2, we manipulated two critical

antecedents of guilt: interpersonal harm and one’s own

responsibility in causing that harm (Koban et al. 2013; Yu et al.

2014). The guilt signature therefore should capture their super-

additive interaction. The performance of our guilt signature met

this criterion: it did not discriminate levels of responsibility

in causing nonharmful consequences (e.g., Study 1, NoPain:

Self Responsible vs. NoPain: Both Responsible conditions,

accuracy=58%± 10%, P=0.54), nor did it discriminate harmful

from nonharmful consequences for which the participants were

not responsible (e.g., Study 2, Observe: Error_Pain vs. Observe:

Error_Warmth, accuracy=47%±12%, P=1; Observe: Error_Pain

vs. Observe: Correct, accuracy=53%± 12%, P=1). However, it

did respond, as we showed above, when participants were

responsible and causing harm.
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Figure 2. GRBS and its sensitivity. (A) Between-participant SVM weight map for guilt states (unthresholded). Bootstrap thresholded maps (5000 interactions, z> 2) is

shown in the inset. Examples of unthresholded patterns within right insula (rAI) and anterior aMCC are also presented in the inset; small colored squares indicate

voxel weights, black squares indicates empty voxels located outside of the GRBS pattern, and red-outlined squares indicate significance at P<0.005 uncorrected

(see also Table 1). (B) Cross-validated pattern expression computed as the dot product of the GRBS with the activation contrast maps for each participant. (C) ROC

curves for the two-choice forced-alternative accuracies for the training dataset (Study 1). Purple: “Pain: Self_Responsible” versus “Pain: Both_Responsible,” Red:

“Pain_Self_Responsible” versus “Pain: Partner_Responsible”; Gold: “Pain: Self_Responsible” versus “Both_Correct.” (D) Individual participants’ pattern expression values

for the “Pain: Self_Responsible” and “Pain: Both_Responsible” conditions. Green line indicates correct classification, red line indicates incorrect classification. (E) The

pattern expression values in the three errorous conditions in the Pain block (i.e., Self_Responsible, Both_Responsible, and Partner_Responsible) were predictive of

participants’ compensation (i.e., pain sharing).
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Figure 3. Generalizability of the GRBS. (A) In the Study 2 dataset, the “Play: Error_Pain” condition (i.e., the condition associated with highest guilt) shows the highest

pattern expression. In this condition, the participant’s action caused pain to the person outside the scanner (i.e., partner). In “Warmth” conditions, the participant’s

action may cause warm but not painful thermal stimulation to the partner. In “Correct” conditions, the participant did not make an error and no stimulation would be

delivered to the partner. In “Observe” conditions, the participant observed the game and the pain stimulation was not contingent on their actions. Error bars indicate

SEM. (B) ROC curves for the two-choice forced-alternative performance for the validation dataset (Study 2). Blue: Play Error Pain versus Play Error Warmth; Purple: Play

Error Pain versus Observe Error Pain; Red: Play Error Pain versus Play Correct; Gold: Play Error Pain versus Observe Correct.

Testing the Specificity of the GRBS

To assess the specificity of the classifier, we examined its

predictive power in two other independent data sets: one using

thermal (heat) pain and observed (vicarious) pain (Krishnan et

al. 2016), the other using recall task to elicit basic and social

emotions (Wagner et al. 2011). Univariate analyses reported

in these previous studies have implicated the brain regions

showing highest predictive weights in the GRBS (e.g., aMCC,

rAI) in the processing of physical and vicarious pain, and in

the processing of recalled guilt episodes. However, it is an open

questionwhether these brain states are distinguishable to GRBS.

The multivariate approach allows us to test whether shared

univariate activations reflect common neural representations

(Woo et al. 2014). As can be seen from Figure 4 (see also

Supplementary Table S3), GRBS performed at chance level in

discriminating different intensity of thermal pain stimulation

(High vs. Medium: accuracy=57± 11%, P=0.57; Medium vs. Low:

accuracy=46± 9%, P=0.85) and different degree of vicarious

pain (High vs. Medium: accuracy=50± 9%, P> 0.99; Medium

vs. Low: accuracy=57±9%, P=0.57). The classifier did not

significantly differentiate recalled guilt from either recalled

sad memories (accuracy=33± 12%, P=0.30) or recalled shame

memories (accuracy=60± 13%, P=0.61). These findings suggest

that GRBS is better at detecting transgression in real-time inter-

personal contexts than other unpleasant experiences, including

guilt-related memories. That is, it does not appear to be

selectively activated during retrieval of guilt-related memories,

but it does respond selectively to feedback indicating that one

has caused harm to a partner and predicts atonement behavior.

Finally, we investigated the relationship of the GRBS to

other, potentially similar brain signatures of social-affective

processes. Spatial similarity (Pearson correlation coefficients

across all voxels) between the GRBS and eight other brain

signatures related to social-affective processes are shown in

Supplementary Table S4 and Figure S2. Most patterns showed

around zero correlation (r’s between −0.1 and 0.1), with the

exception of the PINES—developed to track negative affect

associated with unpleasant images (Chang, et al. 2015)—,

which showed a weak positive correlation (r=0.12) with GRBS,

thus suggesting some shared variance between those two

brain patterns. To examine this similarity more closely, we

qualitatively examined whether it might be driven by shared

positive or negative weights in ACC or insula, or other areas

often activated by emotional events, such as the amygdala

(ROIs defined based on anatomical labels and theWFU Pickatlas

version 3.0.5b (Maldjian et al. 2003)). Figure 5A shows the joint

distribution of normalized (z-scored) voxel weights of PINES

on the x-axis and GRBS on the y-axis (cf. Koban et al. 2019).

Differently colored octants indicate voxels of shared positive

or shared negative (Octants 2 and 6, respectively), selectively

positive weights for GRBS (Octant 1) and for PINES (Octant 3),

selectively negative weights for GRBS (Octant 5) and for PINES

(Octant 7), and voxels where the voxel weights of the two

signatures went in opposite directions (Octants 4 and 8) (Fig. 5B).

Overall correlations between the two patterns in the emotion

mask (Fig. 5A) and in the three ROIs (Fig. 5C–E) were relatively

weak. Across the whole emotionmask, stronger weights (sum of

squared distances to the origin [SSDO])were actually observed in

the nonshared octants (1, 3, 5, 7). Further, the three ROIs showed

distinct patterns of covariation between the two patterns. Many

voxels in the bilateral amygdalae showed positive weights for

PINES, but not for GRBS, as reflected by the high SSDO in Octant

3 (Fig. 5C). This is in line with the long-established role of the

amygdala in emotional attention (see Vuilleumier 2005 for a

review) and in assigning affective salience to sensory stimuli

(LeDoux 2000). Bilateral insulae showed strongest weights in the

Octants 1, 2, and 7, indicating many positive weights for guilt

specifically (Octant1), as well as shared positive weights across

the two signatures (Octant 2), but also some many voxels with

negative weights in the PINES (Octants 6–8) (Fig. 5D). Finally,

the ACC showed almost exclusively positive weights for GRBS,

whichweremostly near-zero or even negative for PINES (Octants

1 and 8) (Fig. 5E). Thus, while the insula might include some

shared positive weights, the overall results suggest distinct

activation patterns for guilt and picture-induced negative affect

in emotion-related brain areas.

Discussion

Characterizing how specific emotions are generated and

represented in the brain is a central question in affective

neuroscience and important for understanding emotions and
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Figure 4. Specificity of the GRBS. (A–C) Pattern expression and ROC curves for the prediction performance of GRBS in a thermal pain dataset (A), a vicarous pain dataset

(B), and an emotion-recall dataset (C). GRBS cannot dissociate different levels of physical pain, vicarous pain, or different types of emotional memories (including guilt-

related memories), suggesting that the predictive power of GRBS was specific to detecting one’s responsibility in causing undesirable interpersonal consequences (e.g.,

harm) in the immediate social interaction context (see also Supplementary Table S3). Error bars indicate SEM.

their regulation in healthy and clinical individuals (Hamann

2012; Bijsterbosch et al. 2018). However, given the substantial

overlap between brain correlates of different psychological

processes, including positive and negative emotions (Kober et al.

2008; Lindquist and Barrett 2012; Wager et al. 2015), identifying

distinct brain correlates of different emotions has proven to

be a very challenging goal, which may require multivariate

approaches that go beyond contributions of single brain regions

(Woo et al. 2014; Kragel and LaBar 2015; Skerry and Saxe

2015; Wager et al. 2015). The present results contribute to this
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Figure 5. Voxel-level spatial similarity between GRBS and picture-induced negative emotion signature (PINES). (A) Scatter plots displays normalized voxel (within the

Emotion mask) beta weights for GRBS (y-axis) and PINES (x-axis). Bars on the right represent the sum of squared distances from the origin (0,0) for each octant. This

value integrates the number of voxels and their combined weights in each octant, we compute. (B) Differently colored octants indicate voxels of shared positive or

shared negative (Octants 2 and 6, respectively), selectively positive weights for GRBS (Octant 1) and for PINES (Octant 3), selectively negative weights for GRBS (Octant

5) and for PINES (Octant 7), and voxels where the voxel weights of the two signatures went in opposite directions (Octants 4 and 8). (C) Voxel-level spatial similarity in

bilateral amygdalae shows positive weights for PINES, but not for GRBS, as reflected by the high SSDO in Octant 3. (D) Voxel-level spatial similarity in bilateral insulae

shows strongest weights in the Octants 1, 2, and 7, indicating many positive weights for guilt specifically (Octant 1), as well as shared positive weights across the two

signatures (Octant 2), but also some many voxels with negative weights in the PINES (Octants 6–8). (E) Voxel-level spatial similarity in ACC shows almost exclusively

positive weights for GRBS, which were mostly near-zero or even negative for PINES (Octants 1 and 8).

undertaking by providing first evidence that even complex social

or moral emotions such as guilt can be accurately identified

based on a distributed multivariate brain pattern—the GRBS.

Developing a multivariate pattern for detecting the presence of

guilt-related psychological states helps us to understand the

neural mechanism underlying guilt and atonement, and serves

as a tool for future studies that aim at manipulating and/or

measuring guilt in different environments and populations

(Wager et al. 2013; Chang et al. 2015; Krishnan et al. 2016).

Interpersonal guilt reflects the ability to detect and respond

to a situation where someone else is harmed and in which

oneself is the source of that harm (Boonin, 1983). This type

of guilt is thought to be critical for maintaining social norms

and interpersonal relationships (Baumeister et al. 1994). On the

transgressor’s side, accurately detecting such a situation and

reacting appropriately allows them to restore the reputation and

social relationship with the victim (via direct reciprocity; Yu et

al. 2014) and other relevant individuals in the social network (via

indirect reciprocity and social image; Stearns and Parrott 2012).

Moreover, the transgressor’s expression of guilt and conciliatory

gestures reaffirm the abiding power of the violated social norms

and compensate the loss of the victim (Bicchieri 2005).

Paralleling an approach used for other social-affective pro-

cesses (Woo et al. 2014; Krishnan et al. 2016), we used SVM on

fMRI data to classify the presence versus absence of the core

appraisal of guilt, namely, one’s responsibility in causing harm to

another. The GRBS had good cross-validated predictive accuracy

(71–88%) and significantly predicted compensation behavior,

thus linking cognitive brain processes to relevant behavioral

outcomes. Further, the GRBS showed high accuracy (74–79%) on
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a completely independent test set from a different laboratory

and culture, demonstrating its robustness to variations in exper-

imental settings and cultural context.

This signature, while being a distributed pattern across

the entire “Emotion” network (Yarkoni et al. 2011), exhibits its

highest predictive weight in the aMCC and right AI (Fig. 2A).

Although these peak voxels parallel the previous univariate

analyses (Koban et al. 2013; Fourie et al. 2014; Yu et al. 2014; Cui

et al. 2015), they nevertheless contribute independently to the

understanding of the neurocognitive mechanism of detecting

one’s transgression and reacting accordingly. The multivariate

analysis derives a weight map that captures the core processes

underlying interpersonal transgression and guilt. This abstract

weight map can then be applied to new observations from the

same or different datasets to assess its sensitivity, specificity,

and generalization (Wager et al. 2013). Specifically, when it

comes to the aMCC and AI, extensive research, including

those of our own, has demonstrated the lack of functional

specificity in these areas using neuroimaging meta-analyses

and multivariate pattern analysis (e.g., Lindquist et al. 2012;

Wager et al. 2015; Yarkoni et al. 2011). We have also argued, and

provided evidence, that multivariate pattern-related activity

in such areas offers greater functional specificity than simply

interpreting overlapping activation (Kragel et al. 2018). For

example, in Kragel et al. (2018),we found that the aMCC contains

a population-level multivariate representation (pattern) related

to pain that generalizes across 3 types of somatic pain (tested

across 6 studies), but is not shared by 3 kinds of negative

emotion tasks or 3 kinds of cognitive control tasks. We argue

that multivariate pattern analysis works because it picks up,

to some degree, on differential patterns of activation across

neural populations (and microvasculature) that are unevenly

distributed across voxels (for review and discussion, see Kragel

et al. 2018).

Supporting the notion of distinct multivariate patterns for

different affective processes, we found only weak correlations

between the GRBS and other pain- and emotion-related brain

patterns, such as the PINES. Further, even local patterns in

emotion-related areas—including the ACC and insula—showed

only limited shared variance between the GRBS and the PINES.

Interestingly, the patterns of shared versus unique weights for

the two signatures were distinct across the three regions of

interest. The insula showed some evidence of common positive

weights for both GRBS and PINES, which is in line with partially

shared processes. In contrast, amygdala and ACC voxels with

positive weights for one signature were often near-zero or had

even negative weights in the other signature, suggesting very

distinct local contributions to the overall patterns.

Moreover, in the current study, the signature was derived

from a sample of Chinese participants (East Asian culture) and

the predictive power of this pattern can be partially general-

ized to a sample of Caucasian participants (Western culture),

suggesting that the core underlying neurocognitive processes

may be similar even across different cultures and experimental

setup. The GRBS was also sensitive to the levels of guilt (as

manipulated via responsibility for another’s pain) in the interac-

tive action-monitoring task. Yet, the signature did not discrimi-

nate levels of either physical pain (i.e., receiving painful stimula-

tion; Krishnan et al. 2016) or vicarious pain (i.e., observing others

receiving painful stimulation; Krishnan et al. 2016; Fig. 3A–C),

which are both arousing, aversive, salient experiences. Inter-

estingly, the signature did not discriminate guilt-related mem-

ories from other type of negative emotional memory either

(Fig. 3D–F). Memories of guilt episodes may involve recognition

of one’s causality in other’s suffering, but likely do not involve

the processes of detecting and responding to such components

in the here-and-now social context (Redcay and Schilbach, 2019).

Taken together, our findings suggest that in an interpersonal

transgression context, the transgressor’s brain does not only

capture the distressful consequence of others per se, as in the

case of experiencing vicarious pain, but also actively seeks the

attribution of the harm and, when one’s own responsibility is

confirmed, decides how to respond (e.g., atonement, apology).

This finding, together with the predictive power of the GBRS

in tracking reparation behavior (i.e., compensation), suggests

that brain activation patterns identified here may primarily

implicate the impact of guilt-related appraisal on subsequent

behavioral responses, in line with the notion that emotions

serve to guide adaptive behaviors and generate corresponding

action tendencies. These effects may be absent in recalled guilt,

thus precluding a successful decoding of GBRS in this condition.

Further, we note that individual differences in GRBS

responses were not predictive of guilt ratings in either dataset.

One explanation is that the ratings of subjective feelings of

guilt were collected after the task in the scanner and thus were

simply recall in nature, whereas the GRBS, as our results show,

is specific to detecting and responding to immediate transgres-

sion. Alternatively, the individual differences in GRBS response

may be influenced by other factors such as overall signal, and

our sample may be underpowered to detect small between-

person correlations. Future studies that simultaneously record

fMRI andmore sensitive onlinemeasures of emotional feeling of

guilt (e.g., eye gaze pattern, skin conductance; see Yu et al. 2017)

may be able to explore GRBS’s roles in the temporal unfolding of

guilt experience, namely detecting the presence of cognitive

antecedents of guilt, encoding guilt feelings as experienced

immediately in interpersonal transgression, and predicting

atonement following guilt (Amodio et al. 2007). More broadly,

the multivariate approach can inform our understanding of the

neural basis of social cognition by developing brain signatures

that capture specifically defined cognitive processes and testing

their generalizability to other social cognitive functions. This

way,we would be able to restructure our understanding of social

cognition on the basis of underlying brain representations.

A conceptual clarification about guilt and responsibility is

worth noting. In this paper, “guilt” refers to a constellation of

cognitive-affective processes in response to interpersonal trans-

gression and harm (e.g., detecting harm and assigning respon-

sibility), rather than simply the feeling/experiential component

of this constellation of processes. On this conceptualization of

guilt, recognizing one’s causal responsibility is an integral part

of guilt (Ellsworth and Smith 1988; Tracy and Robins 2006), rather

than an independent process that is parallel to guilt, at least

in most situations. Nevertheless, we acknowledge that it is an

interesting and important empirical question as to whether

guilt feelings can arise, in certain populations or circumstances,

without objective causal responsibility in interpersonal harm.

For example, survivors of disasters or atrocities sometime report

that they experience “guilty” feelings toward other victims who

suffermuchmore than they do, despite the fact that they are not

causally responsible for other victims’ suffering. One possible

psychological mechanism underlying such “survivor guilt” is

that survivors falsely attribute responsibility of others’ suffering

to themselves (O’Connor et al. 2000). Similarly, “existential” guilt,

negative feelings toward oneself as a purposeless or unworthy

being experienced by people with certain type of depression,
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seems to be a result of illusory perceptions of responsibility

(Ratcliffe 2014). Conversely, some individuals (e.g., those high

in psychopathy; Cima et al. 2010) may have the attribution of

responsibility for harm without feeling guilt. The guilt signa-

ture could be used as a tool to empirically test these hypothe-

ses. Unfortunately, direct tests of these interesting possibilities

are beyond the scope of this paper and await further studies

designed for this purpose.

Itmay be argued that the term “guilt” is not used equivalently

across Chinese and Swiss cultures and languages. This is related

to a more profound issue as to how we could know whether

or not people living in different cultures and speaking different

languages are experiencing the same “kind” of emotion when

they claim that they are feeling guilty (English), or schuldig

(German), or coupable (French), or nei jiu (Chinese)? In this study,

we adopt the assumption that “guilt” refers to a category of

emotional states, under which different variants of guilt are

species with variant-specific defining features or differentia.

The specific type of guilt that we investigated in this study, as

we have argued, is defined by two critical features (Baumeister

et al. 1994; Tracy and Robins, 2006): 1) recognizing a breach

of moral norms, typically involving harm to another and 2)

attributing causal responsibility in such violation to oneself.

These two features have been demonstrated to be reliable cogni-

tive antecedents of guilt in bothWestern and East Asian cultures

(Benedict, 1946/2005; Piers and Singer, 1971; Bedford and Hwang,

2003; Wong and Tsai, 2007), and have been manipulated to

induce guilt, in both Western (Bastin et al. 2016; Cracco et al.

2015; Koban et al. 2013; Seara-Cardoso et al. 2016) and East

Asian participants (Leng et al. 2017; Furukawa et al. 2019; Yu

et al. 2014; Zhu et al. 2019). In line with these theoretical and

empirical works, we utilized these two defining features of guilt

in the tasks of our training and test datasets. Importantly, it

is not required that participants from all cultures experience

this type of guilt to the same degree in response to the same

situations. Our analyses require only that it is experienced to

some degree by participants across cultures. We showed that

the guilt-related pattern we identified was indeed preserved

cross-culturally, at least in the context of our study, thereby pro-

viding empirical support for common cross-cultural brain pro-

cesses. This finding extends the commonality in the cognitive-

affective processes underlying guilt to the level of (partially)

shared cognitive-affective processes underlying guilt and its

brain correlates across cultures and context. It is an interest-

ing and important empirical question for future research as to

what extent this signature could discriminate different variants

of guilt both within and across cultures (i.e., causing physical

harm versus social harm; causing harm to a friend versus a

stranger).

To be sure, we are not the first to explore how emotions arise

by relating appraisal theory with pattern recognition analyses of

human neuroimaging data (for a review, see Adolphs, 2017). For

example, Skerry and Saxe (2015) show that discrete emotion cat-

egories that people assign to a given emotion-eliciting event can

be accurately predicted by a set of abstract features of the events

(e.g., whether the protagonist is responsible for the outcome in

the event). This abstract feature-based model outperformances

the predictions based on two other influential models of

emotion (i.e., the basic emotion theory and the arousal-

valence theory). Adopting a similar theoretical framework

(i.e., the appraisal theory of emotion), our study can be seen as

a case study focusing on interpersonal guilt, with responsibility

for harm to another as its core appraisal. In fact, in Skerry

and Saxe (2015)’s fine-grained feature space covering a wide

range of 38 appraisal dimensions, the feature “caused by self”

is most consistently highlighted to be relevant to guilt. Future

research could leverage this feature-space approach to formally

test psychologically meaningful hypotheses concerning the

distinction (or the lack thereof) between guilt and other related

social and nonsocial emotions, such as shame, embarrassment,

and nonsocial regret. This approach also provides an interesting,

brain-basedway to compare emotions across cultures. Although

a one-to-one mapping of emotion terms across languages may

be problematic, abstract event features are less likely to be “lost

in translation”and shared cross-culturally (Hurtado deMendoza

et al. 2010; Fiske, 2019).

The generalizability of the GRBS to Study 2 seems limited. In

particular, the difference between the pattern expression of the

“Play: Error_Pain” condition and that of the “Play: Error_Warmth”

condition was at trend level. This might be in part due to

the small sample size of Study 2. Another conjecture is that

given that the classifier was trained to discriminate one’s causal

responsibility in interpersonal harm, it might be more sensi-

tive in detecting differences in responsibility than in detecting

differences in the severity of harm. This is supported by the

fact that the signature responded more distinctively to “Play:

Error_Pain” versus “Observe: Error_Pain,” two conditions that

differ only in appraisals of responsibility but not in severity of

harm. Therefore, we acknowledge that our goal of developing a

sensitive, specific, and generalizable brain signature of guilt has

yet to be fully achieved; but we believe the present multivariate

pattern is both useful and a critical motivating stepping stone

to large-scale studies that would be required to perform a more

definitive identification of cross-cultural neural representations

of guilt. Future studies are needed to achieve this goal in larger

samples and to incorporate more fine-grained manipulation of

guilt (e.g., responsibility, severity of harm, relationship between

transgressors, victims, etc.). Nevertheless, the utility of a provi-

sionalmodel such as oursmight become clearerwhen compared

with measures in other domains that have been only partially

validated and/or have limited specificity. For example, face-

related activity is routinely identified in fMRI in individuals,

and in spite of little-to-no validation of its specificity to faces

in that individual (and debatable specificity of the general area

of the “fusiform face area”), it is routinely used to infer the

persistence of face-related representations in working memory

(Druzgal and D’Esposito 2001; Lewis-Peacock and Postle 2008),

long-term memory (Polyn et al. 2005), attention (Yeung et al.

2006), and others. Even relative or limited specificity is reason-

able for use of an fMRI pattern for further testing, although the

wisdom of doing so must be evaluated on a case by case basis.

In a similar vein, there are very few biomarkers in medicine

that are highly sensitive and specific, but even moderate diag-

nostic value confers information. In the same spirit, our guilt-

related pattern confers information value, as well as a defined

brain measure, for provisional inference, brain comparisons,

and further testing and validation on the brain bases of social

emotions.

To conclude, we developed a neural signature, the GRBS,

that is sensitive and specific to the critical appraisals under-

lying the experience of guilt in social interactions, namely,

recognizing one’s responsibility in causing other’s suffering

(Frijda 1993; Baumeister et al. 1994). Showing its predictive

validity for behavioral outcomes, the response of this signature

predicts atonement decisions following transgression even after

statistically controlling for experimentally manipulated degree
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of responsibility. Supporting its discriminative validity, the GRBS

did not respond to guiltmemories ormemories of other negative

emotions, neither did GRBS respond differently to increasing

levels of vicarious pain or increasing levels of agency in

nonharmful outcomes. It was also not strongly correlated with

any other previously developed affect- or pain-related signature,

ruling out the possibility that it reflects general negative affect

or other related categories of social emotions like empathy

for pain and perception of self-agency. This signature can be

used in future studies for detecting guilt- and transgression-

related neural processes, for example by manipulating other

important social factors, such as intentions of transgression and

interpersonal relationship between transgressors and victims,

by applying it to harm-based moral decision-making context

(Yu, Siegel, Crockett, 2019), or by testing its response in different

clinical populations such as those characterized by excessive or

reduced experience of guilt (i.e., internalizing disorders versus

psychopathy).

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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