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Abstract 

Endometriosis is a complex and high impact disease affecting 176 million women worldwide with diagnostic latency 

between 4 to 11 years due to lack of a definitive clinical symptom or a minimally invasive diagnostic method. In this 

study, we developed a new ensemble machine learning classifier based on chromosomal partitioning, named 

GenomeForest and applied it in classifying the endometriosis vs. the control patients using 38 RNA-seq and 80 

enrichment-based DNA-methylation (MBD-seq) datasets, and computed performance assessment with six different 

experiments. The ensemble machine learning models provided an avenue for identifying several candidate biomarker 

genes with a very high F1 score; a near perfect F1 score (0.968) for the transcriptomics dataset and a very high F1 

score (0.918) for the methylomics dataset. We hope in the future a less invasive biopsy can be used to diagnose 

endometriosis using the findings from such ensemble machine learning classifiers, as demonstrated in this study. 

Introduction 

Endometriosis is a complex yet common gynecological disorder of reproductive-aged women. It is characterized by 

the presence of endometrial tissue outside of the uterine cavity. Endometriosis is a high impact disease, commonly 

associated with chronic pelvic pain and infertility. Therefore, it significantly impairs mental and physical quality of 

patient’s life and their work performance is seriously compromised. About 176 million women worldwide are 

suffering from endometriosis and about 8.5 million women solely in the North America1. Endometriosis affects 

reproductive aged women (5-10%), women with subfertility (20-30%), and women with chronic pelvic pain and 

infertility (40-60%)2. About 70% of teens who are suffering from pelvic pain are later diagnosed with endometriosis3. 

In the U.S., endometriosis is a leading cause of hysterectomies (approximately 600,000 cases) performed every year4. 

The total cost (direct and indirect) of endometriosis has been estimated at €30 billion in Europe and $22 billion in the 

U.S. each year, and direct costs have increased gradually5. 

Though laparoscopy is currently the gold standard diagnostic approach for endometriosis6, it is an invasive procedure 

and may not be appropriate for all women with a history and physical examination indicative of endometriosis. There 

are many studies that assessed the diagnostic value of biomarkers for endometriosis in endometrial tissue, menstrual 

or uterine fluids and immunologic markers in blood or urine for clinical use as a diagnostic test for endometriosis; 

however, no reliable biomarkers were recommended7. Due to the lack of reliable recommended biomarkers, the 

current diagnostic latency is on average 4 to 11 years8. To reduce the sufferings and expenses related to the disease, 

an early intervention is essential. Studies have shown that endometriosis patients have an altered methylome and 

transcriptome, which could lead to the identification of biomarkers for developing a minimally invasive diagnostic 

technique for endometriosis9. 

Applications of machine learning methods on microarray expression data or next generation sequencing data have 

been advanced over the last several decades for discovery of biological patterns10. For microarray expression data, use 

of both supervised and unsupervised machine learning methods have shown great success11, including the application 

of: (a) clustering techniques such as hierarchical clustering and K-means clustering for identifying the groups of genes 

that share similar functions or expressions12, and (b) disease vs. healthy classification tasks using various methods 

such as Decision Trees, Random Forests, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and 

Bayesian Networks13. Although the application of machine learning classifiers on transcriptomics or methylomics data 

had limited success14,15, the classification difference of gene expressions in transcriptomics data or the difference of 

DNA-methylation in methylomics data between disease vs. healthy can provide avenues for the development of 

endometriosis diagnostic method9,16. 

In our previous works, we have successfully demonstrated the application of various machine learning techniques for 

classifying the endometriosis patients vs. the control patients using both transcriptomics and methylomics data17,18. In 

this work, we describe our new ensemble technique called GenomeForest based on chromosomal partitioning. We 
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systematically examined how well the newly developed ensemble technique perform in classifying endometriosis and 

control samples using both transcriptomics and methylomics data. The assessment was done from three different 

perspectives: (a) evaluation of classification performances of the GenomeForest ensemble classifier, (b) implication 

of three different normalization techniques, and (c) implication of differential analysis. The results were compared 

with the results from our prior work on the application of various machine learning techniques on the same dataset 

published elsewhere17,18. 

Methods 

Subjects and Tissue Collection 

The women participated in this study were aged between 18-49 years and all undergoing a laparoscopy procedure, 

either diagnostic laparoscopy for pain or infertility or seeking laparoscopic sterilization. Prior to surgery, the physician 

obtained informed consent following the IRB protocol. Endometrial biopsies were collected under general anesthesia 

prior to surgery. During laparoscopy, the physician thoroughly examined the peritoneal cavity and visually confirmed 

the presence or absence of endometriosis. Endometriosis patients had visually and histologically confirmed 

endometriosis. The control population were visually confirmed to be free of endometriosis. The tissue samples were 

processed for generating high-throughput mRNA transcriptomics data (RNA-Seq) and DNA methylomics data (MBD-

seq). Our transcriptomics dataset includes 38 single-end RNA-seq samples (22 controls and 16 endometriosis) and the 

methylomics dataset includes 80 MBD-seq DNA methylation samples (36 controls and 44 endometriosis). More 

details can be found in our earlier publication18 on the same datasets.  

Transcriptomics and Methylomics Data Preprocessing  

We preprocessed the transcriptomics and methylomics data using several widely accepted bioinformatics tools. For 

transcriptomics data, we used FastQC, Cutadapt, Bowtie2, TopHat and HTSeq in different steps of the preprocessing. 

We used hg38 as reference genome. After getting the read count data from HTSeq, the rest of the analysis was 

performed using R packages. Low count genes were removed using the filtering criterion: keep the genes that have at 

least 1 count per million (cpm) reads mapped in at least n samples, where n is the smallest group size. For DNA-

methylation data, we used FastQC, Cutadapt, Bowtie2, Samtools, Picard and R packages for preprocessing the data. 

We segmented the genome sequence into tiling windows of size 1,000 bases, which is widely used and recorded the 

number of reads that are mapped to each tiling windows/regions. Read count are the number of aligned reads that 

uniquely map to the hg38 reference genome. Very low count regions were filtered out using the filtering criterion: 

keep the regions that have non-zero counts per million (cpm) reads mapped in at least n samples, where n is the 

smallest group size. More details about the data preprocessing are available in our earlier publication18. 

The read count data was normalized using three different techniques: (a) logarithm of counts per million (logCPM) of 

trimmed mean of M values (TMM)19, (b) Quantile normalization (qNorm)20, and (c) Voom normalization (vNorm)19. 

For differential analysis, a generalized linear model (GLM) followed by likelihood ratio test was applied using the 

edgeR package to identify differentially expressed genes (DEGs) in the transcriptomics data and differentially 

methylated regions (DMRs) in the methylomics data. The significance of the genes/methylated regions were defined 

by using an adjusted p-value cutoff set at 5% using the false discovery rate (FDR) method for multiple testing21.  

In the methylomics data analysis, our goal is to identify the methylated regions of interest (MROI) and find the nearby 

genes. Mapping of an MROI to the reference annotation file helped us to extract the nearest genes from that MROI. 

Our goal is to identify the genomic features such as the protein coding genes, long intervening noncoding RNA 

(lincRNA) genes, microRNA (miRNA) genes, Ribosomal ribonucleic acid (rRNA) genes, small nucleolar RNA 

(snoRNA) genes, and small nuclear RNA (snRNA) genes. The distance threshold for the MROI position to the 

genomic region was set to 10,000 bps. An MROI can be in the upstream/downstream region, or it can fall into a gene. 

GenomeForest 

In machine learning, an ensemble is a set of k base classifier models (M1, M2, M3,…., Mk) for the purpose of creating 

an improved composite classification model (M). A set of k training datasets (D1, D2, D3,…., Dk) are created from the 

master dataset (D), where Mi is created by training a classifier model on Di (1 ≤ i ≤ k). For classifying a new data tuple, 

the ensemble model M generates a class prediction based on the votes of the base classifiers. We developed an 

ensemble method called GenomeForest (Figure 1), in which each of the classifier is a decision tree classifier 

representing a classification model for each pair of chromosomes (up to 23) so that the collection is a forest 

representing the whole genome. C4.522 is a popular algorithm for decision tree construction that uses entropy 

minimization or information gain for attribute selection criteria. We used an improved version of C4.5 (called 

C5.0/see523) for constructing the decision tree in this study. Confidence factor is used as a parameter for tree pruning 
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in C5.0. The default value for confidence factor is 25% or 0.25. If the value of confidence factor is smaller than 0.25, 

it causes more pruning and vice versa. 

In GenomeForest, given a whole genome sequencing dataset (D), up to 23 training datasets (DChr1, DChr2,…….., DChr22, 

DChrX) are created by partitioning the dataset, D, in which a training dataset DChrN (where N in ChrN is the chromosome 

number 1, 2, 3,….., 22, and X) contains the attributes corresponding to chromosome N. A decision tree model DTChrN 

is trained by using a training dataset DChrN. A composite prediction score (PS) for each class is calculated by using 

voting (score for each DTChrN model is 1) or weighted by various performance measures such as accuracy, sensitivity, 

specificity, precision, F1 score, area under the curve (AUC) of receiver operating characteristics graph, and Matthews 

correlation coefficient (MCC). The final predicted class (PC) for a new data tuple is the class with the highest total 

prediction score. There are two class labels (endometriosis vs. control) in our transcriptomics and methylomics 

datasets. As such, the formula for calculating the composite or total prediction scores for the endometriosis and the 

control classes are presented in Formulas 1 and 2. Formula 3 identifies the final predicted class.  

𝑇𝑜𝑡𝑎𝑙 𝑃𝑆𝑒𝑛𝑑𝑜 = ∑  (𝑖𝑓(𝑃𝐶(𝐷𝑇𝑐ℎ𝑟𝑁) == 𝑒𝑛𝑑𝑜 ) 𝑡ℎ𝑒𝑛 𝑃𝑆(𝐷𝑇𝑐ℎ𝑟𝑁) 𝑒𝑙𝑠𝑒 0)           (1)

𝑁=1 𝑡𝑜 22 𝑎𝑛𝑑 𝑋

 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑆𝑐𝑜𝑛𝑡 = ∑ (𝑖𝑓(𝑃𝐶(𝐷𝑇𝑐ℎ𝑟𝑁) == 𝑐𝑜𝑛𝑡 ) 𝑡ℎ𝑒𝑛 𝑃𝑆(𝐷𝑇𝑐ℎ𝑟𝑁) 𝑒𝑙𝑠𝑒 0)              (2)

𝑁=1 𝑡𝑜 22 𝑎𝑛𝑑 𝑋

 

𝑖𝑓 (𝑇𝑜𝑡𝑎𝑙 𝑃𝑆𝑒𝑛𝑑𝑜 ≥ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑆𝑐𝑜𝑛𝑡), 𝑡ℎ𝑒𝑛 𝑃𝐶 = 𝑒𝑛𝑑𝑜 𝑒𝑙𝑠𝑒 𝑃𝐶 = 𝑐𝑜𝑛𝑡                            (3) 

Cross Validation and Model Performance 

For model validation and comparing results between the experiments (described below), we applied the leave-one-out 

cross validation for computing the performance measures. This ensures two things: (1) the record used for model 

validation is not used for model construction, and (2) all records are used for model validation. This technique is useful 

for dataset with smaller number of samples such as in our study. The final model is constructed using all records. We 

computed several model performance measures: accuracy, sensitivity, specificity, precision, F1 score, Matthews 

correlation coefficient (MCC), and area under the receiver operating characteristics curve (AUC); the leave-one-out 

cross validation approach was used for calculating these measures. 

 

Figure 1. GenomeForest – an Ensemble of Decision Trees Representing Classifier for Each Chromosome for a Whole 

Genome Sequencing Dataset 

Machine Learning Experimental Approach 

We performed six different experiments using the GenomeForest ensemble classifier as shown in Table 1. 

Performance measures of each model were computed using the cross-validation approach described above. We used 

the default value of confidence factor (0.25) so that the decision tree is optimally pruned. For each of the 

GenomeForest experiment, we applied seven different criteria (such as accuracy, sensitivity, specificity, precision, F1 

score, MCC, and AUC) for ranking the decision tree models (DTChrN), used the highest ranked models (topN = 1, 2, 

3,……, 23) in the ensemble process, and eight different criteria for scoring (including accuracy, sensitivity, specificity, 

precision, F1 score, MCC, AUC and voting). This experimental approach produced up to 1,288 (7 x 23 x 8) 

GenomeForest ensemble models for each category of GenomeForest experimental approach as listed in Table 1.  
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In experiment (1-3) (Table 1), we applied different normalization techniques on the raw read counts of 

genes/methylated regions and then applied GenomeForest. In experiment (4-6), differential analysis using GLM was 

performed first on each partitions of the dataset (DChrN) to reduce features, such as genes in the transcriptomics data 

and genomic regions in the methylated data. After that, we applied different normalization techniques on the raw read 

counts of differential genes/methylated regions and then applied GenomeForest.  

Table 1. Machine Learning Experimental Approach using GenomeForest 
Experiment Name Experiment Name Experiment Name 

(1) TMM + GenomeForest (3) vNorm + GenomeForest (5) qNorm + GLM + GenomeForest 

(2) qNorm + GenomeForest (4) TMM + GLM + GenomeForest (6) vNorm + GLM + GenomeForest 

The datasets were filtered for low read count genes for the transcriptomics datasets and for low read count methylated 

regions for the methylomics dataset. For the transcriptomics dataset, GenomeForest experiments were conducted in 

two scenarios: (a) all genes including protein coding, lincRNA gene, miRNA gene, rRNA gene, etc. are present in the 

dataset, and (b) only protein coding genes are present in the dataset. For the methylomics dataset, all methylated 

regions except lower read counts were present. 

The results of the six experiments using the GenomeForest models were compared with the same set of experiments 

using the regular decision tree models as well as three machine learning models using an enhanced algorithm for 

detecting biomarkers named Biosigner24; the models in Biosigner include Partial Least Squares Discriminant Analysis 

(PLSDA), Random Forest (RF), and Support Vector Machine (SVM). Biosigner is an enhanced algorithm for 

detecting biomarkers. The details of the work on same dataset using decision tree and Biosigner experiments were 

published in Akter et al. (2019)18. 

Results 

Transcriptomics GenomeForest Results 

After pre-processing of the 38 RNA-seq data, we created a dataset containing the read counts of 58,050 genes in which 

18,852 genes were protein-coding. After filtering for low count genes, 14,154 genes were included in the dataset in 

which 11,687 of them were protein coding genes. 

We applied the six experimental approaches using the ensemble-based GenomeForest algorithm on both protein 

coding and non-protein coding genes (denoted as “all genes” in this article) that includes 14,154 genes and on protein 

coding genes only that includes 11,687 genes. For each experimental approach, we created up to 1,288 GenomeForest 

models for various combinations of ranking matrices, value of topN and scoring matrices as described in the Method 

section. Out of the up to 1,288 GenomeForest models in each experimental approach, the performance measures of 

one of the best GenomeForest model are presented in Table 2. Within the six experimental approaches using all genes, 

the best performance was obtained for the “qNorm + GenomeForest” experiment by using the top 18 decision tree 

models (DTChrN) ranked by the sensitivity measures and using precision as the scoring criteria. This experiment 

achieved the accuracy of 94.7%, sensitivity of 100%, specificity of 90.9%, precision of 88.9%, F1 score of 0.941 and 

the MCC of 0.899. Within the six experimental approaches using protein coding genes, the best performance was 

obtained for the “vNorm + GenomeForest” experiment by using all 23 decision tree models (DTChrN) and using F1 

score as the scoring criteria. This experiment achieved the accuracy of 97.4%, sensitivity of 93.8%, specificity of 

100%, precision of 100%, F1 score of 0.968 and MCC of 0.947. A total of 73 genes were identified by the individual 

decision tree models across all 23 pairs of chromosomes from the “vNorm + GenomeForest” experiment using the 

protein coding genes and three of these were differentially expressed and downregulated. We compared these 73 genes 

with the gene list found from the decision tree and Biosigner models in our previous study18; NOTCH3, B4GALNT1 

and GTF3C5 were found common between GenomeForest and decision tree genes. All three genes were found 

downregulated in the differential analysis. Only NOTCH3 was found common between GenomeForest and Biosigner. 

Table 2. GenomeForest Performance Measures Using Transcriptomics Data 

Gene Feature 

Set 
Experiment Name topN 

Ranking 

Metric 

Name 

Scoring 

Metric 

Name 

Accuracy Sensitivity Specificity Precision F1 Score MCC 

All TMM + GenomeForest 23 NA F1 Score 0.895 0.938 0.864 0.833 0.882 0.792 

All qNorm + GenomeForest 18 Sensitivity Precision 0.947 1.000 0.909 0.889 0.941 0.899 
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All vNorm + GenomeForest 21 AUC AUC 0.947 0.938 0.955 0.938 0.938 0.892 

All TMM + GLM + GenomeForest 1 F1 Score F1 Score 0.737 0.813 0.682 0.650 0.722 0.489 

All qNorm + GLM + GenomeForest 1 F1 Score F1 Score 0.816 0.813 0.818 0.765 0.788 0.626 

All vNorm + GLM + GenomeForest 1 F1 Score F1 Score 0.816 0.813 0.818 0.765 0.788 0.626 

Protein Coding TMM + GenomeForest 18 F1 Score F1 Score 0.947 1.000 0.909 0.889 0.941 0.899 

Protein Coding qNorm + GenomeForest 23 NA MCC 0.947 1.000 0.909 0.889 0.941 0.899 

Protein Coding vNorm + GenomeForest 23 NA F1 Score 0.974 0.938 1.000 1.000 0.968 0.947 

Protein Coding TMM + GLM + GenomeForest 2 F1 Score Voting 0.895 1.000 0.818 0.800 0.889 0.809 

Protein Coding qNorm + GLM + GenomeForest 2 MCC Voting 0.842 0.938 0.773 0.750 0.833 0.702 

Protein Coding vNorm + GLM + GenomeForest 5 F1 Score F1 Score 0.868 0.813 0.909 0.867 0.839 0.729 

 

 

Figure 2. Performance Comparisons Using All Genes of the Transcriptomics Dataset 

 

Figure 3. Performance Comparisons Using the Protein Coding Genes of the Transcriptomics Dataset 
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Performance Comparisons of Models Using Transcriptomics Data 

We have compared the performance of GenomeForest with our earlier machine learning classifier18 applied on the 

same dataset. A bar chart comparison of accuracy, sensitivity and specificity for experiments using all genes are 

presented in Figure 2. In this scenario, the “qNorm + GLM + GenomeForest” and “vNorm + GLM + GenomeForest” 

experiments have a balanced accuracy, sensitivity and specificity but does not outperform all of the experiments. The 

“qNorm + GenomeForest” experiment produced the highest accuracy and specificity among all the experiments and 

outperformed all of the experiments by F1 score and MCC. A bar chart comparison of accuracy, sensitivity and 

specificity for experiments using the protein coding genes are presented in Figure 3. In this scenario, the “Biosigner 

(SVM)” method has a balanced accuracy, sensitivity and specificity but does not outperform all of the experiments. 

The “vNorm + GenomeForest” experiment produced the highest accuracy and sensitivity among all of the experiments 

and outperformed all experiments based on F1 score and MCC. In both scenarios, GLM was useful for improving the 

overall performance in case of the decision tree application but GenomeForest was able to produce the best 

performance without using GLM. 

Methylomics GenomeForest Results 

We had 80 enrichment-based DNA-methylation (MBD-seq) samples where 77 samples met the quality control criteria 

(35 controls and 42 endometriosis). After pre-processing the data, we created a dataset containing the read counts of 

3,088,281 methylated regions. After applying filtering criteria for lower read counts, 2,577,382 methylated regions 

were included in the dataset for further analysis.  

We applied the six experimental approaches using the ensemble-based GenomeForest algorithm on the methylomics 

dataset that includes 2,577,382 methylated regions. For each experimental approach, we created up to 1,288 

GenomeForest models for various combination of ranking matrices, values of topN and scoring matrices as described 

in the Method section. Out of the up to 1,288 GenomeForest models in each experimental approach, the performance 

measures of one the best GenomeForest model is presented in Table 3. Within the six experimental approaches, the 

best performance was obtained for both “qNorm + GenomeForest” and “vNorm + GenomeForest” experiments by 

using the top 22 decision tree models (DTChrN) ranked by the F1 score and also using F1 score as the scoring criteria. 

Both experiments achieved the accuracy of 90.9%, sensitivity of 92.9%, specificity of 88.6%, precision of 90.7%, F1 

score of 0.918 and the MCC of 0.817. A total of 109 MROIs were identified by the individual decision tree models 

across all 23 pairs of chromosomes from the “qNorm + GenomeForest” experiment. We found 24 genes within the 

distance of 10,000 bps from those 109 MROIs, in which the biotypes of the genes were as follows: protein coding 

(n=7), lincRNA (n=3), antisense (n=3), sense intronic (n=1), snoRNA (n=1), snRNA (n=2), and pseudogene (n=7). 

The location of the regions from the genes were upstream (n=15), downstream (n=4) or overlapping (n=5). We 

compared these 24 genes with the gene list found from the decision tree models18 and found MFSD14B to be common. 

Performance Comparisons of Models Using Methylomics Data 

We have compared the performance of GenomeForest with our earlier machine learning classifier18 applied on the 

same dataset. A bar chart comparison of accuracy, sensitivity and specificity for experiments using the methylomics 

dataset are presented in Figure 4. The “qNorm + GLM + GenomeForest”, and “vNorm + GLM + GenomeForest” 

experiments have a balanced accuracy, sensitivity and specificity but does not outperform all of the experiments. Both 

the “qNorm + GenomeForest” and “vNorm + GenomeForest” experiments produced the highest accuracy, sensitivity 

and specificity among all the experiments and outperformed all of the experiments by F1 score and MCC. In our earlier 

study, we have shown that GLM was useful to improve the overall performance in case of decision tree application18 

but GenomeForest was able to produce the best performance without the help of GLM. 

Table 3. GenomeForest Performance Measures Using Methylomics Data by Leave-One-Out Cross Validation 

Experiment Name topN 
Ranking 

Metric Name 

Scoring Metric 

Name 
Accuracy Sensitivity Specificity Precision F1 Score MCC 

TMM + GenomeForest 23 Accuracy Accuracy 0.870 0.929 0.800 0.848 0.886 0.740 

qNorm + GenomeForest 22 F1 Score F1 Score 0.909 0.929 0.886 0.907 0.918 0.817 

vNorm + GenomeForest 22 F1 Score F1 Score 0.909 0.929 0.886 0.907 0.918 0.817 

TMM + GLM + GenomeForest 2 Specificity Voting 0.831 0.881 0.771 0.822 0.851 0.659 

qNorm + GLM + GenomeForest 7 AUC AUC 0.818 0.810 0.829 0.850 0.829 0.636 

vNorm + GLM + GenomeForest 1 F1 Score F1 Score 0.792 0.810 0.771 0.810 0.810 0.581 
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Figure 4. Performance Comparisons Using the Methylomics Dataset 

Discussion 

This work achieves our aim of broadly evaluating the newly developed ensemble approach, named GenomeForest, 

under different experimental scenarios. Also, we have successfully shown that it can improve model performances in 

classifying endometriosis and control samples using whole genome transcriptomics and methylomics data. Our newly 

proposed classifier outperforms various machine learning classifier algorithms (decision tree and Biosigner) on the 

same datasets that have been published earlier18.  

First, the ensemble technique can achieve a high classification accuracy. For whole genome sequencing data, we 

applied a logical partitioning approach based on each chromosome. We trained decision tree models on each 

chromosomal partition of the dataset and developed an ensemble approach for creating a composite collection of a 

forest model consisting of a set of decision trees representing the whole genome. We named this ensemble 

classification algorithm as GenomeForest. We experimented with various ranking and scoring techniques using 

GenomeForest and found that F1 score is best for both ranking and scoring. This model was able to outperform its 

counterpart. 

Second, differential analysis using the GLM is widely used to identify the DEGs from the transcriptomics datasets 

and DMRs from the methylomics datasets. In our previous work18, we have shown that differential analysis was useful 

for improving the performance of decision tree application by reducing the features (genes/genomic regions). 

However, in this work, we have shown that GenomeForest was able to produce the best performance without the help 

of differential analysis. We also evaluated different normalization techniques as a classifier’s performance may vary 

depending on the normalization techniques. We found that qNorm performed the best when all genes were considered 

and vNorm performed the best when only the protein-coding genes were considered in the transcriptomics dataset. 

For the methylomics dataset, both qNorm and vNorm normalizations performed the best in the GenomeForest 

application. 

Third, the ensemble machine learning classifiers can be trained for creating highly accurate models for classifying 

endometriosis with high sensitivity and specificity thus creating the opportunity for precision medicine application for 

endometriosis. Mainly because of the complexity in diagnosis techniques, there is a delay from symptom onset to 

diagnosis ranging from 4 to 11 years which is very high. The ensemble machine learning models in this study achieved 

a very high F1 score; a near perfect F1 score (0.968) for the transcriptomics dataset and a very high F1 score (0.918) 

for the methylomics dataset. Although the predicted markers require further experimental and clinical validations, we 

hope in the future a less invasive biopsy can be used to diagnose endometriosis using ensemble machine learning 

classifiers-based findings as demonstrated in this study. 

Fourth, we experimented if ensemble of a few top ranked chromosomes (ranked by different performance measures) 

could classify the disease samples from the controls. We observed that the best ensemble model used various numbers 

of decision tree models in different scenarios: (a) for the transcriptomic dataset using all genes, the best ensemble 

model was created using top 18 chromosomes ranked by sensitivity and scored by precision, (b) for the transcriptomic 
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dataset using protein coding genes only, the best ensemble model was created using all chromosomes, (c) for the 

methylation data, the best model was created using the top 22 chromosomes ranked and scored by F1. Therefore, we 

concluded that instead of using few chromosomes, ensemble of most of the chromosomes in the GenomeForest could 

give us the best classification model. 

Fifth, GenomeForest can assist in the identification of candidate biomarkers of endometriosis using transcriptomics 

and methylomics data. In our previous study, we discussed the candidate biomarker genes of endometriosis extracted 

from decision tree and Biosigner models18. All the machine learning models (GenomeForest, decision tree and 

Biosigner) have identified NOTCH3 as a candidate biomarker. It is also differentially expressed and downregulated 

in our study. The NOTCH3 signaling may play a major role in oncogenesis, tumor maintenance, and resistance to 

chemotherapy25. NOTCH3 is associated with breast cancer development26 and pancreatic ductal adenocarcinoma 

(PDAC)27, lung carcinogenesis28 and endometrial carcinoma29. Dysregulation and decrease in NOTCH signaling 

pathway is also associated with endometriosis30,31. B4GALNT1 and GTF3C5 were identified by the decision tree18 and 

GenomeForest experiments. Trimarchi et al. (2017) identified B4GALNT1 to be related to endometrial cancer32. 

B4GALNT1 is associated with two pathways: Glycosphingolipid biosynthesis - ganglio series and Sphingolipid 

metabolism, and diseases named Spastic Paraplegia 26 and autosomal recessive. GTF3C5 was reported as 

differentially expressed between endometrioid endometrial cancer and non-endometrioid endometrial cancer33. Some 

other candidate biomarker genes are also related to different types of cancer. For example, ZBTB8A may be involved 

in gastric carcinoma, gastric adenocarcinoma cell differentiation, cancer invasion and metastasis34. Aghajanova et al. 

(2011) identified H1FX to be differentially expressed in the comparison of severe versus mild endometriosis samples 

in the mid-secretory phase endometrium35. Other known functions of H1FX are Cancer, Cell-To-Cell Signaling and 

Interaction, and Skeletal and Muscular Disorders. AIMP1 is a cytokine that is specifically induced by apoptosis, and 

involved in the control of angiogenesis, inflammation, and wound healing. It is also involved in the stimulation of 

inflammatory responses after proteolytic cleavage in tumor cells. Baek et al. (2018) identified KLC4 to be associated 

with human lung cancer cell lines36. XRCC2 promotes colorectal cancer cell growth, regulates cell cycle progression, 

and apoptosis37 and mutations in XRCC2 can increase the risk of breast cancer38. The aberrant expression of MED19 

is involved in tumorigenesis and it promotes the proliferation of breast cancer39. Tamaresis et al. (2014) identified 

NRXN3 to be differentially expressed in severe vs. mild endometriosis40. CELF2 was reported as a putative tumor 

suppressor gene in colon cancer41. IL17RA plays a pathogenic role in many inflammatory and autoimmune diseases. 

Bunch et al. (2011) reported that the expression of PGRMC1 is significantly decreased in the endometrium of women 

with endometriosis42. Fang et al. (2011) suggested that abnormal HRH4 expression plays a role in the progression of 

colorectal cancers43. 

Lastly, the finding of many cancer and tumor associated genes using GenomeForest approach is consistent with our 

previous findings using other machine learning classifiers18. Several studies investigated the relationship of 

endometriosis with cancer. Sato et al. (2000) and Thomas et al. (2000) have found some cancer associated mutations 

in endometriotic lesions44,45 and significant shared genetic correlation in both endometrial cancer and endometriosis46. 

Some other studies have found that endometriosis patients are at a higher risk of developing several malignancies: 

ovarian cancer, breast cancer, renal cancer, thyroid cancer and brain tumor47. Both cancer and endometriosis have 

some similar characteristics: metastasis, angiogenesis and resistance to apoptosis. However, only endometriosis is 

considered to be a benign condition. More genomic studies are needed to investigate the association of endometriosis 

with cancer. 

In summary, this study demonstrated that GenomeForest, an ensemble machine learning classifier, is a robust and 

reliable approach for classifying endometriosis using transcriptomics or methylomics data. We concluded that an 

appropriate GenomeForest diagnostic pipeline for endometriosis should use (a) either transcriptomics or methylomics 

data, (b) vNorm for protein-coding genes, qNorm for all genes and either qNorm or vNorm for the methylomics data, 

(c) chromosomal partitioning with ensemble of decision trees for greatest increase in classification performance, (d) 

no differential analysis is necessary for feature reduction, and (e) F1 score for both ranking of the individual models 

and generating the composite score. The conclusion was made based on the use case of endometriosis classification 

in this study. Further study is needed to generalize the results across multiple disease classification cases. Also, 

development of prediction classification models for endometriosis and other diseases using integrated multi-omics 

data would be an interesting investigation.   

Data Availability 

The datasets generated for this study can be found in the Gene Expression Omnibus, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134052; 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134056. 
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