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Abstract

The Department of Veteran’s Affairs (VA) archives one of the largest corpora of clinical notes in their corporate data
warehouse as unstructured text data. Unstructured text easily supports keyword searches and regular expressions.
Often these simple searches do not adequately support the complex searches that need to be performed on notes.
For example, a researcher may want all notes with a Duke Treadmill Score of less than five or people that smoke
more than one pack per day. Range queries like this and more can be supported by modelling text as semi-structured
documents. In this paper, we implement a scalable machine learning pipeline that models plain medical text as useful
semi-structured documents. We improve on existing models and achieve an F1-score of 0.912 and scale our methods
to the entire VA corpus.

Introduction

The Veteran’s Health Administration (VHA) is America’s largest integrated health care provider. The VHA provides
care to United States Veterans at over 1,250 health care facilities nationwide. Currently, the VHA uses the Veterans
Health Information Systems and Technology Architecture (VistA) system to house the electronic health records (EHR)
of more than nine million veterans. VistA hosts structured data, images, and unstructured text.

Text Integration Utilities (TIU) is one of the VistA software packages. The TIU package allows healthcare staff to
document patients’ care processes as a medical note. The TIU package manages clinical notes creation, editing and
search. Clinicians use TIU to enter discharge summaries, progress notes, and other clinical documents. Healthcare
facility managers also use TIU to search for documents. TIU also provides users with the ability to sign documents.

The content among TIU notes varies widely. Content varies depending on clinician, facility, and the type of care the
patient received. Additionally, content for a specific type of care varies over time. TIU manages this change by creating
a hierarchy of document types. All documents inherit from a base document type, and then notes are specialized into
discharge summaries, progress notes, etc.

The structure in a newly created TIU note is determined by what attributes that document inherited from the document
type hierarchy. Notes often have precompiled templates with boilerplate sentences, text fields, check boxes, and
section headings. Clinicians fill out the appropriate fields while giving care to the patient. Clinicians are able to
modify documents by adding custom fields or typing additional information.

There is no standard hierarchy of document attributes. Each deployment of the TIU package allows documents to
be configured differently. The result is that a document at facility A may record a patient’s weight in a field named
weight while another document at facility B records weight in a field called wt. So there can be a wide variety of
documents across all the VistA systems.

The Department of Veterans Affairs corporate data warehouse (CDW) stores data from across the enterprise. Extract,
transform, and load (ETL) scripts are responsible for moving data from the 130+ different VistA systems into the
appropriate enclave in the CDW. Inside the CDW enclaves, most data is stored in traditional relational databases. The
clinical documents from TIU are stored in the research enclave and loaded into a single text column of a fact table1.
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These data are extremely valuable to the medical research community because they contain information not captured
in the structured portions of the EHR. Yet these data are difficult to use due to the unstructured nature of the text
columns. Text columns lend themselves well to inverted indices, keyword searches and look ups but fail to support
complex queries on fields within the document. For example, it is reasonable for a researcher to ask for all of the notes
where a clinician wrote diabetes in a patient’s past medical history. If the notes are stored as unstructured text, then
that user must write a custom application to find the answer to their query. We propose a machine learning approach
to model unstructured text to support more complex queries.

In this paper, we introduce JSONize, a scalable machine learning pipeline that models medical text as scehma-free
JSON documents. JSON is a human readable text format for expressing structured data with support for many pro-
gramming languages2. A JSON document is a collection of fields and values in a structured format3. Figure 1 shows
an example of a clinical document modelled as unstructured text on the left and modelled as a semi-structured JSON
document on the right.

Nursing Stress Test

Patient Name: Last, First  Age: 60 

SSN: XXX-XX-XXXX

Type of ETT: Bruce Protocol

Past Medical History:

1) Diabetes

2) Hypertension

{
    "Nursing Stress Test": "",
    "Patient Name": "Last, First",
    "Age": 60,
    "SSN”:”XXX-XX-XXXX",
    "Type of ETT”: "Bruce Protocol",
    "Past Medical History":  [
        "Diabetes",
        "Hypertension"
    ]
}

Jsonize( )

Figure 1: Using JSONize to model a clinical document (left) to a JSON document (right).

Related Work

JSONize is not a clinical information extraction system4. Information extraction deals with modelling unstructured
or semi-structured data as structured data5. JSONize models text as semi-structured documents. This distinction
separates the JSONize approach from other approaches geared toward information extraction6,7. JSONize makes
the simple observation that TIU notes have enough structure to be modelled, stored and queried as semi-structured
documents.

JSONize builds on previous approaches to the section identification problem. In a survey of approaches to section
identification, Pomares et al. categorize current approaches as either rule-based, purely machine learning or machine-
learning- rules hybrids8. Pomares et al. also compared approaches based on a number of factors like the language
the note was written in, narrative type, and performance metrics. The survey shows that conditional random fields
out-perform other machine learning approaches while maintaining the ability to generalize. Pomares et al. notes that
rule-based approaches lack the ability to generalize to notes from different healthcare facilities and authors.

One of the requirements of our system is to process 20 years worth of clinical documents from 130 VistA systems by
hundreds of different authors. Hence we choose to use a token based approach with conditional random fields (CRF)
similar to the one introduced by Dai et al.9, which is demonstrated to work well with publicly available data sets. Dai
et al. use MedPost to tokenize the medical text. Then Dai et al. generate and normalize multiple features based on
word, affix, orthography, lexicon, semantic, and layout. Then Dai et al. train and test a linear-chain CRF model on a
publicly available data set achieving an F1-score of 0.942.

Methods

We propose a two-step approach to modelling medical text as a JSON document. First, we solve the section identifica-
tion problem8. Then we follow up with a rule-based post-processing module that provides structure to the annotated
sections. To address the size of our data, we scale out using Apache Spark.
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Figure 2: The components of JSONize.

We approached the section identification problem using a method adapted from Dai et al.9. First, we preprocess
each document using data set specific techniques that clean the data. Next, we tokenize the documents and generate
features. Then we use a binary classifier to classify each token as either a section header or not a section header.

Preprocessing

Prior to processing notes we replace all unicode code point characters less than 32 and greater than 126 with a newline.
This fixes errors caused by optical character recognition and accidental insertion of binary data10.

Feature Generation

The feature generation module generates the features that are needed by the CRF classifier for section annotation. We
begin with the Apache cTakes implementation of the Penn TreeBank tokenizer to tokenize documents11. This converts
each note into a series of T tokens. For each token, we compute the same features as described in Dai et al.9 and use
the SecTag vocabulary for the lexicon features12. We make two changes in this feature set:

1. We remove the semantic features that are intended to disambiguate abbreviations. Abbreviations are common
throughout medical text and difficult to disambiguate even when context is present. For example, the abbrevia-
tion pt appears in approximately 10% of the documents in the corpus and can mean a variety of things depending
on the context. In a corpus of billions of documents over a 20 year time period, the amount of abbreviations in
the corpus is so vast that the simple semantic features of Dai et al.9 did not make sense.

2. We change the behavior of the newline feature to be the count of newlines before a token, instead of just checking
for an empty line before a token.

We implement the Dai et al. features using Python and denote the resulting feature vector for token t ∈ {1, . . . , T} by
at.

There is no standard definition of a section in a medical note. Denny et al. define a section header as a segment
that includes words that provide context for the encapsulated text, but whose words themselves do not add specific
clinical information13. This means that each token is classified as a section header or not a section header, which we
denote as {key, value}, respectively. We use Denny et al.’s definition of a section header but remove the constraint
that a section header cannot add clinical information. We interpret a segment as a phrase not part of a grammatically
correct sentence. Consider the sentence, ”The patient’s HR is XX, and the patient’s BP is XX.” We would not label a
section header. Consider the string ”Vital Signs: HR XX BP XX”. We would label all of V italSigns, HR and BP
as sections headers (keys). In this regard we deviate from Dai et al. and label sections and subsections as keys.

The at features model topmost sections well. A topmost section is a section that cannot be viewed as further describing
a previous section. Topmost sections are usually sections like Allergies, Medications, and Vital Signs. Rather than
only modelling topmost sections, we model all sections in the note and offer the following improvements to the at
features. After the removal of the semantic features from feature change 1 above and the way newlines are calculated
from feature change 2, the resulting set of features is called bt.
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We add a layout feature, ct, a count of white space preceding a token. The original layout features only account for
newline characters. In the VA data set, tabs and spaces can also signal the beginning of a new section. For example,
consider Figure 1. The clinical document on the left uses two spaces before the Age : section starts. The ct feature is
intended to extend all sections and not just topmost sections.

The output from the feature generation module for a single note with T tokens is a set of T feature vectors xt = (bt, ct),
where t = 1, . . . , T .

Section Annotation

The section annotation module uses the features from the previous module to classify tokens as a section header or
not. CRFs are well suited to classification tasks with a large number of interrelated features. Linear-chain CRFs are
probabilistic sequence models for computing the conditional probability p(Y |X) of a label sequence Y = {y1, ..., yT },
in our case a binary sequence coding {key, value}, given input sequence X = {x1, ..., xT }. A linear-chain CRF
model for token t is given by,

P (Y |X) =
1

Z(x)

T∏
t=1

exp

{
K∑

k=1

λkfk(yt, yt−1, xt)

}
, (1)

where Z(x) is an instance specific normalization term such that the sum of all possible sequence labels sum to 1,
{fk(yt, yt−1, xt)}Kk=1 is a set of real-valued feature functions, and λk is a real-valued weight of the feature function.
The number of feature functions, K, is given by the number of possible feature vector combinations, where each
feature function is coded by a one-hot (dummy variable)14.

In this paper, we used CRFSuite’s implementation of linear-chain conditional random fields15. We compared `1-
regularization and `2-regularization during training, and we tuned the regularization parameters using grid search on
k-fold cross validation on the training data.

Postprocessing

Our post-processing module uses a rule-based approach to organize labelled tokens into a JSON document. JSON
documents are built on two structures: objects and arrays. Objects are a collection of field-value pairs. Arrays are
collections of values. A value can be a string, number, boolean, null, array, or another object. There are extensions to
JSON that support additional data types such as binary data. For this paper we do not consider binary data.

Postprocessing begins by pairing fields with their respective values. Fields are formed by merging all consecutive
tokens labelled as a section header. Values are formed by merging together all consecutive tokens labelled as not a
section header. Fields are paired to the first value after the last token in the field. In Figure 1, the tokens Last, ,, and
First were all labelled as not section headers. Since those tokens are consecutive and labelled as not section headers,
they were grouped into a single value. The field Patient Name precedes them in the text so together they form a
field-value pair.

The field-value pairs form the basis for the JSON document. All field-value pairs that are not part of a subsection are
inserted in the JSON document. The current implementation of this module creates subsections for unordered lists
and numbered lists, otherwise a field-value pair is not considered a subsection. An unordered list is a field that begins
with a hyphen. An ordered list is a field that begins with a Roman numeral, numeric with or without surrounding
punctuation, or single letter with punctuation. In Figure 3 impression is section heading, and the different ordered
lists are subsections of the impression section.

Apache Spark

Apache Spark is a distributed computing framework16. The Spark application programming interface supports a map-
reduce programming paradigm. A core component of Spark is the DataFrame abstraction which is a data set that is
horizontally distributed into a number of partitions. Operations on DataFrames are broken up into tasks that can be
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Impressions:

1) No ST-Changes

2) Maximum heart rate achieved

Impressions:

A. No ST-Changes

B. Maximum heart rate achieved

Impressions:

#1 No ST-Changes

#2 Maximum heart rate achieved

Impressions:

1. No ST-Changes

2. Maximum heart rate achieved

Impressions:

I. No ST-Changes

II. Maximum heart rate achieved

Impressions:

(1) No ST-Changes

(2) Maximum heart rate achieved

Figure 3: Examples of Ordered Lists in Medical Notes.

executed in parallel and distributed to workers. These workers can efficiently and reliably work in parallel across many
nodes.

In addition to fault tolerant computation across multiple nodes, Spark provides parallel input/output libraries based on
the Apache Parquet file format17. Spark allows easy use of the parquet file format through the DataFrame application
programming interface. Parquet allows us to store clinical documents efficiently and retrieve them quickly.

For this pipeline, we configured Apache Spark with two executors per node. Each executor had 55 GB of memory and
16 cores. We ran the master and driver on the same node. We used the local disks for spill directories and wrote the
final outputs to a parallel file system.

Results

As of the writing of this paper, the Oak Ridge National Laboratory (ORNL) version of the VA corpus does not update
via the ETL process. The ORNL version was last updated in October 2016. This version contains 3.4 billion TIU
notes. We exported these notes out of SQL Server and stored the notes on a parallel file system. Due to security
constraints, we implemented a Kerberos friendly Java Database Connectivity wrapper for Apache Spark to connect
to SQL Server. After the notes were extracted from SQL Server. the notes were stored in parquet format with gzip
compression. The total size of all 3.4 billion notes is 1.9 TB.

Generating the CRF Model

We randomly sampled 1,000 documents. We manually labelled all sections in 515 documents. The number of distinct
tokens labelled was 154,148. The number of tokens annotated as sections were 25,332. We used our own annotation
software for this task. After labelling we preprocessed all of the documents and generated features.

We split the labelled documents into training data and testing data. Our training data was 309 documents, and the test
data was 206 documents. We tuned the regularization parameters on the training data using grid search and k-fold
cross validation. We used five folds and searched the range between 0.02 and 2.00 in equal increments of 0.02 for
the `1- and `2- regularization parameters. After choosing the parameters we trained a CRF model on the training
data. Then we evaluated the model based on precision, recall, and F1-score. We performed this process for the aDAI

features and for the xJSONize features (see Table 1). We found that the F1-score for the model using xJSONize was
0.912 and the F1-score for the model using aDAI was .889.

Finally, we trained a CRF model using all of the labelled data with the features and parameters that worked best on the
test data. We stored the resulting model in a pickle file. This model was used by the section annotation module.
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`1-regularization `2-regularization
Precision Recall F1-score Precision Recall F1-score

aDAI Features 0.898 0.874 0.886 0.900 0.878 0.889
xJSONize Features 0.892 0.890 0.891 0.921 0.902 0.912

Table 1: Comparing different sets of features on the testing data

Running the Entire Corpus

We converted all 3.4 billion clinical documents to JSON documents using the JSONize pipeline. This pipeline was
implemented in Python and Scala using 20 nodes of the Apache Spark cluster. The entire pipeline finished in 103
hours. 23 hours were spent in preprocessing and feature generation modules. The section annotator used 75 hours,
and the postprocessing module took 5 hours. After the post-processing module was completed, we stored the final
output in parquet files with one column which was a JSON document.

Final Analysis

After running JSONize on the entire VA corpus, we reviewed the output by counting the frequency of fields in the
JSON documents. We went through each document and counted the number of times each field appears. Note that
we did not review arrays. The total number of unique fields was 220,868,034. There are 36,247 fields that have
a frequency greater than 100,000. Table 2 lists the top 50 fields by frequency count. There are fields related to
medications, allergies, vital signs, and Subjective Objective Assessment Plan (SOAP) notes.

Medication related keys appeared frequently. The TIU notes often contain a list of current medications, expired
medications, and active medications prescribed by a doctor outside the VA. Many medication lists provide the drug
name, usage information sig, the amount qty, the number of refills refills, when the medication was prescribed issu,
when the medication was last filled last, and when the medication expires expr.

SOAP is a common method for structuring a patient’s note. In the EHR, these fields are often abbreviated to just s, o,
a, and p. The token subjective only appears in 4% of notes, and in an overwhelming majority of the documents that
contain the token subjective, it is only used once. JSONize made 64% of the uses of the word subjective a field. The
word subjective probably does not have many uses in the EHR outside of SOAP notes. The words assessment and
plan are common in prose and also used as section headings. Table 3 summaries these numbers and provides field
frequency, word frequency, and document frequency.

Discussion

We were able to model 3.4 billion TIU notes as JSON documents. Our method is scalable and reasonable to compute
on big medical data. The resulting JSON documents can support complex queries not easily performed on unstructured
notes.

We used this data in an initial use case for improving existing tobacco and alcohol use phenotypes. We were able to
query the most frequent fields that record tobacco and alcohol habits. We queried fields such as tobacco, tobacco use,
alcohol, alcohol use, and etoh. We were able to combine the structured data on smoking habits with the smoking
data that we found in the medical text. We found that often the medical text provides higher resolution of tobacco use
than the structured data. For example, notes can record how many packs per day are smoked.

We acknowledge some of the limitations of our paper. We plan to label more documents so that we have more training
and test data. Also, the postprocessing module needs more logic to correctly model all of the different ways that notes
can be recorded. For example, occasionally keys can follow the value in medical text. Lastly, we plan to evaluate deep
learning approaches in the section annotation module.

Conclusion

We implemented a machine learning pipeline that transformed clinical documents into JSON documents. This pipeline
uses state-of-the-art techniques and machine learning features. We evaluated our CRF model using a labelled data set
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Field Frequency (millions) Field Frequency (millions)
sig 597 medications 139
active outpatient medications 397 o 137
comment 364 a 136
refills 360 level of understanding 132
qty 357 if 132
comments 339 chief complaint 132
last 317 heent 126
expr 315 location 126
plan 311 blood pressure 126
issu 304 vital signs 124
other 303 resp 119
allergies 283 skin 115
pulse 271 abdomen 115
date 271 bmi 112
pain 251 labs 112
weight 245 lungs 111
p 215 provider 110
assessment 189 eval 108
bp 172 objective 109
temp 161 neck 105
height 161 active non-va medications 102
age 157 activity 100
diagnosis 150 respiration 97
s 149 neuro 97
temperature 140 os 96

Table 2: The top 50 most frequent fields from the 3.4 billion JSON documents

Field Field Word Document
Frequency Frequency Frequency

subjective 96 150 144
objective 109 192 149
assessment 189 1,478 771
plan 312 1,463 900
s 150 2,061 906
o 137 1,094 623
a 137 7,836 1,832
p 215 1,123 674

Table 3: This table gives field frequency, word frequency and the document frequency of selected words from the 3.4
billion JSON documents. All units are in millions.
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from the VA corpus of TIU Notes and achieved an F1-score of 0.912. This is 0.023 higher than a leading state-of-the-
art method using CRFs.

We scaled our technique to process 3.4 billion clinical documents. Our entire pipeline finished in 103 hours using a 20
node Apache Spark cluster. After we modelled all the documents as JSON documents, we counted the occurrences of
fields in the JSON documents. For SOAP notes, we compared the field frequency with word frequency and document
frequency.
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