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Abstract 

Despite an abundance of information in clinical genetic testing reports, information is oftentimes not well 

documented/utilized for decision making. Unstructured information in genetic reports can contribute to long-term 

patient management and future translational research. Thus, we proposed a knowledge model that could manage 

unstructured information in medical genetic reports and facilitate knowledge extraction, curation and updating. For 

this pilot study, we used a dataset including 1,565 cancer genetics reports of Mayo Clinic patients. We used a 

previously developed, data-driven discovery pipeline that involves both semantic annotation and co-occurrence 

association analysis to establish a knowledge model. We showed that compared to genetic reports, around 56% of 

testing results are missing or incomplete in the clinical notes. We built a genetic report knowledge model and 

highlighted four key semantic groups including “Genes and Gene Products” and “Treatments”. Coverage of term 

annotation was 99.5%. Accuracies of term annotation and relationship extraction were 98.9% and 92.9% 

respectively. 

Introduction 

Large-scale cancer genomics studies have substantially advanced our understanding of common oncology pathways 

and genetic alternations, and have benefited many novel therapeutic developments that target particular genetic 

alterations. In addition, advances in sequencing technology have also made genetic panel testing a practical option to 

examine genetic variants with well-known cancer treatment options1, 2. Several oncology drugs have become 

standards of care with companion genetics indications, e.g. trastuzumab for human epidermal growth factor receptor 

type 2 (HER2) breast cancer3 and vemurafenib for melanomas that have mutated BRAF4. Given the potential 

benefits of targeting individual patients’ tumors, i.e. individualized medicine, genetics testing panels are increasingly 

ordered by oncologists to facilitate decision-making during the creation of patients’ treatment plans.  

Despite the abundance of information in clinical genetic testing reports, oftentimes only clinically actionable 

mutations validated by existing evidence are included in the summary for treatment recommendations. Other 

information, particularly that which is found in the unstructured text sections of genetic reports receives little 

attention by oncologists despite containing rich information and knowledge (disease mechanism, altered pathway, 

etc.) for long-term and future clinical decision support. For example, knowledge in the field of cancer genomics is 

accumulating at such a rapid speed that during the time between literature review and drafting of new guidelines for 

lung cancer treatment decisions with targeted inhibitors, major new discoveries were published for treating BRAF-

mutant lung cancers and for the use of immunotherapies5. Since those guidelines are not updated frequently5-7, it is 

difficult for oncologists to keep up with the most current knowledge about treatment options and patient outcome 

expectations. Information in genetic reports is also a one-time snapshot of knowledge at the moment when the report 

is written. Variants of uncertain significance (VUS) might become pathogenic and actionable variants in the future. 

Research by Manrai et al. showed that multiple patients received misclassified variants based on the understanding 

at the time of testing8. Therefore, there is a need to efficiently manage information in patient’s genetic reports so that 

important information can be extracted, curated and periodically updated.  

Taking into consideration unstructured data and the constantly updating knowledgebase of the genomics field, 

successful management (i.e. extraction, curation, and updating) of information in patients’ genetic reports has the 

potential to efficiently and deeply characterize the genetic conditions of patients, including genetic mutations and 

their underlying altered pathways and biological functions. This could help oncologists match patients with optimal 

treatment plans or clinical trials both at the moment of the test and in the future. Moreover, structuring patients’ 

genetic information could enable reusing clinical data for translational, such as discovery of biomarkers predictive 

of drug sensitivity, identification of pathways associated with response to chemotherapies9, etc. In addition, a pre-
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built knowledge base or knowledge graph for clinically relevant genetic information would further catalyze artificial 

intelligence (AI) applications in the medical field for which appropriate knowledge models are critical before any 

inference can be done10-13. 

To achieve the above mentioned goals, we first need a knowledge model to manage the information in patient’s 

genetic reports14, 15. A knowledge model is a computer interpretable model or schema that organizes entities (data) 

and their relationships to one another within a knowledge base or database. From the database perspective, 

knowledge modeling is useful for abstracting and decomposing complex concepts and can address issues related to 

data integration and data curation15. Bimba et al.14 concluded that knowledge modeling techniques can be 

categorized into four groups: 1) linguistic knowledge models such as FrameNet16, WorldNet17 and ConceptNet18, 

which represent knowledge as lexical and semantic relationships; 2) the expert knowledge model that represents 

knowledge as logical and fuzzy rules19, 20; 3) ontologies that represent knowledge as taxonomies of concepts21-23; and 

most recently 4) the cognitive knowledge model that mimics human learning and knowledge memorization through 

concept algebra24. There have been several attempts to create a template for genetic reports25-27. However, all these 

efforts rely heavily on expertise and manual drafting. There lacks a data-driven way to construct a knowledge model 

for genetic reports.  

In this work, we first compared the information capture rate of genetic testing results from genetic reports to clinical 

notes. Then we analyzed the sublanguage patterns of unstructured text sections in 1,565 oncology genetics reports. 

Next, we mapped extracted terms to Unified Medical Language System (UMLS) semantic types and devised a 

knowledge model through a data-driven discovery pipeline28 given regrouped UMLS semantic groups. Finally, we 

evaluated the concept coverage of the knowledge model. We believe that using our proposed data-driven method to 

construct a genetics knowledge model is superior to conventional and manual ways of curating domain knowledge 

by trained experts because it can be fully automatic, objective and scalable for a much larger genetics report corpus. 

Methods 

1. Comparison of Genetic Testing Results in Reports and Information Recorded in Clinical Notes 

Our dataset included 1,565 cancer genetics reports (by Foundation Medicine, Inc.) from 2006 to 2018 of Mayo 

Clinic patients with research authorization. This research project was reviewed by the Mayo Clinic Institutional 

Review Board. We examined the percentage of genetic testing information recorded in clinical notes retrieved from 

the Mayo Clinic clinical data warehouse using a cohort of 189 gynecology (breast, ovary, cervix, and uterus) cancer 

patients. Based on the genetics reports, we created a list of genes from all genes identified as pathogenic or VUS. 

From clinical notes of the same patients, we used the list of genes to identify sentences that contained those gene 

names. We compared genetic test information recorded in clinical notes with original genetic test results in the 

reports by extracting gene name mentions from the notes. Gene name extractions were achieved using the natural 

language processing (NLP) system MedTagger29. MedTagger enables a series of NLP processes including regular 

expression matching and identification of positive/negative/possible gene name mentions with ConText30, 31. 

Mapping of names is insensitive to upper/lower case. MedTagger is also able to determine if the extracted keywords 

are related to particular patients or their family members.  

2. Construction of a Knowledge Model using Patients’ Genetic Reports 

We organized text content from genetic reports according to eight originally provided major content categories: 

Report, Demographic, Sample (including specimen type, specimen site, ordering MD, pathologist, etc.), Clinical 

Profile (including submitted diagnosis and prior tests), Genetic Profile (including mutated genes, genetic variant 

information and VUS), Therapy, Clinical Trials, and Variant Report (Figure 1a). Additionally, there were several 

sub-sections in each content category. Within the “Genetic Profile” and “Therapy” categories, we first retrieved 

unstructured information-rich “Interpretation” sections in those reports (Figure 1b). Those sections included 

interpretations of biological functions of mutated genes and the effects of the alterations on gene functions, rationale 

for suggested therapies and supporting evidence for clinical treatments and ongoing trials at the time of reports.  

With rich textual data, we established a knowledge model using a previously developed, data-driven sublanguage 

pattern mining pipeline28 which combines NLP and semantic network analysis. Figure 1c-1e shows the workflow of 

our knowledge model construction process:  

• Term Extraction using MetaMap API: we automatically extracted medical and genetics related terms using 

MetaMap API 2018AB32, 33 (Figure 1c). MetaMap API is able to combine words to form phrasal entities and 

then assign semantic types to those phrasal entities according to 127 UMLS semantic types34. We then 

721



3 

 

combined the 127 semantic types based on UMLS-provided group mappings35 and made minor changes of 

grouping based on our research context to reduce ambiguity in UMLS mapping. Our final grouping included 20 

semantic groups: Activities, Anatomy, Genes and Gene Products, Treatments, Chemicals, Environmental 

Exposure, Concepts, Function, Devices, Disorders, Disease Model, Geographic Areas, Human, Living Beings, 

Objects, Occupations, Organizations, Physiology, Procedures, Pathway. Our customized regrouping of UMLS 

semantic types differs from its original grouping mainly in two aspects: 1) we separated non-therapeutic 

chemicals and therapeutic molecules from “Chemicals and Drugs” and created two groups – “Chemicals” and 

“Treatment”; 2) we created a new group called “Pathway” by extracting all phrases containing “pathway” or 

“signaling”.  

• Identification of Co-occurrence and Network Construction: co-occurrence relationships of semantic groups 

that occur in the same sentence were calculated (Figure 1d). A semantic network (knowledge model) was built 

based on the co-occurrence of semantic groups (Figure 1e). After review of the resulting knowledge model by 

two medical experts, we proposed to use four most significant semantic groups (Disorder, Genes and Gene 

Products, Pathway, Treatment) to represent a patient’s genetic profile: 1) cancer type and type of genetic 

mutations (from semantic group “Disorder”), 2) altered genes (from semantic group “Genes and Gene 

Products”), 3) altered pathways (from semantic group “Pathway”), and 4) suggested treatment (from semantic 

group “Treatment”). 

 

Figure 1. The workflow of our knowledge model discovery process. (a) XML parsing, (b) Extraction of unstructured text fields, 

(c) MetaMap semantic annotation, (d) Regrouping and co-occurrence analysis, (e) Network formation. 

3. Evaluations and Selected Use Case of the Knowledge Model  

The knowledge model was evaluated by two medical experts based on a random sample of 200 sentences among the 

entire corpus of 130,238 sentences. The process was completed in two steps. First, the automatically extracted 

medical and genetics related terms as well as semantic annotations of the terms (Figure 1c-1d) were examined. An 

annotation manual was given to the experts, which included a list of standardized gene symbols and gene names 

from the human gene nomenclature committee (HUGO) database36 as well as normalized drug names from 

RxNorm37. Missing terms were extracted manually by the experts. Then, co-occurrence inferences of relationships 

between terms in one sentence (Figure 1e) were validated. Inter-rater agreement, coverage and accuracy were 

calculated.  

As use cases of our knowledge model in presenting cancer genetics knowledge, we chose all of the 529 

gastrointestinal cancer reports and produced a knowledge subgraph. In addition, we demonstrated a subgraph from 

one synthetic individual patient case with diagnosis of Colon adenocarcinoma (CRC) for better use case 

representation. The synthetic patient was created by randomly selecting nine “Interpretation” sections from 150 

CRC patient reports. The selected nine sections were from different genes among all 143 mutated genes in 150 

reports. We then examined knowledge base and literature evidence associated with any subset of terms closely 

connected with each other, i.e. term clusters. 
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Results  

1. Comparison of Genetic Testing Results in Reports and Information Recorded in Clinical Notes 

We examined the percentage of genetic testing information recorded in clinical notes using a subset of 189 reports 

of gynecology (breast, ovary, cervix, and uterus) cancer patients. Among all patients in this cohort, 57 patients 

(30.1%) were tested for breast, 40 patients (20.8%) were tested for uterus, 4 patients (2.1%) were tested for cervix, 

and 88 patients (46.6%) were tested for ovary. In our genetic reports, there were a total of 343 genes that had either 

pathogenic alteration (189 genes) and/or VUS (327 genes). We used the list of 343 gene names to identify sentences 

from clinical notes that contained those genes and variant classifications using MedTagger. Table 1 summarizes the 

counts for altered genes, alteration type, and VUS for the gynecology cancer cohort. The most frequently altered 

genes in this gynecology cancer cohort included TP53 and PIK3CA.This aligns with previous cancer genomics 

studies which have reported high alteration frequencies in these genes, e.g. somatic TP53 mutation occurs in 96% 

ovarian cancer38, and PIK3CA harbored mutations in 45% luminal A and 29% luminal B subtype breast cancer39. 

The most common genetic alteration was “amplification”. This matches with the genomics understanding that 

ovarian and triple-negative breast cancers are commonly genome instable, harboring many oncogenic amplification 

events40-42. 

Table 1. Distribution of Altered Genes, Alteration Type, and VUS for Gynecology Cancer Cohort  

Gene Count Alteration Count VUS Count 

TP53 149 Amplification 412 ATM 31 

PIK3CA 51 Indel 368 TP53 29 

MYC 28 Frameshift 140 BRCA2 29 

PTEN 28 Loss 49 MSH6 14 

KRAS 27 Splice 41 ALK 13 

 

By comparing report-derived genetics data versus genetic testing information recorded in clinical notes, we found 

that only 84 (44%) of patients’ genetics conditions were captured in clinical notes. Table 2 lists the 10 genes that are 

most mentioned in clinical notes. According to each gene, we categorized the patients into three groups: “Positive” 

means patient has pathogenic mutation in the gene, “Negative” means patient has normal gene allele, and “Possible” 

means that genetic test identified a VUS for this gene. Among all 189 unique genes that harbored genetics 

alternations reported as pathogenic, only 56 genes were captured at least once in EHR. Among 327 VUS genes 

reported, only 17 genes were captured at least once in clinical notes. Taking TP53 as a single gene example, there 

were only 26 total positive mentions in clinical notes (Table 2), representing a significant information gap compared 

to the 149 TP53 pathogenic events from the genetics reports (Table 1). 

Table 2. List of Most Mentioned Genes in EHR with Variant Classifications 

GeneName Positive Negative Possible 

BRCA1 20 46 3 

BRCA2 15 44 3 

TP53 26 6 1 

ATM 7 4 3 

KRAS 10 1 2 

PIK3CA 11 2 0 

PTEN 9 4 0 

NF1 7 1 1 

CDH1 4 3 1 
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GATA3 5 2 1 

 

2. Construction of Knowledge Model using Patients’ Genetic Report 

The entire corpus consisted of 130,238 sentences from 1,565 reports. 1,396,186 UMLS-identifiable terms were 

mapped to 115 semantic types out of 127 complete UMLS semantic types. Then, they were further regrouped to 20 

semantic groups. On average, each sentence had 10.7 words. Figure 2 shows that the top seven semantic groups 

covered 87% of the terms in the corpus, revealing a sublanguage pattern in a confined context centered around 

“Disorder”, “Genes and Gene Products”, “Function”, “Treatments” and “Procedure” with “Concepts” and 

“Activities” being modifiers.  

 

Figure 2. Frequency of Terms in Major Semantic Group Reflective of Content Coverage (with word clouds for group “Genes 

and Gene Product” and “Treatments”) 

As words tend to correlate with each other over a certain range within a sentence 43, we constructed a knowledge 

model by calculating co-occurrence relationships between the semantic groups of terms within a sentence. As a 

subgraph example of the knowledge model, Figure 3a shows the top 50 most frequently co-occurred relationships 

represented as edges and the associated 14 semantic groups as nodes. The thickness of the edges in the network 

represents frequencies of co-occurrence associations between two groups. The sizes of node labels represent the 

number of terms in that semantic group. The graph is laid out according to edge betweenness where the betweenness 

of edge is defined as the number of shortest paths between node s and node t that go through e divided by the total 

number of shortest paths that go from s to t in the graph44, 45.  

We selected a subset of four semantic groups to construct our knowledge model by considering semantic groups 

with the highest content coverage (Figure 2) and greatest relevance to clinical treatment options as measured by 

edge betweenness (distance between nodes shown in Figure 3a). Pink nodes are the selected nodes that represent a 
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patient’s key genetic profile. Semantic groups “Function” and “Procedures” were not selected due to relatively large 

edge betweenness for edges between these two nodes and the key groups. Also terms in these two groups are less 

clinically relevant compared to terms in the other four groups. Orange nodes and edges represent an adjective 

modifier relationship. Blue nodes and edges represent a verbal modifier relationship. Figure 3b shows an example 

of an expanded subgraph for the term “PIK3CA”, demonstrating the power of built knowledge-base to highlight 

functional and pathway roles of PIK3CA. As part of PI3K signaling pathway46, PIK3CA is linked to the available 

targeted treatment “everolimus”47 and clinical trials related to “temsirolimus”48, 49. This subgraph is comprised of 

only pink nodes which are key elements of a patient’s genetic profile.  

 

Figure 3  (a) Knowledge model subgraph (top 50 edges, 14 nodes); Pink: key elements for a patient’s genetic profile. Orange: 

adjective modifies. Blue: verbal modifier. 14 semantic groups include: “Activities”, “Anatomy”, “Genes and Gene Products”, 

“Treatments”, “Chemicals”, “Concepts”, “Function”, “Disorders”, “Human”, “Objects”, “Physiology”, “Procedures”, “Pathway”, 

and “Disease Model”. (b) Expanded subgraph for term “PIK3CA”.  

3. Evaluations and Selected Use Case of the Knowledge Model 

Entity (Term) annotations were evaluated on only the four key semantic groups: “Genes and Gene Products”, 

“Disorders”, “Pathway”, and “Treatments”. Coverage of terms by UMLS was 99.5%. Among all the captured terms, 

accuracy of term annotation against HUGO and RxNorm was 98.9%. Only a few gene names, novel or complex 

drug names, or abbreviations for disorders could not be accurately captured or categorized by UMLS. For example, 

“FGF3”, “anti-PD-L1”, and “ccRCC” were gene, treatment, and disorder terms that could not be mapped by UMLS 

to their respective category. Inter-rater agreement was 98.8% measured by Kappa statistics. 

Relationship extraction results were also evaluated based on a subset of paired relationships among the four key 

semantic groups. Coverage of relationship extraction was 100% i.e. our method covered all the co-occurrence pairs 

in a given sentence. Based on expert evaluations, semantic accuracy of relationship extraction was 92.9%. We 

noticed that our method had an increased error rate on complex sentences containing multiple drugs, diseases or 

gene mentions with co-occurred but no direct semantic relationships. For example, “mRNA_expression” and 

“carcinosarcoma” in “no differences were observed in FGFR2 mRNA expression in tumors as compared to normal 

tissue in a study including four patients with carcinosarcoma”; “ipilimumab” and “atezolizumab” in “FDA approved 
agents include ipilimumab, atezolizumab, avelumab, durvalumab, pembrolizumab, and nivolumab”. Inter-rater 

agreement was 95.6% between the two experts. 
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Figure 4 (a) Gastrointestinal knowledge subgraph centered on “CRC” and “colorectal cancer”. (Red: Disorder, Green: Genes and 

Gene Products, Blue: Treatment, Purple: Pathway) (b) Knowledge subgraph of one patient with Colon adenocarcinoma (CRC) 

A knowledge subgraph built from 529 gastrointestinal cancer reports is shown in Figure 4a. We examined 

knowledge base and literature evidence associated with term clusters identified from subgraphs. For example, a 

mismatch repair (MMR) cluster defined as first degree neighbors connected with a central term “MMR”, was chosen 

from subgraph shown in the upper right area of Figure 4a. We used a square shape to represent the nodes in the 

cluster. In this cluster, we found that key gene members in related MMR pathway, such as  “MLH1”, “MSH2”, 

“MSH6” and “PMS2”50, 51; in addition, we also found directly related disorder terms “MSI-H” (“microsatellite 

instability – high”) and “MSI” (“microsatellite instability”) caused by deficiency of MMR pathway52; in terms of 

treatment options, we found two treatment terms were co-clustered with “MMR”: “pembrolizumab” and 

“irinotecan”, which are immunotherapy and chemotherapy reported to be associated with genetic defects of MMR 

pathway53, 54. 

In addition, subgraph from one synthetic individual patient case with diagnosis of Colon adenocarcinoma (CRC) is 

shown as Figure 4b. We can see that this graph captured all the genetic mutations of this synthetic patient: KRAS, 

AURKA, MYC, GNAS, APC, ARFRP1, TOP1, TP53, and ZNF217. Closely related genomic products and 

pathways: “beta catenin”, “aurora kinases”, “bcl-xl protein”, “dna topoisomerase I”, “aurora kinase a”, “checkpoint 

pathway”, “tgf beta signaling pathway”, and “wnt pathway” were also extracted. A list of recommended therapies 

were also capture: “alisertib”, “aurora_kinases_inhibitor”, “cetuximab”, “carboplatin”, “mek_inhibitor”, 

“nivolumab”, “pembrolizumab”, “panitumumab” and “taxane”. Most importantly, the relationships between terms 

were also captured. 

Discussions 

In this pilot study, we described our investigation and initial attempt to utilize data-driven sublanguage analysis to 

construct a knowledge model for genetic testing report results. We identified an information capture gap between 

genetic reports and summarized genetic test results in clinical notes – 56% of test results were missing or incomplete 

in clinical notes. Previous research has shown that only information used in diagnosis or treatment decision making 

is captured in clinical notes55. Hence, our results indicate that although genetic tests have been increasingly used for 

facilitating clinical decision making processes, actual genetic results were under-represented or -captured in clinical 

notes. This suggests a further need to enhance capture of genetic results involved in decision making processes. The 

incomplete documentation might be because gene alterations identified in the tests lack supporting evidence to guide 

immediate treatment decisions. Even though current reports might not provide much useful information, it remains 

critical to continuously monitor research updates that may be relevant to an individual patient’s long-term 

management. Additionally, enabling data reuse for future translational research is also significant. Therefore, a 

comprehensive genetic knowledge model that can provide guidance for capture and structure patient genetic 

information from unstructured text is important. 
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In this study, we used MedTagger to identify gene name mentions in clinical notes and used the built-in ConText 

module to identify results as positive/negative/possible. However, we found the accuracy of ConText positivity 

identification to be low (31%), and thereby manually curated positivity for a number of results. We believe this is 

because ConText was built to identify the positivity of diseases or events  but not test results. In some instances, 

gene name mentions were identified as positive when the sentences were actually referring to genes included in the 

testing panel or the oncologist was simply giving a general explanation of the risks of having mutations in these 

genes. In future work, we will update the ConText module to achieve a better performance of positivity 

identification. 

Through our analysis of the unstructured information in genetic reports and clinical notes, we further highlighted a 

critical need for mapping and normalizing genes, pathways, and treatment names using a standardized nomenclature 

or ontology. In order to fully capture genetic variant-level information, Sequencing Ontology56 should be 

incorporated into the future annotation system, in addition to the UMLS, to identify mentions of biological sequence 

features e.g. binding site, exon.   

Future work with our proposed knowledge model could involve the extraction, curation and visualization of multiple 

facets (gene alteration type, recommended treatment, disorder) of patient characteristics given an affected gene. We 

will be able to build a query portal for oncologists to identify similar patients in the database. A structured patient 

genetic profile created from the knowledge model could also facilitate the collection and management of relevant 

and up-to-date information for each patient. Curated information could also facilitate future translational research. 

All three potential uses could help oncologists with better decision making and long-term management given a new 

patient, as well as translational researchers with more structured and comprehensive dataset to work with. 
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