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ABSTRACT

Melanin is the main pigment of human skin, playing the primary role of protection
from ultraviolet radiation. Alteration of the melanin production may lead to hyperpig-
mentation diseases, with both aesthetic and health consequences. Thus, suppressors of
melanogenesis are considered useful tools for medical and cosmetic treatments. A great
interest is focused on natural sources, aimed at finding safe and quantitatively available
depigmenting substances. Lichens are thought to be possible sources of this kind of
compounds, as the occurrence of many phenolic molecules suggests possible effects
on phenolase enzymes involved in melanin synthesis, like tyrosinase. In this work, we
used four lichen species, Cetraria islandica Ach., Flavoparmelia caperata Hale, Letharia
vulpina (L.) Hue, and Parmotrema perlatum (Hudson) M. Choisy, to obtain extracts
in solvents of increasing polarity, viz. chloroform, chloroform-methanol, methanol,
and water. Cell-free, tyrosinase inhibition experiments showed highest inhibition
for L. vulpina methanol extract, followed by C. islandica chloroform-methanol one.
Comparable results for depigmenting activities were observed by means of in vitro and
in vivo systems, such as MeWo melanoma cells and zebrafish larvae. Our study provides
first evidence of depigmenting effects of lichen extracts, from tyrosinase inhibition to
cell and in vivo models, suggesting that L. vulpina and C. islandica extracts deserve to
be further studied for developing skin-whitening products.

Subjects Plant Science, Dermatology

Keywords Tyrosinase, Lichen secondary metabolites, Zebrafish, Melanogenesis, Letharia vulpina,
Cetraria islandica

INTRODUCTION

In vertebrates, melanin synthesis is realized by specialized cells called melanocytes, within
lysosome-like organelles called melanosomes. Melanization is controlled by different
processes, including environmental (e.g., UV rays) and endogenous (e.g., a-MSH) factors,
stimulation of melanocortin-1 receptor (MCIR), signal transduction by cAMP and MAPK
pathways, activation of microphthalmia-associated transcription factor (MITF), and
expression of premelanosome protein (Pmel), tyrosinase (TYR), and tyrosinase-related
proteins (TYRP1) (D’Mello et al., 2016; Cheli et al., 2010).
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Tyrosinase (EC1.14.18.1) is a key enzyme of melanin synthesis and has been widely
investigated as a target of modulatory agents of melanization. It is a multifunctional
copper-containing enzyme, widely distributed in nature, responsible for melanization in
animals and for browning in plants and microorganism (Kondo ¢ Hearing, 2011). The
enzyme catalyzes two distinct reactions of melanin formation: hydroxylation of tyrosine
by monophenolase activity, and oxidation of 3,4-dihydroxyphenylalanine (L-DOPA) to
o-dopaquinone by diphenolase action. These reactive o-quinones undergo non-enzymatical
polymerization to form melanin.

Although melanin in human skin is an essential pigment for the protection against
UV-induced damage, excessive melanin production causes hyperpigmentation disorders,
such as melasma, ephelides, and lentigines (Mukherjee et al., 2018). These conditions
represent a problem for many people and as a consequence the search for depigmenting
agents has attracted much interest in the medical and pharmaceutical fields (Solano, 2014).
Therefore, considerable research effort has been directed to discover new natural active
products rich in safe and quantitatively available inhibitors of pigmentation (Li ef al.,
2013; Lo et al., 2013; Wang et al., 2011). A main strategy is to target tyrosinase, with an
increasing interest for natural products to be used as tyrosinase inhibitors (Leyden et al.,
2011). In literature, a large number of tyrosinase inhibitors from natural sources have
been reported for their possible use to treat pigmentation skin disorders (Mukherjee et al.,
2018; Parvez et al., 2007). For many of these compounds the inhibitory activity has been
related to their phenolic structure that provides high antioxidant power. Various pieces of
evidence indicate that lichens are worth being investigated as possible sources of this kind
of compounds (Branddo et al., 2017; Higuchi et al., 1993; Honda et al., 2016; Lopes, Coelho
¢ Honda, 2018).

Lichens are symbiotic associations between a heterotrophic fungus (the mycobiont)
and one or more photosynthetic partners (the photobionts) (Nash III, 2006). As a
result of the symbiosis, the mycobiont produces several secondary metabolites (called
lichen substances), most of which are unique to these organisms (Rankovic & Kosanic,
2015). These metabolites may help to protect against biotic and abiotic factors, such as
herbivores or UV radiation (Phinney, Solhaug & Gauslaa, 2018). Most of them are phenolic
compounds derived mainly from the acetate-polymalonate pathway and are expected to
afford several biological activities. Accordingly, lichens are used in traditional medicines
across the world for different purposes (Crawford, 2015; Devkota et al., 2017), while
different lichen substances have been taken up for herbal and pharmaceutical applications
(Einarsdottir et al., 20105 Giilgin et al., 2002; Rankovic & Kosanic, 2015). Among different
properties, the phenolic nature of these compounds suggests effects on the activity of
phenolase enzymes like tyrosinase (Honda et al., 2016). Lichens are good sources of natural
antioxidants, some of which recognized as tyrosinase inhibitors (Behera, Adawadkar ¢
Makhija, 2004). Some patents are also claiming activities against tyrosinase related to
lichen extracts or lichen compounds (Takayama et al., 2010), but they have been long
neglected and overlooked principally due to difficulties in obtaining lichen substances in
quantities and purities sufficient for structural elucidation and pharmacological testing
(Boustie, Tomasi & Grube, 2011; Muggia, Schmitt & Grube, 2009).
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This study was aimed at exploring the biological effects of lichen substances on various
pigmentation models, both cell-free and cellular ones, also including in vivo Zebrafish
experiments. Moreover, we provided hints about the possibility of exploiting lichens
for the extraction of depigmenting compounds and the preparation of pharmaceutical
and cosmetic depigmenting products. Due to limited knowledge of lichen effects on
melanization, we firstly performed a screening conducted on different species known
for their wide distribution and abundance, viz. Cetraria islandica Ach., Flavoparmelia
caperata Hale, Letharia vulpina (L.) Hue, and Parmotrema perlatum (Hudson) M. Choisy.
From each species, we obtained a series of four extracts by using solvents of increasing
polarity, from pure chloroform to water. As a first survey, all extracts were tested in
cell-free, tyrosinase inhibition experiments. The extracts showing marked dose-dependent
inhibitory activity were used on in vitro and in vivo melanization models, by using cultures
of melanin-producing melanoma cells (MeWo), and developing zebrafish embryos,
respectively. We used zebrafish because it has been recently established as an in vivo model
for phenotype-based screening of melanogenic regulatory compounds (Lin ef al., 2011). In
particular, zebrafish has become an important vertebrate model for assessing drug effects
because it exhibits unique features, including ease of maintenance and drug administration,
short reproductive cycle, external fertilization and development, allowing manipulation of
the developmental environment and optical measurements through the transparent body
wall.

MATERIALS AND METHODS

Chemicals
All reagents were purchased from Sigma-Aldrich (Milan, Italy), unless otherwise indicated.

Lichen species and extract preparation

Thalli of F. caperata and of P. perlatum were collected in a woodland area of eastern
Liguria (NW Italy), L. vulpina in a forest area of Valtournenche (NE Valle d’Aosta, Italy),
and C. islandica was purchased from Kubja Urditalu (Tallinn, Estonia). No permissions
for lichen collection are required according to Italian legislation. Lichen materials were
identified by one of us (PG) using microscope analysis with the help of identification keys
and spot tests. Thereafter lichen material was cleaned from debris, left to dry at room
temperature overnight, and stored in paper bags at room temperature until use.

Dried lichen thalli were extracted at room temperature (about 23 °C) with four solvent
polarities from chloroform to water: chloroform, chloroform—methanol (9:1), methanol,
and water (14.4 g of F. caperata in 70 mL of each solvent, 10.4 g of P. perlatum in 60 mL, 13.3
g of L. vulpina in 75 mL, and 100.6 g of C. islandica in 500 mL). Extractions were carried
out for 5 days and 3 times for each solvent, with frequent agitation. The supernatant liquid
was then filtered and evaporated to dryness under reduced pressure in a rotary system
(Rotavapor Heidolph, Schwabach, Germany) to obtain dried extracts (Souza et al., 2016).
Lichen extract yields are reported in Table 1.
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Table 1 Lichen extract yields (%) obtained by using different solvents.

Lichen species CHClI; CHCI;/CH;0H CH;0H H,O0
Flavoparmelia caperata 2.3 3.0 6.8 0.6
Parmotrema perlatum 1.6 5.6 5.3 0.5
Cetraria islandica 1.3 1.5 3.7 0.5
Letharia vulpina 1.2 1.9 4.4 4.0

Tyrosinase inhibition assay

Lichen extracts were dissolved in dimethyl sulfoxide (DMSO) to a final concentration of 10
mg/ml. Extract stock solutions were then diluted in water in order to obtain a series of test
solutions with final concentrations of 10, 50, 100, 250, 350 and 500 wg/ml. Components
of the reaction mix were added to each well of 96-well plates in the following order: 70 pL
of phosphate buffer, 60 pnL of extract solutions (water for controls), 10 wL of mushroom
tyrosinase (Sigma-Aldrich, T3824, 25 kU, 125 U/ml in phosphate buffer, pH 6.8) and
70 wL L-tyrosine (0.3 mg/ml in water). Kojic acid was used instead of lichen extracts as
a positive control, at increasing concentrations from 0.5 to 500 pg/ml. Blank samples
without enzyme were also included for all conditions. Plates were then incubated at 30
°C for 60 min and absorbance was read at 505 nm in a microplate reader (Spectra Max
340PC). Percent inhibitory activity (I1%) was calculated according to the formula

Acc/en — A
19 = 1—M % 100
(Aen_Abk)

where Aey/en = absorbance of sample mixture with extract and enzyme; A, = absorbance
of sample mixture with extract and without enzyme; A., = absorbance of sample mixture
with enzyme and without extract; Api = absorbance of sample mixture without enzyme
and extract (blank).

TLC bioautography analysis

Conventional TLC chromatographic profile was conducted on 20x 20 cm plates (Merck
silica gel 60 F,s4) following literature protocols (Culberson ¢ Kristinsson, 1970; White

& James, 1985). Briefly, samples of L. vulpina methanolic extract and of C. islandica
chloroform-methanol extract were resolubilized in their extraction solvents and then
spotted on a TLC plate using a capillary tube. TLC profile was carried out using
toluene:acetic acid (200:30 ml) as a mobile phase (solvent C). After the solvent front
was reached, the plate was left to dry at room temperature. Dried plates were examined and
photographed initially in visible light (daylight) for detecting pigments as colored spots,
and then in fluorescence light, using 254 and 350 nm excitations.

To visualize the presence of tyrosinase inhibition activity in each spot, TLC plates were
sprayed with L-tyrosine solution (about 2.5 x 10~ mmol/cm?) and then with tyrosinase
solution (about 3.6 U/cm?). Spots with tyrosinase inhibitory activity appeared white on a
dark background (Wangthong et al., 2007).
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Cell culture, cell viability, and melanin assays

The MeWo human melanoma cell line (cat. HTB-65, ATCC, Manassas, VA, USA,
https://www.lgcstandards-atcc.org/products/all/HTB-65.aspx) was used for cell viability
assay, as reported by Pastorino et al. (2017), and for melanin assay, as described by Cornara
etal. (2018).

Briefly, for cell viability assay, cells were settled in 96-well plates, exposed for 48 h to a
logarithmic series of lichen extract concentrations, probed with 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) reaction, and read at 550 nm in a microplate
reader (Spectra Max 340 PC). For melanin assay, cells were settled in 24-well plates, exposed
in triplicate to lichen extracts, or arbutin (8 mM) as positive control, washed with PBS,
trypsinized, centrifuged, freeze-thawed, dissolved in 1 N NaOH and read at 505 nm in
the microplate reader. In particular, non-cytotoxic concentrations were tested: 10 and 50
pg/ml for L. vulpina, and 25 and 50 pg/ml for C. islandica.

Zebrafish depigmentation assay

Adult zebrafish (Danio rerio) were obtained from a commercial dealer and kept in a
circulating system with water conductivity of 500-530 €2/cm at 27 °C, pH 7.0-7.5 under
a constant 14/10 light/dark photoperiod. Veterinary care of the animals was carried out
according to the Italian law (D.to L.Vo 26/2014) and the experiments were approved
by the Institutional Ethics Review Body (University of Genoa) and the Italian ministry
of Health (authorization 720/2015-PR). Spawning of adult zebrafish was performed
according to standard methods. In particular, synchronized embryos were obtained from
natural spawning induced in the morning by turning on light. Embryos were arrayed in
6-well plates containing 2 ml of embryo medium and 15 embryos per well. Extract stock
solutions were diluted to the desired concentrations with embryo medium just before
use (L. vulpina methanol extract: 6-45 pg/ml; C. islandica chloroform-methanol extract:
5-65 png/ml). Diluted extracts were added to each well and incubated from 8 to 56 hpf
(hours post-fertilization), resulting in 48 h exposure. Arbutin 10 mM was used as positive
control. Replacement of the medium was done every 24 h to ensure even distribution
of the test compounds. Embryos at 56 hpf were dechorionated by forceps, anesthetized
in tricaine methanesulfonate solution (Sigma-Aldrich) and then photographed under a
stereomicroscope (Leica M205C). The effects on pigmentation were evaluated using the
Image] software v. 1.74. The pixel measurement analyzer function was used to evaluate the
area of zebrafish pigmentation.

Statistical analysis

Dose-response curves obtained by tyrosinase inhibition, MTT, and zebrafish pigmentation
data, were analyzed by a logistic regression model, yielding ICs, and ICys values that were
assumed as median and threshold levels, respectively. Statistic comparisons were done with
R 3.0.1 (R Core Team, 2013) environment, using ANOVA test, t Student with Bonferroni’s
correction and Dunnett’s tests for multiple comparisons.
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Figure 1 Percent inhibition of mushroom tyrosinase activity induced by lichen extracts. Percent inhi-
bition of mushroom tyrosinase activity, induced by chloroform (A), chloroform-methanol (B), methanol
(C) and water (D) extracts, obtained from Letharia vulpina, Cetraria islandica, Parmotrema perlatum, and
Flavoparmelia caperata.

Full-size Gal DOT: 10.7717/peerj.9150/fig-1

RESULTS

Effects on tyrosinase activity
Lichen extracts showed a complex of modulatory effects on mushroom tyrosinase activity,
evaluated in vitro in a cell-free assay. Some extracts induced tyrosinase activation, notably
F. caperata methanol and chloroform, and L. vulpina water extracts, others showed a
biphasic behavior, while some were definitely inhibitory (Fig. 1 and Table 2). In particular,
chloroform-methanol (Fig. 1B) and methanol extracts (Fig. 1C) showed on the whole
stronger tyrosinase inhibition, with dose-dependent effects. The strongest inhibition
activity was recorded for the methanol extract of L. vulpina (Fig. 1C), followed by the
chloroform-methanol extract of C. islandica (Fig. 1B). The inhibitory activities of these
extracts were the only ones that allowed to estimate IC5y values with 95% CI (Table 2). As
a positive control, in these experiments kojic acid induced tyrosinase inhibition with an
IC50 of 13.9 pg/ml (95% confidence interval: 12.4-15.7).

Based on the results of cell-free experiments, we selected the L. vulpina methanol and C.
islandica chloroform-methanol extracts for testing their depigmenting effects on melanoma
cells as an in vitro model, as well as on zebrafish as an in vivo model.
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Table 2 Values of ICs (jLg/ml) obtained for lichen extract inhibition on tyrosinase activity. Values
calculated with more precision are accompanied by 95% CI (in parentheses).

Lichen species CHClI; CH;O0H /CHClI; CH;0H H,O0

Letharia vulpina >500 >500 67 (52-86) n.d.

Cetraria islandica >500 86 (61-103) >500 >500

Parmotrema perlatum n.d. >500 >500 biphasic*

Flavoparmelia caperata n.d. biphasic >500 >500
Notes.

2Non-monotone trend of the dose-response curve (see also Fig. 1).

Detection of tyrosinase inhibition by TLC bioautography

The TLC profile made it possible to show the main substances contained in each extract.
An identification of these substances is not an aim of this work, but, as an example, the
spot of vulpinic acid (yellow under visible light) in L. vulpina methanolic extract is clearly
evident (Huneck & Yoshimura, 1996) (Fig. 2). Bioautography data revealed that several
compounds exert inhibitory effects on tyrosinase activity. Most notably, the inhibitory
activity of C. islandica chloroform-methanol extract was distributed among different bands
covering a wide range of polarity (Fig. 2A). Conversely, the tyrosinase inhibitory activity
of L. vulpina methanol extract is concentrated in one band that migrates close to the large
yellow band corresponding to vulpinic acid (Fig. 2B).

Lichen extract depigmenting effects on MeWO cells

The MeWo human melanoma cell line was used as an in vitro model to explore lichen
depigmenting effects. As a first step, cells were subjected to cell viability assay upon
exposure for 48 h to increasing concentrations of L. vulpina methanol and C. islandica
chloroform-methanol extracts. Dose-response curves of cell viability allowed deriving ICs
values of 88 pg/ml (95% CI [68-113 pg/ml]) for L. vulpina, and of 264 pg/ml (95% CI
[213-328 pg/ml]) for C. islandica. Threshold ICy5 values were 19 ng/ml (95% CI [9-40
pg/ml]) and 51 pg/ml (95% CI [31-85 pg/ml]), respectively.

Thereafter, the assay of melanin conducted on MeWo cells, after 72 h exposure to
different lichen extract concentrations, showed a sharp reduction with respect to controls
induced by both extracts. In these experiments, arbutin (8 mM) was used as a positive
control, reducing the melanin content of cells to about 50% of controls. The methanol
extract of L. vulpina induced a melanin reduction similar to that of arbutin, occurring
already at a concentration as low as 10 pg/ml (Fig. 3). This concentration is lower than the
threshold for cytotoxic effects measured for this extract, allowing to rule out the possibility
of aspecific injurious effects on cells. A similar effect on the melanin content of cells was
also observed for the C. islandica chloroform-methanol extract, but only at a concentration
of 50 ng/ml (Fig. 3). However, also the effective concentration of this extract was lower
than the threshold for cytotoxic effects.

Phenotype-based evaluation of depigmenting effects of lichen
extracts using zebrafish

Zebrafish models were used to further substantiate in vivo the effects of the inhibition of
melanogenesis by C. islandica and L. vulpina. In order to define the optimal concentration
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Figure 2 Bioautography assay of the lichen extracts along with TLC profile visualized at 350 nm. Rep-
resentative lanes of TLC plates subjected to bioautography assay of the chloroform-methanol extract of
C. islandica (A) and of the methanol extract of L. vulpina (B). For each lichen species, TLC plates have
been observed under fluorescence at 350 nm (right lane), and under visible light after bioautography (left
lane), showing white spots corresponding to compounds with tyrosinase inhibition (see Materials and
Methods for technical details).

Full-size G DOI: 10.7717/peer;j.9150/fig-2
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Figure 3 Melanin assay performed on MeWo melanoma cells exposed to lichen extracts. Melanin
assay performed on MeWo melanoma cells exposed for 72 h to different concentrations of C. islandica
chloroform-methanol (above), or L. vulpina methanol (below) extracts. Arbutin (8 mM) was used as
positive control. Data are means = s.d. of 505 nm absorbances derived from three independent samples

read in duplicate.
Full-size Gl DOI: 10.7717/peerj.9150/fig-3

to use, first embryos were subjected to toxicity assay upon exposure for 48 h to increasing
concentrations of L. vulpina methanol and C. islandica chloroform-methanol extracts.
Thereafter, we observed that, when treated with subtoxic doses of C. islandica and L.
vulpina, zebrafish larvae had a reduction in the pigmentation (Figs. 4 and 5). The extract
of L. vulpina showed higher inhibitory activity than C. islandica, as indicated by data from
image analysis. Logistic regression curves yielded ICs values of 44 png/ml (42-47 pg/ml)
for the chloroform-methanol extract of C. islandica, and of 30 pg/ml (25-36 pg/ml) for
the methanol extract of L. vulpina (Fig. 6). Finally, depigmenting activity of C. islandica
and L. vulpina extracts was also evaluated in the zebrafish embryos by melanin assay

(Supplemental Information).
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Figure 4 Effects of melanogenic inhibition on the pigmentation of zebrafish treated with C. islandica
extracts. Effects of melanogenic inhibition on the pigmentation of zebrafish treated from 8 hpf to 56 hpf
with C. islandica extract. All images are oriented to have rostral to the right and dorsal at the top. Bright
field images of embryos treated with (A) arbutin (10 mM) used as a positive control; untreated zebrafish
used as negative control (B); C. islandica chloroform-methanol extract: 5 pg/ml (C); 25 pg/ml (D); 50
pg/ml (E); 65 pug/ml (F). Scale bar: 100 pum.

Full-size & DOI: 10.7717/peerj.9150/fig-4
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Figure 5 Effects of melanogenic inhibition on the pigmentation of zebrafish treated with L. vulpina
extracts. Effects of melanogenic inhibition on the pigmentation of zebrafish treated from 8 hpf to 56 hpf
with L. vulpina extract. All images are oriented to have rostral to the right and dorsal at the top. Bright
field images of embryos treated with (A) arbutin (10 mM) used as a positive control; untreated zebrafish
used as negative control (B); L. vulpina methanol extract: 6 pug/ml (C); 12 pg/ml (D), 22.5 pg/ml (E), 45
pg/ml (F). Scale bar: 100 pum.

Full-size G4l DOI: 10.7717/peerj.9150/fig-5
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Figure 6 Dose response curves obtained with image analysis data of zebrafish pigmentation after
exposure to different lichen extracts. Dose response curves obtained with image analysis data of zebrafish
pigmentation after exposure to different lichen extracts (see Figs. 4-5): (A) C. islandica chloroform-
methanol extract, (B) L. vulpina methanol extract. Dots indicate means =+ s.d., n = 12 — 60; continuous
lines indicate logistic regression curves for determination of ICs, values. * = p < 0.01 according to
Dunnett’s test.

Full-size &l DOI: 10.7717/peerj.9150/fig-6

DISCUSSION

Our study highlighted a complex of in vitro and in vivo depigmenting effects due to
specific lichens and extraction solvents. The strategy to choose separate extractions with a
variety of solvent polarities, instead of a successive extraction with solvents of increasing
polarities, was dictated by the pioneering aspect of the investigation. The study was aimed
at disclosing widely available lichen species that could be exploited for their depigmenting
effects, with a very limited knowledge about the possible presence of active principles
and their interactions. Therefore, we adopted an extract fractionation method that can
involve some composition overlap among fractions, but maximizes their depigmenting
performance, possibly also due to synergistic effects.

As for tyrosinase inhibition in cell-free experiments, our results confirm data from
Higuchi et al. (1993), showing tyrosinase inhibition rates of 40.4% for L. vulpina and of
13.8% for C. islandica, with respect to our 86.2% and 42.6%, respectively, possibly due to
the use of cultured lichens and different extraction solvent. We showed strongest activity
for the methanol extract of L. vulpina, followed by the chloroform-methanol extracts of
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C. islandica. Thus, these extracts were used to explore the antimelanogenic activity on
melanoma cells and on zebrafish larvae. Data obtained from these tests confirmed those
from cell-free experiments, and in all cases the methanol extract of L. vulpina induced the
strongest effect.

In addition, bioautography assay indicate that different substances contained in
these lichens exert tyrosinase inhibition. Although we did not perform a complete
characterization of the extracts, we know from literature the main lichen substances
characterizing these lichens: L. vulpina contains atranorin and vulpinic acid, while
C. islandica contains lichesterinic, protolichesterinic and fumarprotocetraric acid
(Culberson, 1969). However, information regarding the antityrosinase activities of lichen
substances in the literature is relatively poor, while only in a few cases it was possible to clarify
the mechanisms of inhibition. Recently, Branddo et al. (2017) isolated fumarprotocetraric
acid from the lichen Cladonia verticillaris and showed uncompetitive, mixed-type inhibition
on tyrosinase activity which rose with increasing concentration, at 0.6 mM the acid inhibited
tyrosinase activity by 39.8%.

An element that makes comparisons among different lichen species a difficult task
is the high variability of chemical composition, which is also subjected to the variation
of environmental parameters, habitat and microclimatic characteristics (e.g., availability
of water and light) (Matteucci et al., 2017). These differences may underlie considerable
differences in the biological activity of lichen phytocomplexes in which the composition has
not been quantitatively characterized. Therefore, further work is necessary to isolate and
quantify active compounds from the extracts in order to better define the components with
antityrosinase activity. So far, several works have investigated the possible antityrosinase
activity of lichen compounds (e.g., Kwong et al., 2020; Honda et al., 2016; Lopes, Coelho
¢ Honda, 2018). For example, Kim ¢ Cho (2007) determined that methanolic extracts of
Usnea longissima and Usnea esculenta affected melanin formation independently from their
antioxidant action. In relation to their phenolic structure, different constituents are likely
to be strong tyrosinase inhibitors, with a much lower ICs with respect to that of the whole
extract.

In conclusion, our study provides evidence of depigmenting effects of specific lichen
extracts, going from tyrosinase inhibition in cell-free experiments to depigmenting effects
in vitro on cultured cells and in vivo on zebrafish larvae. These data indicate that L. vulpina
and C. islandica lichen extracts are potential candidates for developing pharmaceutical and
cosmetic products for skin whitening. Moreover, data also suggest that L. vulpina could be
a good source for the isolation of compounds with strong depigmenting properties. Future
objectives in this direction will be the chemical characterization of the lichen extracts and

the evaluation of the activity of their most promising constituents.
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