
Generalization of Machine Learning Approaches to Identify Notifiable 
Conditions from a Statewide Health Information Exchange 

Gregory P. Dexter1, Shaun J. Grannis MD, MS1,2, Brian E. Dixon PhD1,3, Suranga N. 
Kasthurirathne PhD1,3 

1Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, IN, USA; 2Indiana 
University School of Medicine, Indianapolis, IN, USA; 3Indiana University Richard M. 

Fairbanks School of Public Health, Indianapolis, IN, USA; 
 

Abstract 

Healthcare analytics is impeded by a lack of machine learning (ML) model generalizability, the ability of a model to 
predict accurately on varied data sources not included in the model’s training dataset. We leveraged free-text 
laboratory data from a Health Information Exchange network to evaluate ML generalization using Notifiable 
Condition Detection (NCD) for public health surveillance as a use case. We 1) built ML models for detecting syphilis, 
salmonella, and histoplasmosis; 2) evaluated generalizability of these models across data from holdout lab systems, 
and; 3) explored factors that influence weak model generalizability. Models for predicting each disease reported 
considerable accuracy. However, they demonstrated poor generalizability across data from holdout lab systems being 
tested. Our evaluation determined that weak generalization was influenced by variant syntactic nature of free-text 
datasets across each lab system. Results highlight the need for actionable methodology to generalize ML solutions for 
healthcare analytics. 
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Introduction 

Rapid advances in Artificial Intelligence (AI), uptake of health information infrastructure and the ever-increasing 
availability of electronic health datasets present considerable potential to leverage machine learning solutions to 
address medical and population health needs. In contrast to more archaic rule-based systems, machine learning 
approaches (a) do not rely on labor intensive human-driven rule development1, (b) learns multiple ‘overlapping rules’ 
to classify each instance, thereby facilitating increased classification robustness2, and (c) are capable of more complex 
classification tasks that cannot be effectively automated by rule-based approaches3. Machine learning has led to state-
of-the-art results on a number of health challenges such as cancer case detection4, prediction of in-hospital mortality, 
unplanned readmissions5, need of treatment for depression6, and access to social risk and needs7.  

The impact of robust decision models will only uphold expectations if they demonstrate external validity by generating 
accurate predictions across a variety of diverse healthcare systems8. A machine learning model that cannot accurately 
predict outcomes for a population that is different to the original population it was trained on suffers from weak 
generalization9,10. Machine learning researchers have long sought to develop generalizable algorithms11. However, 
efforts to demonstrate generalizability for health analytics has been limited12,13. Replication of published machine 
learning models often show substantially different conclusions on optimal modeling techniques. Several attempts to 
replicate existing efforts have led to results significantly in the opposite direction of the original study11. Thus, 
implementers seeking to deploy successful machine learning solutions across various sites must often expend 
considerable time and resources to ‘re-invent the wheel’ using facility-specific datasets.  

Generalizability is impacted by the cost and effort of obtaining diverse datasets for decision model training. However, 
there is little methodological knowledge on the causes of weak generalizability in healthcare , nor the value of 
leveraging varied datasets from multiple sources for better generalizability. Better assessment of weak generalizability 
across varied patient populations and datasets could significantly improve our understanding of the generalization 
challenge. 

Objectives 

Increasing interest in Notifiable Condition Detection (NCD) for public health surveillance presents a suitable use case 
for our efforts. Notifiable conditions are diseases of public health concern that must be reported to government 
authorities by law14. However, accurate, automatic identification of notifiable diseases using existing patient data are 
an ongoing challenge. Previous work has demonstrated the ability to leverage machine learning for detecting notifiable 
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diseases such as Hepatitis C, Hepatitis B, Chlamydia, and Gonorrhea15 using free-text laboratory datasets extracted 
from an Health Information Exchange (HIE), a network of interconnected health information systems16, example 
laboratory report messages can be found in appendix D. Prior efforts have demonstrated the ability to identify cancer 
cases using plaintext laboratory reports and machine learning approaches for case reporting to public health 
registries4,17  Neither study on machine learning in public health reporting evaluated the model architecture’s ability to 
generalize. Given the state of the existing literature, we sought to; a) train decision models capable of identifying three 
notifiable conditions using test and train data sampled independently of their source, b) assess generalizability of these 
decision models by exploring how well they perform on previously unseen data sources from lab systems excluded 
from the training process, and c) evaluate potential causes of weak generalization. 

Materials and methods 

Data extraction and preparation. 

The Indiana Network for patient care (INPC)18 served as the data source for our study. One of the largest, continuously 
operated statewide Health Information Exchanges (HIE) in the US, the INPC covers 32 health systems, >100 hospitals, 
a multitude of laboratory systems and over 40,000 providers spread across Indiana19. We processed all electronic 
laboratory reports sent to the INPC from various participating lab systems during the years 2016 to 2017 to identify 
reports related to Syphilis, Salmonella, and Histoplasmosis. Each report was available in Health level Seven version 
2 (HL7 v2) format20. Thus, relevant reports were identified by use of Logical Observation Identifiers Names and Codes 
(LOINC)21 codes related to each disease as determined by the Public Health Information Network Vocabulary Access 
and Distribution System (PHINVADS)22 and supplemented by a keyword search (appendix A). We created a gold 
standard for supervised learning by manually reviewing each of the identified reports and tagging them as either 
positive or negative for each disease under test. 

Objective 1 – Decision Models for Notifiable Condition Detection (Overall model training method) 

We vectorized reports for each disease using a bag-of-words approach23. HL7 V2 OBX5 (observation) and NTE (note) 
entries of each report were combined into a single string and tokenized by splitting using white space. We selected 
tokens to be included in the feature vectors by pooling all tokens for each disease and selecting tokens with a frequency > 
5. We randomly split the data for each disease into 80%-20% train-test splits. We used the scikit-learn python 
package24 to train Random Forest25 classification algorithms using 20 max random features and 1000 trees as 
parameters to train models to predict if a report is positive or negative for the corresponding disease under test (figure 
1.a). Random forest was selected due to previous success in machine learning tasks addressing various healthcare 
challenges.17 We chose 1000 trees due to acceptable train time and performance trade off and 20 random features 
because it is within the range of  √𝑚 to log2(m+1) where m is the number of features that demonstrate optimal 
performance.25 We evaluated machine learning performance by using holdout test datasets to calculate precision, recall, 
F1-Score (harmonic mean between precision and recall), and Area Under the ROC Curve (ROC-AUC) for each 
disease. 

Objective 2 – Generalizability assessment (Laboratory-level holdout method) 

To evaluate the generalizability of decision models across data from previously unsampled lab systems, we used the 
following methods. We linked laboratory reports on the three diseases to lab systems they originated from. Next, we 
used a frequency threshold to filter out reports from lab systems with the lowest reporting rates for each disease. For 
each selected lab system x and disease under evaluation, we iteratively used all reports not associated with the lab 
system x as the train dataset and all reports associated with lab system x as the test dataset. We refer to this process as 
the ‘laboratory-level holdout’ method (figure 1.b). To evaluate the performance of models using the laboratory-
holdout methods, we measured the performance of each model’s prediction on its corresponding test set using 
precision, recall, F1-Score, and ROC-AUC scores.  

Figure 1 contrasts the overall model training method (1.a) vs. the laboratory-level holdout method for generalizability 
assessment (1.b). 
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Figure 1. Overall model training method (1.a) vs. the laboratory-level holdout method for generalizability assessment 
(1.b). 

Objective 3 – Explore Causes of weak Generalizability 

We investigated the relative distribution of features across reports submitted from each lab system to quantitatively 
assess differences in report content. This enabled us to determine what factors contributed to performance variations 
in models trained using the overall and laboratory-holdout methods. We hypothesized that clustering feature vectors 
extracted from each lab system would highlight relationships between feature vectors and the corresponding lab 
system they were extracted from. However, clustering feature vectors from all lab systems was untenable as the 
distribution of messages from N institutions distributed among N clusters would result in (N-1) x (N-1) degrees of 
freedom. This would invalidate the normality assumption for all counts, thereby making it impossible to effectively 
apply chi-squared analysis to determine relationships between lab systems and cluster on report feature vectors.26 
Instead, we sought to identify all possible combinations of two lab systems (lab system pairs) for each disease, cluster 
data from these pairs into two clusters, and assess the relationship between lab system pair and feature vector for 
statistical analysis.  

We selected the same subset of lab systems identified in objective 2 for this assessment. Feature vectors for all lab 
system pairs were analyzed using the K-Means algorithm27 with K=2. Chi-squared test for independence was used to 
determine whether the clusters of feature vectors were independent from the lab system of origin. 

Figure 2 presents an overview of our research methods. 

 

 

Figure 2. Flowchart presenting the complete study approach, from data exaction to evaluation of each objective. 

Results 

Data extraction and preparation  

We evaluated a total of 1.7 million laboratory reports collected by the INPC between 2016-2017. Figure 3 presents 
the number of reports per disease, together with results of the manual review (% positive or negative/indeterminate 
for each disease). Disease prevalence (% of positive cases) ranged from 18% to 82%. Vectorizing reports for each 
disease generated feature vectors of lengths 940, 3446, and 1634 for Syphilis, Salmonella, and Histoplasmosis 
respectively. 
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Figure 3. Prevalence of each disease across overall lab report set 

Overall model training method 

Table 1 presents the precision, recall, F1-Score, and ROC-AUC for each disease, as calculated using the overall model 
training method. We note that all performance metrics for each disease were relatively high despite our use of basic 
supervised learning approaches without any optimization.  We verified the robustness of thse results by 10-fold cross-
validation and found the minimum and maximum F1-Scores for all overall models to be within ±0.05 of the presented 
leave-one-out F1-scores.  As such, we continue to use the leave-one-out performance results in this paper for ease of 
exposition. 

Table 1. Performance of overall models 

 Disease 

 # of positive reports / # 
total reports  
(Prevalence %) 

Precision Recall F1-Score ROC-AUC 

Syphilis 133/541 (24.6%) 0.89 0.91 0.90  99.22% 
Salmonella 223/1358 (16.4%) 0.97 0.95 0.96  99.91% 
Histoplasmosis 143/662 (21.6%) 0.88 0.96 0.92  99.18% 

Laboratory-level holdout method for generalizability assessment 

Based on the distribution of lab reports across each lab system, we identified 29 reports as the optimal minimum for 
inclusion of a lab system for the laboratory-level holdout method. This cutoff was chosen to account for a break in the 
frequency of messages across laboratory systems in the Syphilis dataset, which was our most data-constrained disease 
dataset. We identified (8, 10, 12) labs with >= 29 reports for Syphilis, Salmonella, and Histoplasmosis, respectively. 
Table 2 shows the minimum, maximum, and median values for each performance metric. A comprehensive list of 
performance metrics for each laboratory-level holdout test is presented in appendix B. 

Table 2. Summary of holdout model performances for each disease 

 
 
To investigate the role of disease prevalence on varying performance metrics reported across each laboratory-level 
holdout assessment, we plotted disease prevalence vs. F1-score for each disease under study (figure 4). We note that 
F1-scores may vary significantly across systems that reported similar prevalence. 

Performance  
metric 

Syphilis Salmonella Histoplasmosis 
Min Max Median Min Max Median Min Max Median 

Precision 0.24 1 0.97 0 1 0.97 0.66 1 0.925 
Recall 0.11 0.95 0.655 0.14 1 0.73 0.18 1 0.935 
F1Score 0.2 0.97 0.76 0.01 0.99 0.715 0.29 1 0.925 
ROC-AUC 66.67% 99.11% 98.02% 48.27% 100% 99.56% 72.34% 100% 99.32% 
Frequency Pos 5 156 44.5 2 228 44.5 12 224 18.5 
Frequency Neg 10 958 25 154 1031 415.5 16 1086 22.5 
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Figure 4. prevalence vs. F1-Score for each laboratory-
level holdout assessment. 

 

 

 

 

 

 

 

 

Assessment of report variations across various lab systems 

We identified (38, 32, 35) lab pairs for Syphilis, Salmonella, and Histoplasmosis, respectively. However, not all unique 
pairs clustered by K-Means were suitable for chi-squared analysis. Table 3 describes all pairs suitable for chi-squared 
analysis (valid lab pairs), the number of pairs that failed to show a statistically significant relationship between the 
feature vector cluster and lab system pair at the 99% confidence level (non-significant pairs), number of unique lab 
systems comprised the pairs of lab systems that failed to show a significant relationship (unique non-significant labs), 
and the average proportion of reports belonging to the cluster with fewer messages (average lesser cluster size). Each 
pair was clustered into two groups, so if the average lesser cluster size is P, then the average greater cluster size is (1-
P)%. 

Table 3. Variations in lab reports across various lab systems 

Disease Valid lab 
pairs 

Non- Significant Pairs 
(%) 

Unique Non- Significant 
Locations 

Average Lesser 
Cluster Size 

Syphilis 12 0 (0%) 0 35.45% 
Salmonella 183 8 (4%) 5 26.17% 
Histoplasmosis 33 8 (24%) 6 31.34% 

Discussion 

Despite widespread acknowledgement of its value28, generalization of decision models for healthcare is rarely 
performed8. We found that decision models that deliver strong performance metrics using data from multiple systems 
still fail to generalize to data from other holdout systems. The approach we adopted to investigate model 
generalizability represents a simple method readily transferable to other datasets and use cases.  
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Models trained using the overall training method performed well with F1-Scores >= 0.9 for all three diseases. However, 
the laboratory-system holdout method demonstrated highly variable performance when models were tested on holdout 
datasets. These variations in holdout model performance are much greater than can be accounted for by random 
variation in model training as evidenced by 10-fold cross validation F1-scores of the overall models. The median F1-
score of 0.925 for Histoplasmosis indicated a substantial number of models maintained high performance. However, 
F1-scores for Syphilis and Salmonella were 0.76 and 0.715, demonstrating that a majority of models exhibited 
substantial performance degradation when generalizing. Additionally, all three diseases reported minimum F1-scores 
of < 0.3. The uniformly poor minimum scores indicate the high likelihood of a model failing to generalize to certain 
institutions. 

Comparison of prevalence vs. F1-Score for each laboratory-level holdout assessment (figure 4), as well as other 
performance metrics from each lab system (appendix B) demonstrate that variations in model performance does not 
mimic differences of data sources at a macroscopic level. Prevalence vs. F1-Score plots (figure 4) do not show a clear 
relationship between F1-score and the positive-negative balance of the holdout dataset.  Many lab systems with 
roughly equivalent prevalence reported considerable differences in machine learning performance. This suggests that 
differences in individual report characteristics are a likely primary contributor to performance variability instead of 
overall characteristics of the holdout dataset.  Clustering evaluation provided quantitative support for the difference 
in report characteristics across lab systems. The overwhelming number of lab system pairs showing a significant 
relationship between report institution and cluster suggest that differing message structure is a likely cause for poor 
generalizability. The average proportion of data in the lesser cluster shows that the difference in clusters is not a few 
outlying vectors, but that each cluster corresponds to a significant number of lab messages. Both salmonella and 
histoplasmosis datasets contained eight pairs of lab systems that failed to show a significant relationship between lab 
systems and clustering of messages. However, the eight salmonella pairs contained only five unique lab systems, and 
the eight histoplasmosis pairs contained only six unique lab systems. This affirms the consistency of clustering 
procedure, as it would be expected that if messages from lab system A overlaps with B and B overlaps with C, then 
A and C are more likely to overlap.  These checks indicate that the clustering analysis correctly detects substantial 
differences in lab messages across holdout datasets. 

Our results provide important evidence that performance of a machine learning model on a singular dataset does not 
imply the model will generalize well to an external dataset. We also provide empirical evidence for an intuitive 
explanation that this phenomenon is caused by different characteristics of the individual reports such as vocabulary 
and sentence structure as opposed to the size or positive-negative balance of the overall datasets. One might expect 
that a machine learning algorithm might perform poorly on messages containing unfamiliar words and phrases or 
combinations thereof. From a mathematical perspective, the clustering experiment emphasizes that the machine 
learning algorithm is often forced to extrapolate when predicting on unseen data sources, which is known to be 
concerning in any statistical model. Even though these results may be intuitive, they highlight the need for a clear path 
towards implementing machine models in real healthcare settings. Currently, papers that exemplify the potential of 
machine learning in healthcare focus almost solely on performance on a homogeneous dataset, leading to uncertainty 
of model generalizability and the pathway to implementing the model across real healthcare settings unclear. 

We identified several limitations in our study. We leveraged laboratory reports on specific illness from a large HIE 
network. Thus, these results may not be applicable to other healthcare use-cases or datasets. Further, we used bag-of-
words as our sole vectorization procedure. The generalizability and clustering results are likely dependent on the 
vectorization procedure used. Thus, it is unclear how use of other common preprocessing methods such as negation, 
word vectors or use of context would influence model performance. Additionally, we were unable to identify specific 
lab report characteristics of a lab system that caused poor generalizability. Our current experiments were limited to 
holding out one lab system at a time. However, multiple lab systems could be held out in a combinatorial approach to 
gain more robust results. 

Future research will evaluate the feasibility of more inclusive HIE participation for analytics. When healthcare systems 
contribute to the training dataset, then generalizability is more likely. Determining the feasibility of enabling 
healthcare systems to train models on their own data could be a solution for similar reasons. Improvements to our 
understanding of model generalizability in the healthcare setting could also guide other solutions. Possibly there could 
be a representative dataset with a minimal number of contributing institutions. Discovering how to identify a minimal 
set of data sources to build a generalizable model is still unknown. Error analysis of messages misclassified by the 
developed holdout models will be a crucial component of determining factors of generalizability. Alternatively, a 
degree of data standardization could improve observed generalizability. Finally, techniques that improve model 
generalizability would alleviate some of the need for the above solutions. Our results indicate that suboptimal models 
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fail to accommodate new words missing from the training data set. Normalizing data could minimize the impact of 
this issue, for example, by using a medical or word vectors to map similar words to words to similar vectors, so that a 
feature vector containing unseen words will still have a similar distribution to vectors in the train dataset. 

Conclusion 

We demonstrate that studies showing highly performant machine learning models for public health analytical tasks 
cannot be assumed to perform well when applied to data not sampled by the model’s train dataset. Our clustering 
results provide evidence that differences in data representation among data sources account for this poor generalization. 
These results highlight need to consider more inclusive training pathways for machine learning models in healthcare. 
It is currently unknown the degree to which many published ML models in the healthcare domain are generalizable. 
Administrative or technical support structures would likely be required to implement these models at other institutions. 
Considering model generalizability when designing future algorithms and evaluating model generalizability could 
reduce the need for external support structures and ease difficulty in achieving practical application of machine 
learning in healthcare. 
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Appendix A. List of Keywords and LOINC codes used to identify HL7 reports pertaining to each diseases. 
 

 
Syphilis 
LOINC Codes: PHVS_LabTestName_Syphilis Version 9. OID: 2.16.840.1.114222.4.11.4212 
Additional Keyword(s): None 
 
Salmonella 
LOINC Codes: PHVS_LabTestName_Salmonellosis Version 7. OID: 2.16.840.1.114222.4.11.4198 
Additional Keyword(s): “salmonella” 
 
Histoplasmosis 
LOINC Codes*: PHVS_LabTestName_Histoplasmosis Version 6. OID: 2.16.840.1.114222.4.11.4163 
Additional Keyword(s): “histoplas” 
 
*LOINC code 24647-0 was removed from histoplasmosis list as this code corresponded to test showing past 
histoplasmosis infection  
 

 
Appendix B. Results of the Laboratory-holdout assessment per each notifiable condition. Note that laboratory names 
have been masked using identifiers. 
 

Syphilis 

Institution # # of reports Disease prevalence (%) Precision Recall F1-Score 

1 1114 156 (14%) 0.24 0.58 0.34 

2 703 131 (18.63%) 0.98 0.95 0.97 

3 222 47 (21.17%) 0.9 0.79 0.84 

4 114 91 (79.82%) 1 0.11 0.2 

5 68 42 (61.76%) 1 0.19 0.32 

6 40 17 (42.5%) 0.86 0.71 0.77 
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7 37 27 (72.97%) 0.96 0.85 0.9 

8 29 5 (17.24%) 1 0.6 0.75 

Salmonella 

Institution # # of reports Pos-Support Precision Recall F1-Score 

1 1099 68 (6.19%) 0.98 0.71 0.82 

2 807 17 (2.11%) 1 0.41 0.58 

3 620 9 (1.45%) 1 0.33 0.5 

4 507 94 (18.54%) 0.84 0.9 0.87 

5 503 21 (4.17%) 1 0.14 0.25 

6 420 2 (0.48%) 0 1 0.01 

7 411 228 (55.47%) 0.96 0.75 0.84 

8 363 72 (19.83%) 0.89 0.46 0.61 

9 342 17 (4.97%) 0.93 0.76 0.84 

10 308 154 (50%) 0.98 1 0.99 

Histoplasmosis 

Institution # # of reports Pos-Support Precision Recall F1-Score 

1 1310 224 (17.1%) 0.66 0.18 0.29 

2 1244 215 (17.28%) 0.88 0.93 0.9 

3 94 13 (13.83%) 0.92 0.92 0.92 

4 74 14 (18.92%) 0.88 1 0.93 

5 53 32 (60.38%) 0.93 0.84 0.89 

6 44 25 (56.82%) 1 0.96 0.98 

7 42 21 (50%) 0.88 1 0.93 

8 42 19 (45.24%) 0.94 0.84 0.89 

9 40 18 (45%) 1 0.94 0.97 

10 39 18 (46.15%) 1 0.94 0.97 

11 36 12 (33.33%) 0.91 0.83 0.87 

12 32 16 (50%) 0.66 0.18 0.29 

 
Appendix C. Table containing the minimum, median, and maximum number of whitespace delimited tokens 
contained in laboratory reports of each disease dataset. 
 

 Minimum Median Maximum 
Syphilis 4 26 815 
Salmonella 4 45 7055 
Histoplasmosis 4 103 1151 

 
 
Appendix D. Two example messages corresponding to a positive and negative salmonella laboratory report.  Note 
the lack of consistent structure across messages.  Protected health information has been redacted from the messages. 
 
 
Salmonella (Positive case): 
gram stain of blood culturevial indicates presence ofgram negative bacillus. direct mass spectrometry testing 
performed on positive blood culture bottle indicatespresence of salmonella species. additional testing including 
susceptibility when appropriate to follow. identifications performed by maldi tofmass spectrometry were developed 
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and performance characteristics were determined by pcl alverno hammond in. salmonella species identified by maldi 
tof mass spectrometry. sent to illinois state department of public health. 
gram stain of blood culturevial indicates presence of gram negative bacillus. culture in progress. identifications 
performed by maldi tofmass spectrometry were developed and performance characteristics were determined by pcl 
alverno hammond in. salmonella species identified by maldi tof mass spectrometry. 
 
Salmonella (Negative case): 
normal gi flora present preliminary report <date> at <time> no enteric pathogens isolated stool screened for salmonella 
shigella staphylococcusaureus campylobacter and sorbitol negative e. colifinal report <date> at <time> 
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