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Abstract 
Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. 
In this paper, we present a natural language processing approach based on deep learning to automatically identify 
clinically important recommendations in radiology reports. Our approach first identifies the recommendation 
sentences and then extracts reason, test, and time frame of the identified recommendations. To train our extraction 
models, we created a corpus of 1367 radiology reports annotated for recommendation information. Our extraction 
models achieved 0.93 f-score for recommendation sentence, 0.65 f-score for reason, 0.73 f-score for test, and 0.84 f-
score for time frame. We applied the extraction models to a set of over 3.3 million radiology reports and analyzed the 
adherence of follow-up recommendations.  

Introduction 

With the dramatic rise in utilization of medical imaging in the past two decades, health providers are challenged by 
the optimal use of clinical information while not being overwhelmed by it. A radiology report is the principal means 
by which radiologists communicate the findings of an imaging test to the referring physician and sometimes the 
patient. Based on potentially important observations in the images, radiologists may recommend further imaging tests 
or a clinical follow-up in the narrative radiology report.  These recommendations are made for several potential 
reasons: (1) radiologists may recommend further investigation to clarify the diagnosis or exclude potentially serious, 
but clinically expected disease; (2) radiologists may unexpectedly encounter signs of a potentially serious disease on 
the imaging study that they believe require further investigation; (3) radiologists may recommend surveillance of a 
disease to ensure an indolent course; or (4) they may provide advice to the referring physician about the most effective 
future tests specific to the patient’s disease or risk factors.   The reliance on human communication, documentation, 
and manual follow-up is a critical barrier to ensuring that appropriate imaging or clinical follow-up occurs. There are 
many potential points of failure when communicating and following up on important radiologic findings and 
recommendations: (1) Critical findings and follow-up recommendations not explicitly highlighted by radiologists: 
Although radiologists describe important incidental observations in reports, they may or may not phone an ordering 
physician. If these recommendations “fall through the cracks”, patients may present months later with advanced 
disease (e.g., metastatic cancer). (2) Patient mobility: When patients move between services in healthcare facilities, 
there is increased risk during “hand-offs” of problems with follow-up of test result and continuity of care1. (3) Heavy 
workload of providers: Physicians and other providers have to deal with a deluge of test results. A survey of 262 
physicians at 15 internal medicine practices found that physicians spend on average 74 minutes per clinical day 
managing test results, and 83% of physicians reported at least one delay in reviewing test results in the previous two 
months2. However, it is vital that these results, particularly if they are unexpected, are not lost to follow-up. In patients 
who have an unexpected finding on a chest radiograph, approximately 16% will eventually be diagnosed with a 
malignant neoplasm3.  
These examples indicate an opportunity to develop a systematic approach to augmenting existing channels of clinical 
information for preventing delays in diagnosis. The goals of our research are to: (1) build a gold standard corpus of 
radiology reports annotated with recommendation information, (2) build information extraction approaches based on 
deep learning to automatically identify recommendation information, and (3) apply the trained extractors to a large 
dataset of 3.3 million radiology reports created at University of Washington and Harborview Medical Center between 
2008 and 2018 to analyze follow-up adherence rates.  
In this research, we define a follow-up recommendation as a statement made by the radiologist in a given radiology 
report to advise the referring clinician to further evaluate an imaging finding by either other tests or further imaging.  
A follow-up recommendation can consist of multiple sentences. Figure 1 presents a radiology report with such a 
follow-up recommendation. In our annotation, we first labeled sentences with recommendation. For each identified 
recommendation, we also annotated the spans that describe (1) the reason for follow-up, (2) recommended test, and 
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(3) time frame. In figure 1, the recommendation is “Given family history, would recommend repeat ultrasound in 4-5 
weeks to evaluate fetal growth and complete anatomic survey. If unable to visualize fetal heart at that time, consider 
fetal echo.”, reason is “to evaluate fetal growth and complete anatomic survey”, recommended test is “ultrasound”, 
and time frame is “4-5 weeks”.  
 

IMPRESSION 

Singleton pregnancy.   Size consistent with dates.  Anatomic survey limited by maternal body 
habitus and fetal position.  Inadequate views of fetal heart and spine.  Given family history, 
would recommend repeat ultrasound in 4-5 weeks to evaluate fetal growth and complete anatomic 
survey.  If unable to visualize fetal heart at that time, consider fetal echo.  

Figure 1. Example radiology report with recommendation information annotations.  
Related Work  

Automated information extraction using natural language processing (NLP) techniques has made patient information 
in clinical notes accessible for scientific research. Informatics for Integrating the Biology and the Bedside (i2b2) has 
been organizing NLP challenges on different types of clinical information extraction since 2006. These challenges 
included private health information de-identification4, medical concept extraction5, temporal information extraction6, 
as well as medication information extraction7. Participants employed different NLP approaches including rule-based, 
machine learning and ensemble methods to address these tasks. Machine learning methods were usually based on 
statistical classification algorithms such as Support Vector Machines (SVMs), Maximum Entropy (MaxEnt) and 
Conditional Random Fields (CRFs)8,9. In recent years, neural networks have gained tremendous popularity, especially 
after several breakthroughs were accomplished by Hinton and Mikolov, T. et al.10,11 and several deep learning libraries 
became publicly available. Clinical NLP researchers have also taken this opportunity and employed neural network 
modeling to deliver state-of-the-art performance. For instance, the best de-identification system in 2009 achieving 
98% F-score was based on statistical learning with regular expression12. In 2016, Dernoncourt et al. were able to 
achieve similar performance using bidirectional LSTM and character embedding13. 
Prior research efforts on radiology follow-up recommendation detection are primarily based on rule-based and 
machine learning approaches. Dutta et al. employed lexicons matching heuristics to detect recommendations for 
incidental findings14. They compiled a set of lexicons which consisted of various inflectional morphemes of the same 
stem words. They went through three iterations of development and validation to fine tune their pattern matching 
algorithm. Chapman et al. adopted an algorithm, pyConTextNLP, to identify critical findings from radiology reports 
that were relevant to abdomen, chest, neuro and spine exams15. The algorithm used classification rules that were based 
on specific sentence structures in the reports. It also relied on a knowledge base that captured common biomedical 
terms in the target radiology imaging reports. Johnson et al. evaluated the ConText algorithm with a chest X-ray report 
and found that the algorithm misidentified two cases of negation and temporality in three sentences16. They proposed 
a heuristic approach to identify incidental findings based on regular expressions with patterns of lexicons. They argued 
that their approach could outperform processes that solely relied on radiologist annotations. However, their evaluation 
was based on a small and highly imbalanced dataset of 580 records (8.6% positive to negative ratio) and was only 
limited to X-ray, CT and ultrasound. Another lexicon based commercial system, LEXIMER (Lexicon Mediated 
Entropy Reduction), was used by Dang et al. to identify recommendations across different modalities. These authors 
analyzed the results using OLAP (Online analytical processing) technologies, a common approach in business 
intelligence and data warehousing17,18. LEXIMER parsed the reports into phrases and then weighted the phrases using 
hierarchical decision trees against a dictionary of lexicons19. Similarly, Mabotuwana et al extracted follow-up 
recommendations and associated anatomy from radiology reports with a keyword-based heuristic approach to identify 
recommendations in finding and impression sections of over 400 thousand radiology reports20.The same group 
processed close to 3 million radiology notes to determine adherence rates to follow-up recommendations21.   
Domain adaptability is a major problem for rule-based and lexicon-based approaches as these methods require expert 
intervention to upkeep the logic of the rules and the dictionaries, which are often tailored to a specific problem and/or 
domain. Statistical NLP methods on the other hand do not require domain expert maintenance since the model 
automatically learns from annotated examples. Yetisgen-Yildiz et al. created a corpus of 800 radiology reports 
annotated with follow-up recommendations and developed a Maximum Entropy classifier for recommendation 
detection that achieved a best F-score of 87% based on a very rich set of features including ngrams, UMLS concepts, 
syntactic, temporal as well as structural features22. Similarly, Carrodeguas et al. created a corpus of 1000 randomly 
selected ultrasound, radiography, CT, and MRI reports annotated with follow-up recommendations. They trained 
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classifiers based on various supervised learning algorithms as well as recurrent neural networks. They achieved F- 
scores of 0.75 (random forest), 0.83 (logistic regression), and 0.85 (support vector machine). 
Deep learning is not restricted by the lengthy process of handcrafted feature engineering usually required by traditional 
statistical NLP approaches for better performance. Instead, intricate distributed features are learned by adjusting model 
weights through backpropagation. Traditional methods suffer from word sense ambiguity and out-of-vocabulary 
tokens in clinical text which often contains misspellings, acronyms and foreign words. A common solution would be 
using dictionary of lexicons and gazetteers24. Deep learning can overcome these issues by the notion of transfer 
learning where the model is first trained on a larger dataset in a similar context and then fine-tuned on a smaller target 
dataset with limited number of annotated labels25. Another approach is to use character embeddings where the model 
is able to learn the morphological features of words, such as prefixes, suffixes, and any sub-token patterns to account 
for out-of-vocabulary words. 
In this paper, we present a deep learning NLP system for extracting recommendation information from radiology 
imaging reports. We first develop a binary classifier based on Hierarchical Attention Networks26 to identify follow-
up recommendation sentences and then apply a state of the art deep neural named entity extraction system NeuroNER27 
to extract three entities: reason, test, time frame. These attributes help us understand why a follow-up recommendation 
is made by a radiologist to advise referring clinician for further evaluation. To our knowledge, this will be the first 
study that applied deep learning in the large scale to the problem of recommendation extraction in a dataset of 3.3 
million radiology reports.  

Methods 

Datasets: 

Pilot Corpus: In previous work, we created a corpus composed of 800 de-identified radiology reports extracted from 
the radiology information system of our institution. The reports represented a mixture of imaging modalities, including 
radiography computer tomography (CT), ultrasound, and magnetic resonance imaging (MRI). The distribution of the 
reports across imaging modalities is listed in Table 1.  

 

Imaging modality Number of reports 

Computer tomography  486  
Radiograph  259  
Magnetic resonance imaging  45  
Ultrasound   10  
Total  800  

Table 1. Distribution of reports in pilot corpus. 

Annotation Guidelines: We annotated this dataset prior to defining different categories of follow-up recommendations. 
In this annotation task, we asked the annotators simply to highlight the boundaries of sentences that include any 
follow-up recommendations.    
Annotation Process: Two annotators, one radiologist and one internal medicine specialist, went through each of the 
800 reports independently and marked the sentences that contained follow-up recommendations. Out of 18,748 
sentences in 800 reports, the radiologist annotated 118 sentences and the clinician annotated 114 sentences as 
recommendation. They agreed on 113 of the sentences annotated as recommendation. The inter-rater agreement 
measured in terms of F-score was 0.974.    
Multi-institutional Radiology Corpus: We extended our pilot dataset of 800 reports with a much larger set of 
3,301,748 radiology reports from two different institutions including the University of Washington Medical Center 
(1,903,772 reports) and Harborview Medical Center (1,397,976 reports)	 from year 2008 to 2018. University of 
Washington Human Subjects Division Institutional Review Board approved retrospective review of this dataset. Table 
2 shows the distribution of radiology reports by modality in this larger dataset. 
Annotation Process: We designed the annotation task to operate on two levels: sentence level and entity level. At the 
sentence level, the annotators mark the boundaries of recommendation sentences. At the entity level, the annotators 
mark three attributes of recommendation information presented in the marked sentences: (1) Test: the imaging test or 
clinical exam that is recommended for follow-up, e.g., screening breast MRI or CT, (2) Time frame: the recommended 
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time frame for the recommended follow-up test or exam, e.g., 1-3 weeks, 12 months, and (3) Reason: the reason for 
the critical follow-up recommendation, e.g., to assess the actual risk of Down's Syndrome. 

Imaging Modality Number of reports 

Angiography 53,658 
Computed Tomography 706,908 
Fluoroscopy 1,072 
Magnetic Resonance Imaging 243,833 
Mammogram 157,374 
Nuclear Medicine 58,350 
Portable Radiography 310,311 
Positron emission tomography 1,799 
Ultrasound 351,761 
X-Ray 1,416,682 
Total 3,301,748 

Table 2. Distribution of reports in multi-institutional radiology corpus 

Because manual annotation is a time-consuming and labor-intensive process, we could annotate only a small portion 
of our large radiology corpus. The percentage of reports that include recommendation sentences is quite low—about 
15% at our institution. To increase the number of reports with recommendations in the annotated set, rather than 
randomly sampling, we built a high recall (0.90), low precision (0.35) classifier trained on the pilot dataset. The details 
of this baseline classifier can be found in our prior publication28. We ran our baseline classifier on un-annotated reports 
and only sampled from the ones identified as positive by our classifier for manual annotation. Because the baseline 
classification was high recall and low precision, the false positive reports could subsequently be corrected by our 
annotators. The filtering of reports using a classifier reduced the number of reports that our human annotators needed 
to review, thereby expediting the annotation process.   
At the sentence level, one radiologist and one neurologist reviewed the classifier-selected reports with system 
generated follow-up recommendation sentences. The annotators corrected the system generated sentences and/or 
highlighted new sentences if needed.  
At the entity level, one neurologist and one medical school student annotated the entities (reason for recommendation, 
recommended test, and time frame) in reports annotated in a previous stage at the sentence level with follow-up 
recommendations.   
Inter-annotator Agreement Levels: At the sentence level, we measured the inter-annotator agreement on a set of 50 
reports featuring at least one system-generated recommendation identified by our high recall classifier from a 
randomly selected collection of one thousand reports. Our annotation process required annotators to go over all 
sentences that were initially identified by the system as a recommendation. They could label the sentence as Incorrect 
if they believed the system had wrongly identified a recommendation sentence (false positive) or if they believed the 
system had missed the sentence (false negative). The inter-rater agreement levels were kappa 0.43 and 0.59 F1 score 
for the first iteration. To resolve the disagreements, we scheduled multiple meetings. One of our observations during 
those meetings was that none of the new recommendation sentences introduced by either annotator were identified by 
the other. In our review, both annotators agreed that the majority of the new recommendations introduced by the other 
were correct. We adjusted our annotation guidelines to add rules to help decide if and when a new sentence should be 
identified as a recommendation.   
At the entity level, agreement levels were 0.78 F1 for reason, 0.88 F1 for test, and 0.84 F1 for time frame.  Our final 
annotated corpus contained 597 positive examples of recommendation sentences and 11787 negative examples of 
recommendation sentences from 567 radiology reports. At the entity level there were 735 test, 173 time frame and 
545 reason entities in the final corpus.  
Approach: 
Recommendation extraction: To identify sentences that include recommendation information, we first chunk reports 
into sentences with NLTK sentence tokenizer. Table 3 shows the distribution of sentences by image modality on the 
multi-institutional radiology dataset. As can be seen in the table, the length of reports varies across modalities. 
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Imaging Modality Number of sentences Average number of 
sentences per report 

Angiography 1,504,939 28.05 
Computed Tomography  18,109,590 25.62 
Fluoroscopy  13,452 12.55 
Magnetic Resonance Imaging 5,688,512 23.33 
Mammogram 2,016,911 12.82 
Nuclear Medicine  1,144,518 19.62 
Portable Radiography  2,055,534 6.62 
Positron emission tomography 41,423 23.03 
Ultrasound  6,841,966 19.45 
X-Ray 10,008,031 7.06 

Table 3. Distribution of sentences by image modality in the multi-institutional radiology corpus 
We defined our follow-up recommendation extraction task as a classification problem at the sentence level. We 
implemented our classifier based on Hierarchical Attention Networks (HANs)26. HAN is a neural model that employs 
a stacked recurrent neural network architecture. In particular, the weights of the hidden layers for each word are 
aggregated by an attention mechanism to form a sentence vector. The importance of each word in association with the 
outcome label is represented by the attention weight vector that can be learned by a layer of bidirectional Gated 
Recurrent Unit (GRU). The attention weight vector ⍺ is computed through a softmax function of the input context 
vector and a single hidden layer. Intuitively, the attention vector represents how important the word is in determining 
the outcome label. The sentence vector which is made up of these word attentions are then passed to another similar 
attention mechanism where the importance of sentences can also be learned by another layer of bidirectional GRU. 
The bidirectional nature of the encoders allows the contextual information in the input to be read in both directions 
and summarized. The hierarchical architecture allows the model to learn the context of a document by summarizing 
the context of its sentences, each of which in turn was summarized by its own words. The ability to selectively learn 
from local segments of texts to predict the outcome labels is a unique characteristic of attention mechanism in deep 
learning. This network model has been proven to be more effective than conventional statistical machine learning 
approaches in extracting clinical information29. In our annotated corpus, a single recommendation can comprise 
multiple sentences. We treated each recommendation as a document and trained the classifier to learn the relationship 
of the sentences within a recommendation. During inferencing, we classified each sentence separately and grouped 
consecutive positive predictions as one recommendation. 
Hyperparameter optimization: We pretrained our word embeddings using Word2Vec on the entire 10 years of 
radiology dataset. We used grid search to find the best set of hyperparameters. Based on our preliminary experiments, 
we identified the range for each hyperparameter in the search space, which was also limited by available system 
memory: Word2Vec embedding dimension (100-300); number of bidirectional GRU unit on word encoder (100 - 
500); number of bidirectional GRU unit on sentence encoder (100 - 500); drop out (0.3 - 0.5). We have also 
experimented with both Adam optimizer and SGD. Table 4 shows our best hyperparameter configuration. 

Parameter Value 

word2vec embedding dimension 300 
number of bidirectional GRU unit on word encoder  300 
number of bidirectional GRU unit on sentence encoder 300 
drop out 0.4 
optimizer Adam 

Table 4. HAN hyperparameter configuration 
 
We used 0.8/0.2(train/validation) split on the training dataset. We applied early stopping technique30 to avoid 
overfitting with patience level set to 10 epochs. On each epoch, we evaluated the model based on the predicted F1 
score on the validation set. The training would stop when no improvement was shown in the last 10 epochs.   
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Named Entity Recognition: We used Dernoncourt et al.’s NeuoNER27 to process our annotated files in BRAT standoff 
format. The core of NeuroNER consists of two stacked layers of recurrent neural networks. The first layer is the 
Character-enhanced token-embedding layer in which the embedding of each word token is learned by a bidirectional 
LSTM from its character embedding. The resulting token embedding is then concatenated with our pretrained 
Word2Vec word embeddings to form an enhanced token embedding. These token embeddings are then processed by 
another layer of bidirectional LSTM, the Label prediction layer, to compute the probability vector of each word token 
being one of the entities. Finally, the sequence of probability vectors is sent to a feed-forward layer, the Label sequence 
optimization layer, to determine the predicted entity for each token by taking argmax of the probability vector, i.e., 
the entity label with the highest probability for each token. The character embedding captures the morphological 
features of word tokens and performs particularly well in handling morphemes, acronyms, misspellings and out-of-
vocabulary tokens. It provides another level of word presentation that is not captured by sampling word co-occurrence 
as in Word2Vec and GloVe. This network architecture achieved state-of-the-art performance in identifying PHI 
information in i2b2 dataset and MIMIC dataset13.  

We used BIOES annotation (Begin, Inside, Outside, End, Single) to tag each token in the sequence and performed 5-
fold cross validation on the training corpus. We pretrained our own word embeddings with Word2Vec on the multi-
institutional radiology corpus of 3.3 million radiology reports. 

Results 

Recommendation extraction: We merged annotations from the pilot corpus and the multi-institutional radiology 
corpus to create one gold standard corpus that contains 693 positive sentences and 30429 negative sentences from a 
total of 1367 radiology reports. To understand the effect of data imbalance for our classification problem, we designed 
a series of experiments. Let P the set of positive training sentences and N be the set of negative sentences. For each k 
(k=1,…,n), we trained a classifier where the cardinality of N was equal to k times the cardinality of P. We performed 
5-fold cross-validation at each value of K to obtain the average performance scores. We achieved the best 5-fold cross 
validation results at K=32 with 0.94 precision, 0.92 recall, and 0.93 f-score (true positive: 635, true negative: 11755, 
false positive: 39, false negative: 58). In previous work, for the same problem, we achieved 0.66 precision, 0.88 recall, 
0.76 f-score with Max-Ent classifier with extensive feature engineering28.  

Named-entity recognition: Table 5 shows the token-based 5-fold cross validation results on the three entities.  
 

Entity Precision Recall F1 

Reason 68.53 62.05 65.10 
Test 74.20 71.48 72.71 
Time frame 83.38 85.05 84.16 

Table 5. Token level entity extraction 5-fold cross-validation results 
 
Analysis of multi-institutional dataset: The recommendation extraction model predicted 685,912 recommendations in 
the total of 47,424,876 sentences. Table 6 shows the distribution of predicted recommendations and table 7 presents 
examples of extracted recommendation sentences by modality. 523,471 reports (15.9%) in the entire dataset included 
recommendations. As can be observed from Table 6, 98.02% of mammograms included a follow-up exam. For other 
modalities, percentages of reports with recommendations varied between 4.17% (portable radiography) and 25.66% 
(ultrasound). To evaluate the performance of our recommendation extraction model, we randomly selected 40 
recommendations for top 5 modalities with highest recommendation percentages: mammograms (98.02%), ultrasound 
(25.66%), computed tomography (19.81%), positron emission tomography (18.68%), and Magnetic Resonance 
Imaging (14.32%) and manually validated their correctness. We identified 185 out of 200 of those recommendations 
as true positives which resulted a precision value (0.925) on the target dataset similar to our 5-fold cross validation 
result (0.94) on the annotated set.   

We applied the NER model to extract entities from within the predicted recommendation sentences. Table 8 shows 
the distribution of predicted entities by modality. As can be observed from the example sentences presented in Table 
7, not all recommendation sentences included reason, test, or time frame information. From 685,912 recommendations, 
the NER model extracted 250,840 (36.57%) reason, 528,040 (76.98%) test, and 216,128 (31.51%) time frame entities.  
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Imaging Modality Number of  
recommendation sentences 

Number of reports with 
recommendations (%) 

Angiography 8455 7234 (13.48%) 
Computed Tomography 193414 140066 (19.81%) 
Fluoroscopy 103 100 (9.33%) 
Magnetic Resonance Imaging 60954 34928 (14.32%) 
Mammogram 210828 154255 (98.02%) 
Nuclear Medicine 10141 7426 (12.73%) 
Portable Radiography 13519 12951 (4.17%) 
Positron emission tomography  472 336 (18.68%) 
Ultrasound 109166 90266 (25.66%) 
X-Ray 78860 75909 (5.36%) 

Table 6. Number of predicted recommendations by modality 
 

Table 7. Example recommendation sentences extracted from the dataset for each modality  
 
 

Imaging Modality Reason Test Time frame 
Angiography 7,732 8,421 4,474 
Computed Tomography 191,453 221,941 25,440 
Fluoroscopy 159 125 7 
Magnetic Resonance Imaging 41,136 68,452 20,679 
Mammogram 24,998 250,605 162,421 
Nuclear Medicine 11,895 12,476 974 
Portable Radiography 15,292 15,725 367 
Positron emission tomography 449 525 12 
Ultrasound 82,371 134,233 36,827 
X-Ray 73,383 65,115 2,894 

Table 8. Number of predicted entities by modality 
 
To understand the follow-up status of each identified recommendation, we performed a longitudinal analysis on the 
multi-institutional radiology dataset based on the information extracted by the NLP methods. To accomplish that, we 
first created a timeline of radiology reports for each patient based on the timestamps of reports in our dataset.  

Imaging Modality Example recommendation sentences 
Angiography The patient will be followed up in the VIR clinic in approximately 2-3 weeks. 
Computed Tomography For a low risk patient, CT follow-up is recommended in 6 to 12 months. In the 

high risk patient, follow up is recommended at 3 to 6 months.   
Fluoroscopy Further evaluation with endoscopy is recommended.  
Magnetic Resonance Imaging BI-RADS category 6. Take appropriate action. MRI would be the best modality 

to assess  response to neoadjuvant therapy. 
Mammogram Normal interval follow-up is recommended in 12 months. 
Nuclear Medicine Follow up nuclear medicine whole body scan is recommended in 

approximately 7 to 10 days after discharge. 
Portable Radiography A lateral radiograph or CT of the chest is recommended for further evaluation 

of this nodule. 
Positron emission 
tomography 

Follow up examination could be performed in 2 to 3 months to re-evaluate 
these lesions on PET. 

Ultrasound Recommend follow-up pelvic ultrasound in 2-3 months to evaluate for change. 
X-Ray Evaluation with weight bearing views is recommended. 

341



In our initial preliminary analysis, for each patient timeline we identified all reports with follow-up recommendations. 
We used the timestamps of the reports as the timestamp of the recommendations. For each identified recommendation, 
we checked whether a radiology test with the same modality occurred after the timestamp of the recommendation in 
the patient’s timeline to roughly estimate the percentage of patients who stayed within the network of two hospitals in 
our dataset. Table 9 presents the results of this initial analysis.  

Imaging Modality Reports with follow-
up recommendation 

No following tests 
of same modality 

Had following tests of 
same modality 

Angiography 7234 2972 (41.08%) 4262 (58.92%) 
Computed Tomography 140066 43698 (31.20%) 96368 (68.80%) 
Fluoroscopy 100 84 (84.00%) 16 (16.00%) 
Magnetic Resonance Imaging 34928 15791 (45.21%) 19137 (54.79%) 
Mammogram 154255 45357 (29.40%) 108898 (70.60%) 
Nuclear Medicine 7426 4131 (55.63%) 3295 (44.37%) 
Portable Radiography  12951 3629 (28.02%) 9322 (71.98%) 
Positron emission tomography 336 282 (83.93%) 54 (16.07%) 
Ultrasound  90266 35067 (38.85%) 55199 (61.15%) 
X-Ray 75909 22952 (30.24%) 52957 (69.76%) 

Table 9. Number of patients who did / didn’t have follow-up tests 

Next, we used the entities extracted by our NLP methods. We first identified all reports that had recommendation with 
a time frame entity. The text segments of the time frame entities were then normalized to a common temporal 
expression using the Stanford temporal tagger (SUTime)31. SUTime normalizes the temporal phrases into a value 
(e.g., 3 months = P3M, 1 year = P1Y). Then using the timestamp of the recommendation and the normalized time 
frame value for follow-up, we projected the next radiologic test date for the patient. Because some projected dates are 
outside of the collected time range of the dataset, we considered those radiology encounters censored (18,338 records). 
If the recommended time consists of a range such as “6 to 12 months”, we used the end of the range to project the next 
visit. Furthermore, a report could contain multiple follow-up recommendations (122,256 records). If the patient did 
not have any one of the follow-up encounters as recommended in the report, we considered no follow-up for that 
report. If the patient was late to any one of the recommended follow-up encounters in the report, we considered late 
follow-up for that report. Table 10 shows the number of patients who did not have a follow-up encounter as 
recommended by radiologist as well as those who had a follow-up earlier or later than the recommended time. 

Imaging Modality 
Reports with 

recommendation and 
projected time frame 

No follow-up Early follow-up Late follow-up 

Angiography 2075 759 (36.58%) 393 (18.94%) 923 (44.48%) 
Computed Tomography 14506 5516 (38.03%) 4716 (32.51%) 4274 (29.46%) 

Fluoroscopy 5 3 (60.00%) 0 (0%) 2 (40.00%) 
Magnetic Resonance Imaging 8708 3393 (38.96%) 1736 (19.94%) 3579 (41.10%) 

Mammogram 121716 27689 (22.75%) 19935 (16.38%) 74092 (60.87%) 
Nuclear Medicine 349 143 (40.97%) 124 (35.53%) 82 (23.50%) 

Portable Radiography 222 113 (50.90%) 62 (27.93%) 47 (21.17%) 
Positron emission tomography 7 6 (85.71%) 0 (0%) 1 (14.29%) 

Ultrasound 21083 8599 (40.79%) 5060 (24.00%) 7424 (35.21%) 
X-Ray 976 354 (36.27%) 233 (23.87%) 389 (39.86%) 

Table 10. Number of patients who had no follow-up / early follow-up / late follow-up 

As can be observed from Table 10, mammograms had the highest follow-up rate (77%: 16% early, 61% late follow-
up). This is expected as mammograms are commonly used as a screening tool to detect early breast cancer in women 
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and annual exam is recommended for women over 40yo. For the other modalities, the follow-up rates varied between 
14% (positron emission tomography) and 64% (X-Ray).  

Conclusion 

The main contribution of this paper is the application of deep learning to identify clinically important recommendation 
information in radiology notes. We applied the trained models to multi-institutional dataset of 3.3 million radiology 
notes and presented our very preliminary analysis of recommendation follow-up adherence over a period of 10 years.  
One of the limitations of our study was the size of the training set for recommendations. To achieve good performance, 
deep learning approaches require relatively larger dataset than traditional machine learning methods. Our labeled 
training corpus consists of only 1367 reports. The presented performance results are very promising. However, there 
is still room for improvement in recommendation extraction as well as NER tasks for reason, test, and time frame. We 
plan to annotate more reports to increase the size of our training set. We will also explore other deep learning methods 
including contextual embedding and transformer architecture such as BERT. 

In our error analysis, we found that some of the time frame entities could not be normalized by Stanford’s temporal 
tagger, such as “second trimester” in the recommendation “Follow-up ultrasound is recommended in the early second 
trimester for further evaluation.”. 216,128 recommendations (32% of all recommendations) had time-frame entities 
and 169,647 (25% of all recommendations) of those with normalized time frames were included in the preliminary 
analysis. To utilize our entire dataset, we will build our own normalization algorithm for time frame entities. 
Additionally, we will automatically learn the recommended time frames for each modality from the data and use this 
knowledge to fill the missing time information for recommendations without time frame entities. 

Our analysis did not utilize the extracted test and reason entities. We assumed the recommended test would be of the 
same modality of the original test with recommendation mentioned in its report. However in reality, recommended 
test may be of a different modality or of the same modality but with a different anatomy. In future work, we will 
extract the recommended anatomy in addition to other entity types. In addition, test, anatomy, and reason entities will 
be mapped to standardized dictionaries to enable a more comprehensive follow-up adherence analysis.      
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