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Abstract

1,2-dimethylhydrazine (DMH) is a member in the class of hydrazines, strong DNA alkylating agent, naturally present in
cycads. DMH is widely used as a carcinogen to induce colon cancer in animal models. Exploration of DMH-induced colon
carcinogenesis in rodent models provides the knowledge to perceive the biochemical, molecular, and histological
mechanisms of different stages of colon carcinogenesis. The procarcinogen DMH, after a series of metabolic reactions,
finally reaches the colon, there produces the ultimate carcinogen and reactive oxygen species (ROS), which further alkylate
the DNA and initiate the development of colon carcinogenesis. The preneolpastic lesions and histopathological observations
of DMH-induced colon tumors may provide typical understanding about the disease in rodents and humans. In addition,
this review discusses about the action of biotransformation and antioxidant enzymes involved in DMH intoxication. This
understanding is essential to accurately identify and interpret alterations that occur in the colonic mucosa when evaluating
natural or pharmacological compounds in DMH-induced animal colon carcinogenesis.
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Background
Colon cancer is the third most leading cancer in males and
the second most leading cancer in females in the industrialized
countries, and its morbidity and mortality are increasing in the
developing countries [1]. Previously, the incidence of colon cancer
was low in India and underdeveloped countries, but later studies
showed a drastic increase in the colon cancer incidence in Asia

[2]. Dietary habits play a crucial role in the development of col-
orectal cancer. Rapid urbanization and extensive growth of eco-
nomic conditions influence the people to adopt western dietary
style, which consists of high-fat, high-protein, low-carbohydrate,
and low dietary fiber. This unbalanced diet is considered to be an
important causative factor for the increased mortality in recent
years [3]. In olden days, people consumed natural substances
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with lots of medicinal properties, therefore, they all away from
these kind of diseases.

Influence of age, body weight, and sex

The population-based cancer incidence report shows that the
morbidity has increased in the past century. The high rate of
cancer incidence due to two major factors (i) our life expectancy
is more (ii) exposure of cancer-causing chemicals and radiations,
X-ray and plane travel and other sources. Today we live 30 years
longer than last century. Moreover, cancer is common in older
tissues, and elders are more susceptible than youngsters. The
laboratory and clinical studies revealed that cancer is an ancient
disease; it is not one disease, more than 100 diseases.

Age. The risk of developing colorectal cancer increases with age.
Colon cancer is most common in over 50 years of aged people,
and a chance of getting colon cancer is higher in each decade.
However now the incidence is increasing in younger people also.

Body weight. Obesity is one of the risk factors of colon cancer. In
particular, when comparing with healthy men, overweight men
(BMI > 30 kg/m2) have a higher risk of 53%. Sedentary lifestyle
may be responsible for 13–14% of colon cancer incidence. It is an
attributable risk greater than family history.

Sex. Male rats are most frequently used to study preneoplas-
tic and neoplastic lesions in colon carcinogenesis, due to their
increased susceptibility to colon carcinogens [4].

Incidence

The incidence of colon cancer is high in male compared to
females. Hormonal factors may play a role in having less per-
centage of colorectal cancer in females. Microsatellite instabil-
ity is one of the molecular changes in colon cancer. A case-
control study examining sex, reproductive factors, and hormone
exposure related with microsatellite instability in colon cancer
suggested that estrogen exposure is a protective factor against
microsatellite instability, while the lack of estrogen in older
women increased the risk of microsatellite instability—high risk
of colon cancer [5]. Nevertheless, the researchers studied the effi-
ciency of DMH in female mice and found 83% of mice developed
visible tumors and many possess especially in the distal part
of the colon [6, 7]. The action of DMH induction in mice shows
enlargement of proliferative zone in the colonic crypts, which led
to an increment in the total number of labeled cells in the crypts
and decrement of the activity of enzyme hypoxanthine-guanine
phosphoribosyltransferase (HPRT) (found in human colonic neo-
plasm).

Changes in the bowel habits also one of the causative factors
for colon cancer [8], which includes (i) increase in intestinal tran-
sit time (ii) tiny stool, which consequences of thickening of lumi-
nal content (iii) possible interactions with various carcinogens or
promoting factors present in the intestine, thus hard stools and
constipation might be expected to enhance carcinogen exposure.

1,2-Dimethylhydrazine
Role and history of DMH

Dimethylhydrazine occurs as 1,2-dimethylhydrazine and 1,1-
dimethylhydrazine isomers. Both compounds are clear, colorless
liquids [9]. 1,1-Dimethylhydrazine is used in the rocket and jet as

fuel and is also used as a growth control agent in plants and as a
feedstock in chemical syntheses.

DMH and its metabolite, azoxymethane (AOM), are procar-
cinogens that require metabolic activation to form DNA-reactive
products. The alkylating agents DMH and AOM begin their
mutagenic activity through the methylation of guanine in DNA
at N-7 position. The alkylated guanine is paired with thymidine
instead of cytosine by donating a proton, which leads to the
modification of bases. Further subsequent replication, mispair-
ing of guanine to thymine and cytosine to adenine, occurs,
which leads to mutations in DNA. Metabolism of these pro-
carcinogenic compounds involves various metabolic enzymes,
including xenobiotic-metabolizing enzymes, these enzymes
process several N oxidation hydroxylation stages, including
the formation of ultimate carcinogen methylazoxymethanol
(MAM). MAM is a reactive metabolite of DMH and AOM, which
readily yields methyldiazonium ion that can alkylate macro-
molecules in the liver and colon [10], proved by various studies
[11, 12].

MAM is a substrate of the nicotinamide adenine dinucleotide
(NAD)-dependent dehydrogenase present in the colon and liver,
suggesting that the active metabolite of MAM might be the
corresponding aldehyde [13, 14], and these metabolites of CYP2E1
are transported to the colon via the bile or bloodstream. The
main pathway involves the hepatic conversion of DMH to AOM
and azoxymethanol which subsequently undergoes glucuronic
acid conjugation and biliary excretion [15]; however, the toxicity
of azoxymethanol doses affects the liver, cell membranes, and
other organelles, which is supported by the release of aspartate
and alanine amino transferases and alkaline phosphatase [16,
17]. The glucuronides reaches the colon, and it further undergoes
hydrolysis by bacterial enzymes to produce active carcinogen in
the colonic lumen Fig. 1 [18].

The history of DMH starts around 1965, Laquer (1965) investi-
gating the neurotoxicity for seed of Cycas circinalis L. Rats fed with
crude extract of cycad meal produce tumors in various organs
including the intestine, liver, and kidney. Further he found that a
glycoside, cycasin, and a β-d-glucosyloxyazoxymethane isolated
from the crude material and the first metabolite of aglycone
cycasin (MAM) are responsible for the tumors in the intestinal
tract [19].

Initially Fiala [20] investigated the metabolism and mode of
action of DMH, analyzing its metabolites, and separated them
by column chromatography. Further he conducted a study with
DMH and AOM [15], which confirms that the active carcinogen is
not transported through fecal stream rather circulatory system,
which was proved by Campbell et al. and Wittig and Ziebarth
[21, 22].

Routes and dosage of DMH administration to rodents

The main route of administration of DMH is subcutaneous injec-
tion [23]. Even though it is an effective method to induce tumor,
intraperitoneal injections also succeeded to produce tumors in
the colon [24], whereas single injection intrarectal exposure
of DMH also produced tumors in the colon of germ-free mice
[25, 26].

The s.c. injection of DMH causes 100% epithelial dysplasia
and precancerous lesions, found in a 12-week study [27]. DMH
causes a wide range of tumors in the GI tract of C57BL/6 mice,
and the majority of tumors found in small intestine and colon
in the respective studies [28, 29]. Even though the majority of
experimental colon cancer study carried out in rats, the high
frequency of tumor in lower part of colon, a histopathological
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Figure 1: Transport of DMH from subcutaneous site to colon through glucuronidation.

evidence of multiple adenomas and subsequent progression of
adenocarcinoma also validates the importance of mice in patho-
genesis of colon cancer (Table 1) [30, 31].

Various doses of DMH can produce the colonic tumors. The
dosage ranging from 2 mg to 200 mg/kg b.w. (single injection
to 30 injections); and the duration ranging from 8 hours to
maximum 78 weeks of latency period (which important for the
development of colon tumor) (Table 2), can induce colon tumors
in DMH studies regardless of the route of the administration. In
the recent years, the dosage levels and routes of administrations
were standardized, depending on their experimental studies,
15 mg and 20 mg/kg b.w [32]. DMH and AOM at the dosage levels
of 10–20 mg/kg b.w. produce adenomas and adenocarcinomas in
rodent model [33]. Even a single injection of 10 mg/kg DMH or
AOM produces colon cancers in rats after a latency period of 15–
20 months Fig. 2 [34].

Metabolism of DMH

An understanding about the chemical carcinogen and mecha-
nism of action is necessary to develop procedures for diagnosis
and eventually prevention of the disease.

A number of hydrazine derivatives are found in the environ-
ment, industry, agriculture, and medicine [35]. The organotropic
colon carcinogen DMH is an alkylating agent widely used to
induce benign and malignant neoplasm in the colon of rodents
[36].

In animal studies, repeated exposure of DMH produces colon
tumors, which shows the pathological features that are simi-
lar to sporadic forms of human colon cancer [37]. In most of
the studies, carcinogen DMH was injected subcutaneously. The
subcutaneous site of injections does not possess the enzymes
able to metabolize or react with DMH. Hence, subcutaneously
administered DMH is released into the circulation slowly, and
then it reaches the liver and gets metabolized into various inter-
mediates [15]. Metabolic activation of DMH is shown in Fig. 3.

The first oxidation step of DMH involves its oxidation to
azomethane, which is converted into azoxymethane (AOM) and
then hydroxylated to methylazoxymethanol (MAM). Hydroxyla-
tion occurs predominantly in the liver, probably via cytochrome
P450-dependent pathway and to a limited degree in the colonic
mucosa [18]. MAM can reach the intestine through bile, intestinal
lumen directly and also via circulation [18], as glucuronides

and glucosides to some extent as sulfates. They are cleaved by
β-glucuronidase, β-glucosidase, and sulfatase enzymes which
are present both in the enterocytes and also in the intestinal
microflora. MAM is chemically unstable at body temperature and
decomposes spontaneously to formaldehyde, water, and nitro-
gen [38]. During this decomposition, the alkylating agent methyl-
diazonium ion is formed, which generates a reactive carbonium
ion capable of alkylating macromolecules (DNA, RNA, or protein)
by enzymic and non-enzymic process in the colon. Alkylation
of the oxygen atoms present in nitrogenous bases turns the
possibility of mispairing of DNA, which has been suggested to be
critical in mutagenesis and carcinogenesis [39]. Alternatively
MAM has been found to be a substrate for NAD+-dependent
dehydrogenase of the colon and liver, suggesting that the active
metabolite of MAM may be the corresponding aldehyde Fig. 3
Metabolism of DMH [40].

Diversity in species

The carcinogenic effects of DMH in different animal species and
strains and their target organs are listed in Table 2.

The DMH-induced colon tumors in hamsters are sparse [41,
42]. Both studies evaluated the pathological analyses of colon
tumors in hamsters; the percentage of tumor occurrence and
severity varies slightly due to the dosage and routes of admin-
istration. However, the pathogenicity and metastasis are high
in carcinogen injected in s.c. rather than other routes [42, 43].
However, on contradictory, few studies showed that DMH has no
tumorigenic influence in Syrian golden hamsters, which shows
the species specificity and route specificity of DMH [44–46]. Apart
from that, DMH administered to hamster through drinking water
was reported to induce cancer in various organs [43] and [45,
46] causes hepatic lesions, forestomach papillomas, and adeno-
carcinomas of the colon [47]. Even the DMH has the ability to
produce tumors in monkey’s colon; many researchers believe
that monkeys are resistant to effects of chemical carcinogen for
colon since tumors arise in different organs [48, 49].

Promoters

Dietary fat appears to act as a promoter rather than an initiator
of colon tumor. Dietary fat may provide a favorable environment
for the development and growth of tumor cells, by altering the
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] composition of cell membranes. Epidemiological studies have
shown that high-fat diet consumption leads to elevated fecal
concentrations of secondary bile acids in the colonic lumen,
which stimulate hyperproliferation and thus increase the inci-
dence of colon cancer [50]. High-fat diet, rich in ω-6 polyunsat-
urated fatty acids, fed in animals during the carcinogenic stage,
increases the incidence of colon tumor. It is possible that the high
incidence of colon tumors in rats fed with a high-fat diet along
with DMH observed in few studies [51–54] may be due to the
excretion of elevated amounts of bile acids, which act as colon
tumor promoters [55]. High levels of bile acids associated with
the high-fat diet can initiate membrane stress signaling, leading
to the activation of several complex pathways and alteration
in membrane components like cholesterol, thereby disrupting
cell membrane integrity. Alternatively, it has been proposed that
bile acids increase the risk of colon cancer by inhibiting phase I
and phase II xenobiotic-metabolizing enzyme systems located in
hepatic and extrahepatic tissues including the colon [50].

High-fat diet and DMH, however, significantly increased HMG
CoA reductase activity and cholesterol synthesis in the liver. The
enhanced HMG CoA reductase activity may contribute to the
modulation of cell growth, cell cycle arrest, inhibition of apop-
tosis, and cellular signaling activities in DMH-exposed animal
studies [56].

Apart from that, DMH exposure increases the cholesterol
accumulation, which was benefitted by tumor cells. Cooper et al.
have observed that DMH treatment results in doubling of biologi-
cal membrane cholesterol and gross distortion of cell shape, with
changes in the (i) lipid composition, (ii) membrane fluidity, and
(iii) morphology [36]. This in turn may present the accumulation
and metabolism of secondary bile acids by the colon microflora
[57]. The enhancing effect of colon tumor by the high-fat diet
depends on the type of fat and their fatty acid composition. In
general, dietary fat that contains linoleic acid, a precursor of
prostaglandin, which is effective in promoting tumorigenesis in
animals [58].

During the progression stage, weight loss is the common fea-
ture of the colon cancer, which reflects the aggressiveness of the
disease. The tumor burden in the colon results in decreased food
intake, therefore decreasing weight gain or increasing weight
loss. Alterations in the glucose metabolism and elevated hep-
atic gluconeogenesis deplete the energy sources, all together
results in significant weight loss [59]. The cachexia (catabolic
clinical state) may be caused by a combination of endocrine and
immunological disturbances resulting from host-tumor interac-
tions. Different mechanisms are involved in the weight loss of
starvation and cancerous condition. During the starvation, the
weight loss is mainly from adipose tissue and small amount from
tissues, whereas in cancer loss, it will be in both adipose tissue
and skeletal muscles. In starvation, ketone bodies are produced
from fat, which replace glucose, therefore inhibiting the loss of
muscle mass.

Preneoplastic Lesions
Observations of preneoplastic lesions

The preneoplastic lesions, which were phenotypically altered
by carcinogens, but still they lack of important properties of
final tumor cells. Aberrant crypt foci (ACF) initially were iden-
tified topographically as the earliest recognizable lesions on
the carcinogen-exposed rodent colons. ACF were first described
by Bird [60] in methylene blue-stained whole-mount prepara-
tions of rodent colon, treated with colon-specific carcinogens.
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Figure 2: DMH injections induced the mutation in normal epithelium, later multi-step conversion of mutated epithelium to malignant one by 30 weeks.

McLellan and Bird defined aberrant crypts to have the following
structural features: (i) they are larger than the normal crypts in
the field, (ii) have elevated pericryptal zone that separates them
from the normal crypts, (iii) have a thicker layer of epithelial cells
that often stains darker, and (iv) generally have oval rather than
circular openings (normal crypts) [61]. They can be observed as
single altered crypts or as a group of altered crypts that appears
to form a single unit or focus. Frequently, ACF are microscopically
elevated above the mucosa but also may be depressed, i.e. usually
they are not in the same focal plane as the surrounding normal
crypts. Crypts harboring any four of the abovementioned criteria
are considered as aberrant crypts.

DMH treatment induces the formation and multiplicity of
ACF, which reflects the initiation stage of colon cancer in rats.
Alternatively, high-fat diet also increased the multiplicity of ACF
due to its tumor-promoting capabilities. In addition to increased
number of ACF, luminal alterations, goblet cell reduction, and
nuclear alterations of the cells surrounding the lumen of the
crypt are also found [62]. These characteristics can be correlated
with outcome of dysplastic ACF. Several studies have suggested
that the growth features of ACF and dysplastic ACF and their
location are used as a measure of the biological efficacy of the
modifiers of colon carcinogenesis [31, 63]. Moreover, ACF and
dysplastic ACF represent the earliest detectable lesions (preneo-
plastic lesions) in the development of colon cancer [64].

Apart from this, western diet alone could produce neoplasm
in the colon of experimental animals. The large intake of high-
fat diet along with low levels of intake of calcium, vitamin D,
folate, choline, methionine, and fiber can induce adenomas and
carcinomas of C57BL/6 mice without the exposure of carcinogen
[29, 65], by depletion of apoptosis changes in cell renewal
showed morphologically identifiable atypical mitotic figure
(Fig. 4) [65].

Beta-catenin-accumulated crypts

Venkatachalam et al. demonstrated that the β-catenin-accumul-
ated crypts in the sectioned colonic tissues exhibited histological
abnormalities, including the disruption of cellular morphology
[62]. Moreover, the β-catenin accumulation in the crypts
increased with time after the carcinogen treatment. The crypts
with the accumulation of β-catenin were infrequently recognized
as adenomatous crypts having extensive branching. Previously,
Yamada et al. reported that β-catenin-accumulated crypts in the
large bowel harbor frequent mutations in the β-catenin gene,
providing evidence that those crypts are premalignant lesions
[66].

Histopathology of DMH-Induced Colon Tumors
The evaluation of the changing patterns of tumor development
plays a valuable role in the development of anticancer agents. A
mass of small adenomas viewable in colon carcinogen exposed
rats, which were attached directly to colon and deeply stained
red surrounding mucosa and becomes pedunculated. The car-
cinogen exposure brings severe abnormalities in adenomas (like
architecture, cytology, and differentiation) which are expressed
as dysplasia. This can be expected as multiple changes in the
metabolic pathways that occur on DMH treatment during the
conversion of adenomas to adenocarcinoma including growth
factors promoting stromal proliferation and angiogenesis, pro-
teolytic enzymes facilitating local invasion, numerous changes
in the secretory and membrane-associated glycoproteins, alter-
ations in cell adhesion molecules, and the development of ane-
uploidy [67]. The drastic increase in the total number of tumors
in DMH-exposed rats revealed the rapid conversion of adenoma
to adenocarcinoma and the growth of colonic tumors.

The earliest microadenoma is the unicryptal adenoma. The
unicryptal adenoma starts as a little outgrowth (a bud) from the
side of an apparently normal crypt [68, 69]. This little growth
forms a tubule that moves upwards with the normal migration
of the crypt column until it reaches the surface epithelium. The
neoplastic tubule is usually shorter than its normal counter-
part but undergoes fission to produce an oligocryptal adenoma.
Growth that is expansile leads to the formation of a polyp [70].
Those adenomas are often flat or depressed but may subse-
quently become polypoid as their size increases [71].

The last stage of conversion of adenoma to adenocarcinoma
must be a rate-limiting step, since adenomas are relatively large
in numbers when comparing carcinomas. Furthermore, this
step is accompanied by a multiplicity of phenotypic changes
implicating enzymes in metabolic pathways [72], increased
telomerase activity [73], growth factors promoting stromal
proliferation and angiogenesis [74–76], proteolytic enzymes
facilitating local invasion [77–80], numerous changes to secretory
and membrane-associated glycoproteins [81], alterations in
cell adhesion molecules [82], as well as the development of
aneuploidy [83].

Role of Bacterial Enzymes
The greatest number of bacterial cells is found in the digestive
tract of the human body. Fundamental comparative studies of
human fecal microbiota have revealed the astonishing fact that
each of us has unique microbiota (i.e. there are considerable
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Figure 3: Metabolism of DMH.

differences between the compositions of the microbiota of indi-
viduals).

Experimental and clinical studies suggest that there is a link
between consumption of red meat, high fats, and low vegetable
intake, and alterations in the composition of the gut microbiota
have been observed in animal and human studies. This high-fat
diet has an impact on increased activities of some fecal bacterial
enzymes, as well as modification of sulfidogenesis and biliary
acid metabolism with an impact on development of procarcino-
genic conditions [84].

Intestinal bacterial enzymes such as β-glucuronidase
and β-glucosidase release toxic metabolites from nontoxic
glycoside conjugates and extend the exposure time of the
toxicant in the body. β-glucuronidase is responsible for the
conversion of glucuronide conjugate in the lumen of the gut
[85], which leads to the generation of toxic (or) carcinogenic
compounds by cleaving the terminal glucuronic acid which
was earlier detoxified in the liver by glucuronidation. High-
fat diet along with DMH exposure shoots up the fecal β-
glucuronidase activities [51]. The increased activities may
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Figure 4: Preneoplastic lesions. (A) Schematic diagram of aberrant crypt foci. (B) Methylene blue-stained aberrant crypt foci. (C) Dysplastic aberrant crypt foci. (D)

Argyrophilic nucleolar organizing regions.

increase the cleavage of nontoxic to toxic compound, associated
with harmful effects on the host, which in particular may
lead to the initiation and/or promotion of carcinogenesis
[86].

In the same context, β-glucosidase and β-galactosidase are
responsible for the generation of aglycone from plant glycosides;
therefore these enzymes may hydrolyze DMH to get its toxic
metabolite MAM [87].

Mucinase is another one important enzyme hydrolysis pro-
tective mucin in the colon. Mucins, basically proteoglycan, form
gel, coating the intestinal mucosa and functioning as chemical
and mechanical barrier against bacteria, viruses, and toxins [88].
Mucinase activity is altered by the carcinogen exposure in exper-
imental studies; in turn amplified mucinase activities cleave
large area of mucin in the colon. Therefore, direct exposure of
carcinogen to colonic cells turns the normal cells to malignant
one [89].

Nitroreductase (generally distributed in bacteria) is involved
in the conversion of dinitrotoluene, nitrobenzenes, and nitropy-
renes (aromatic compounds) to amines, which often exhibit
toxic, mutagenic, or carcinogenic activities [90].

Fecal sulfatase activity should also be considered in the desul-
fation of conjugated toxins and in the degradation of sulfated
mucins. Changes in the expression of sulfated molecules such
as mucins and other glycoconjugates have been demonstrated
in the transformed colonic epithelial cells.

The overall types of bacteria in the intestinal tract may
be important in evaluating the relationship between diet and
intestinal flora rather than the actual number of bacterial
organisms [91]. The metabolic activity of intestinal microflora
can be modified by dietary factors, for example, they can
specifically play a significant role in the conversion of bile acids
and neutral sterols to form relative metabolites that can act as
promoters [86]. Therefore, fecal bacterial enzymes are known

to be involved in the conversion of procarcinogen to proximal
carcinogens.

Alterations in Glycoconjugates Levels
Alteration of glycoconjugates in cancerous tissue may be quan-
titative, qualitative, or both. Glycoproteins of the plasma mem-
brane play an important role in cell-to-cell contact, growth regu-
lation, and binding sites for hormones and lectins.

In tumor cells, alteration of glycoconjugates like hexoses,
hexosamine, and fucose may also contribute to the aberrant
cell-cell recognition, cell adhesion, antigenicity, and invasiveness
of malignant cells [92]. Carbohydrates are early considered as
energy sources and structural sources, and proteolytic agents
have been slowly refocused on the fact that they have diagnostic
and therapeutic potential. New scientific evidence has suggested
a relationship between carbohydrate structure and many biolog-
ical functions.

Oncogenes are known to induce the expression of Golgi β-1,6
N-acetylglucosaminyl transferase in many cell types, leading to
increased cellular motility and decreased substratum adhesion
[93]. Aranganathan et al. [94] reported that the level of protein-
bound hexoses and fucose is elevated in cancerous conditions.

The sialic acid and hexosamine were remarkably lowered in
the colon and elevated in the liver of carcinogen-exposed rats
[95]. Decreased activity of some glycosyltransferase leads to the
reduced level of carbohydrate content in tumor tissues [96].

Role of Xenobiotic-Metabolizing Enzymes
It is generally accepted that the biotransformation of substances
foreign to the body (xenobiotics) including drugs is divided into
phases I and II.
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Cytochrome P450 (CYP), a phase I drug-metabolizing enzyme,
is playing a major role in the activation of carcinogens [97]. Since
metabolic activation is required for many carcinogens before
binding to DNA, individuals with an elevated metabolic capacity
to activate specific carcinogens may be at an increased risk
of cancer [98]. Therefore, CYP-dependent metabolism not only
involving in exert toxicity ot carcinogenicity, but also the targets
for phase II enzyme dependent conjugation reactions are formed,
rendering them inactive polar products suitable for excretion via
the kidneys.

The main role of phase II enzymes is to perform conjugating
reactions, such as glucuronidation, sulfation, methylation, acety-
lation, glutathione, and amino acid conjugation; the respective
conjugates are more hydrophilic than the parent compounds
[99, 100]. Metabolism of DMH involves several xenobiotic-
metabolizing enzymes, which activates the procarcinogen. The
rat liver cytochrome P450 2E1 (CYP2E1) metabolizes the DMH
metabolites azoxymethane (AOM) and methylazoxymethanol
(MAM) in an in vitro microsomal system [101]. Elevated levels
of CYP2E1 were reported in DMH-induced colon cancer [102].
In addition, rats administered with β-naphthoflavone, a
potent inducer of CYP1A1, exhibited enhanced formation of
the promutagenic DNA adduct O6-methylguanine after DMH
treatment [103]. It is evident that procarcinogen DMH induces
CYP2E1; therefore conversion occurs and the formation of
ultimate carcinogen through the biotransformation.

GSH reacts spontaneously or via catalysis by glutathione-S-
transferases (GSTs) with numerous activated carcinogens [104],
rendering them excretable and less toxic. Decrease in the activ-
ities of GST and DTD in the carcinogen-exposed rats shows (i)
the conjugation process utilizes excess amount of these enzymes
and (ii) the exposure to carcinogen and other tumor promoters
reduces the protective ability of these enzymes against cell dam-
age by other metabolites [59].

An increase in phase II detoxification enzymes might be con-
sidered to be beneficial, because this could enhance the excretion
of carcinogens. Secondary metabolites from plant kingdom are
known to block the cytochrome P450 system responsible for
converting carcinogenic agents into forms capable of covalent
binding with DNA [105].

Modulation of Molecular Pathways
The APC gene encrypts a multifactorial protein that may partic-
ipate in many cellular events such as cell adhesion and migra-
tion, signal transduction, microtubule assembly, and chromo-
some segregation. However, even though all of these functions
are possibly linked with cancer, it seems that the major tumor-
suppressing function of APC resides in its ability to precisely
regulate intracellular β-catenin levels [106–108].

Moreover, although the majority of colorectal tumors carry
mutations in APC, those with an integral APC gene were found to
contain activating mutations in β-catenin that alter functionally
significant phosphorylation sites [107, 109]. In addition, muta-
tions in other members of the Wnt pathway have been shown
to be associated with cancer including conduction [110] and axin
[111, 112]. Presently, p53 is known to play a key role in practically
all types of human cancers, and the mutation or loss of the p53
gene can be identified in more than 50% of all human cancer
cases worldwide.

The p53 mutational spectra also can indicate that a particular
cancer did not result from an environmental carcinogen but
instead was caused by endogenous mutagenesis. The high
frequency of C to T transitions at CpG dinucleotides in colon

carcinomas [113] is consistent with mutagenesis by endogenous
deamination mechanisms. A C to T transition would be
generated by spontaneous deamination of 5-methylcytosine
[114] or by enzymatic deamination of cytosine by DNA (cytosine-
5)-methyl transferase when S-adenosylmethionine is in limiting
concentration (or by both mechanisms) [115]. Because oxygen
radicals enhance the rate of deamination of deoxynucleotides
[116, 117], chronic inflammation and nitric oxide generated
by nitric oxide synthases may explain why rats that inhale
particulate materials, which cause inflammation but do not
act directly on DNA, have a high incidence of lung cancer
[118].

In vivo studies have also shown that p53 mutation has a role
in colon cancer progression, but this becomes important only in
the late stages of the disease [119]. Thus p53 mutation observed
in the advanced tumor stage of colon cancer indicates that p53
mutation may be a late event contributing to tumor progres-
sion [120]. The ability of p53 to serve as a prognostic marker
has been extensively studied in colorectal cancer, with most
studies focusing on increased immunohistochemical staining
[121].

Exposure to ultraviolet light is a common carcinogen and
is correlated with transition mutations at dipyrimidine sites
[122]; dietary aflatoxin B1 exposure is associated with G:C to T:A
transversions that bring to the serine substitution at residue 249
of p53 in hepatocellular carcinoma [123, 124]; and exposure to
cigarette smoke is correlated with G:C to T:A transversions in
lung carcinomas [125].

Inflammation, proliferation, and apoptotic markers
(COX-2)

Epidemiologic studies have proved that individuals who
consume nonsteroidal anti-inflammatory drugs on a regular
basis compared with those not taking these agents have 40–
50% reduction in mortality from colon cancer. All of these drugs
have one unique property that is their ability to inhibit COX, a
key enzyme involved in the conversion of arachidonic acid to
prostaglandins. Raised levels of prostaglandin E-2 (PGE-2), the
predominant prostaglandin produced by COX-2, are detected in
colon cancer tissues and in macrophages derived from colon
cancer, whereas PGE-2 is only moderately present in normal
mucosa [126]. Elevated COX-2 expression has been found in colon
cancer tissues from subjects with clinically diagnosed colorectal
cancer [127–129]. There are two mechanisms involved in colon
cancer angiogenesis: (i) COX-2 can modulate the production of
angiogenic factors by colon cancer cells and (ii) COX-1 regulates
angiogenesis in endothelial cells [130].

The COX-2 gene may be regulated by hypoxia via the activa-
tion of Nuclear factor κ-B (NF-κB) in human vascular endothelial
cells [131], while COX-2 overexpression in cancerous epithelial
cells may be induced through the target of normal APC-the β-
catenin oncoprotein [132]. The principle role of wild-type APC
involves the binding and degradation of β-catenin. Most colorec-
tal cancers have loss of function mutations in the adenomatous
polyposis coli (APC) tumor suppressor gene. This leads to the
accumulation of β-catenin. COX-2 can be downregulated by wild-
type APC induction and upregulated by nuclear accumulation
of β-catenin in the presence of mutant APC. The most common
mutation in colon cancer is APC gene mutation. Thus, it would
suggest a direct role of APC loss in COX-2 overexpression.

Carcinogen exposure makes the upregulation of COX-2 pro-
tein expression and also the COX-2 mRNA in rat colon tissues. It
may be due to the loss of function of APC and accumulation of
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Figure 5: Schematic expression of overall mechanism of DMH-induced carcinogenesis.

β-catenin in carcinogen exposure. COX-2 expression in human
tumors can be induced by various growth factors, cytokines,
oncogenes, and other factors. IL-1b has been reported to upreg-
ulate COX-2 expression in human colorectal cancer cells via
multiple signaling pathways [133].

Overexpression of Bcl-2 prevents cells from undergoing apop-
tosis in response to a variety of stimuli. Overexpression of Bcl-
2 prevented the efflux of cytochrome c from the mitochondria
and the initiation of apoptosis. Thus, one possible role of Bcl-
2 in prevention of apoptosis is to block cytochrome c release
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from mitochondria. Moreover, dysregulation of cell death genes
leading to overexpression of Bcl-2 or reduction in Bax expression,
for example, would alter the Bcl-2/Bax ratio which is considered
to be anticarcinogenic and vice versa [134].

Nuclear factor κ-B

Activation of NF-κB must be a tightly regulated event. During
normal conditions, NF-κB become activate after an appropriate
stimuli and upregulated in the transcription of target genes. Then
NF-κB came back to inactive state. In cancerous conditions, dif-
ferent types of molecular alterations trigger impaired regulation
of NF-κB. In this context, NF-κB constitutively activated leads to
deregulated expression of genes under NF-κB control. Alterna-
tions in all these processes participate in the development and
progression of cancer [135]. Deregulated NF-κB expression has
been found in a number of different types of cancer. NF-κB reg-
ulates genes responsible for all survival, proliferation, inhibiting
apoptosis, and mediate invasion and metastasis. Loss of function
of APC genes results in the activation of β-catenin signaling, the
foremost step in the development of colon cancer, which was
observed in APC Min+ mice model.

It has been reported that TNF receptor superfamily mem-
ber 19 (TNFRSF19) is a β-catenin target gene, and TNFRSF19
receptor molecule-associated activation of NF-κB signaling has
demonstrated that β-catenin may regulate NF-κB activity via
TNFRSF19; activation of NF-κB activity has also been observed
in the APCMin+ mice model, which was inhibited by Riccardin
D [136]. Novel anticancer drugs induce apoptosis in cancer cells,
and apoptotic dysfunction leads to the progression of cancer
[137]. Usually, anticancer drug treatment results in the activation
of caspases, which effectively implement apoptosis. Polyphenols
can act as antioxidants as well as prooxidants depending on the
tumor environment. Oxidation of polyphenols produces O2, H2O2,
and a complex mixture of semiquinones and quinones, all of
which are potentially cytotoxic [138–141].

Since NF-κB activation is the result of a multi-step signaling
pathway, these compounds may target different points of the
signaling process. For example, some anti-inflammatory drugs
may inhibit NF-κB by interfering with IKK activity [142]. Other
substances such as curcumin, trans-resveratrol, or parthenolide
are natural compounds that have been demonstrated to inhibit
IKK activity [143]. NF-κB inhibition is also considered to be an
important therapeutic target in CRC. Thus, it may be hypothe-
sized that the inhibition of NF-κB by Riccardin D maybe a pivotal
mechanism of its effects in chemotherapy for CRC with the APC
mutation.

Conclusion and Future Perspectives
Rodent model for colon cancer is one of the best ways to
understand the underlying mechanism of colon carcinogenesis
and its progression, as well as the comprehensive treatment
approaches.

DMH-induced colon carcinogenesis is influenced by age, sex,
strain, bodyweight, and, most predominantly, by the diet. From
the different routes of DMH administration, we conclude that
a single dose of s.c. injection to rats developed a preneoplastic
lesions, whereas other routes of administration do not produce
feasible results. The same pattern of tumor induction is observed
in mice; however the hamsters are slightly resistant to DMH
carcinogenicity even administered as s.c. Various studies
revealed that high-fat diet plays a major role in the progression
of colon tumor in rodents. Rats and mice are the sensitive

species for DMH carcinogenicity; however, the latency period
is crucial. There is solid proof that the colon tumor induced
by DMH showed a very high tumor growth and malignancy
behavior by its histopathological evidence and metastatic
nature Fig. 5.

Evidenced from many animal studies, it is very clear that
natural products from plant kingdom have the strong chemo-
preventive activities against DMH-induced colon carcinogenesis.
These compounds may possess at least one of the following
(Table 1) properties such as blocking the initiation of tumor in
the local site, inhibiting the progression by influencing in the
tumor metabolism, preventing the binding with nucleic acids,
and stimulating DNA repair mechanism and inhibiting the cell
proliferation and inducing apoptosis. In future, the mechanism
behind the tumor microenvironment and pro- and antioxidant
roles of natural products need to be explored.
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