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Abstract

Recent years have witnessed a revolution in our understanding of microglia biology, including 

their major role in the etiology and pathogenesis of neurodegenerative diseases. Technological 

advances have enabled the identification of microglial signatures in health and disease, including 

the development of new models to investigate and manipulate human microglia in vivo in the 

context of disease. In parallel, genetic association studies have identified several gene risk factors 

associated with Alzheimer’s disease that are specifically or highly expressed by microglia in the 

central nervous system (CNS). Here, we discuss evidence for the effect of stress, diet, sleep 

patterns, physical activity, and microbiota composition on microglia biology and consider how 

lifestyle might influence an individual’s predisposition to neurodegenerative diseases. We discuss 

how different lifestyles and environmental factors might regulate microglia, potentially leading to 

increased susceptibility to neurodegenerative disease, and we highlight the need to investigate the 

contribution of modern environmental factors on microglia modulation in neurodegeneration.

Microglia are the resident phagocytes of the innate immune system in the central nervous 

system (CNS). They are the first responders to neuroinflammation or damage and rapidly 

adapt their phenotype and functions in response to the brain milieu. They are important for 

several physiological functions, such as phagocytic activity and cytokine production, and 

they support other brain cells. New technological advances, including single-cell genomics, 

quantitative proteomics, and epigenetic studies, identified a role for the molecular and 

functional regulation of microglia in health and disease (Gosselin et al., 2014; Li et al., 

2019; Masuda et al., 2019; Tay et al., 2018b). As an example, transforming growth factor β 
(TGF-β) and colony-stimulating factor 1 (CSF1) signaling, as well as other transcriptional 

factors including Sall1, Mafb, Irf8, and Pu.1, were identified as regulators of homeostatic 

microglia (Butovsky et al., 2014; Lund et al., 2018; Qin et al., 2018).

Neurodegeneration consists of age-related progressive loss and death of neuronal structures 

and functions in the CNS, leading to potential alterations of cognitive performance and 

dementia (Ramanan and Saykin, 2013). During neurodegeneration, microglia acquire 

neurodegenerative signatures, including those driven by Triggering receptor expressed on 

myeloid cells 2 (TREM2)-Apolipoprotein E (APOE) (Keren-Shaul et al., 2017; Krasemann 
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et al., 2017). On the basis of these findings, human induced pluripotent stem cell (iPSC)-

derived microglia were generated, allowing researchers to investigate the contribution of 

microglia-enriched risk genes to human disease. It also resulted in the development of novel 

humanized mouse models to study human microglia in vivo in the context of 

neurodegenerative disease.

Environmental factors such as chronic stress might influence microglia, which might in turn 

affect an individual’s susceptibility to neurodegeneration, because microglial dysfunction is 

a potential risk factor for Alzheimer’s disease (AD) development (Bisht et al., 2018; 

Katsumoto et al., 2018; Phan and Malkani, 2018). Stress during the perinatal period has also 

been linked to increases in cognitive deficits and psychiatric diseases later in life associated 

with neuroinflammation through potential alteration of microglial functions during 

development (Knuesel et al., 2014; Meyer and Hamel, 2014; Tay et al., 2018a). Dietary 

factors affect gut microbiota composition and modulate the immune system. Gut microbiota 

dysbiosis can regulate neuroinflammtion and microglia and has been associated with 

increases in the severity of neurodegeneration in animal models (Dodiya et al., 2019; Erny et 

al., 2015; Thion et al., 2018). Western diet has also been associated with an exacerbation of 

AD pathogenesis potentially through the alteration of microbiota (Drasar et al., 1973; Reddy 

et al., 1975; Wu et al., 2011). Therefore, diet intervention might be a promising approach for 

modulating disease predisposition and progression. Modern lifestyle is also associated with 

abnormal sleep patterns, which potentially promotes neurodegenerative functions of 

microglia (Bellesi et al., 2017; Wadhwa et al., 2017a; Wadhwa et al., 2017b). In this review, 

we discuss studies defining the mechanistic regulators and upstream molecular pathways 

that could be therapeutic targets to ameliorate the negative effects of lifestyle factors and 

their potential consequences on the brain. Altogether, recognition of the negative 

consequences resulting from certain lifestyles and the importance of microglia in the 

etiology and progression of AD might allow people to adopt different lifestyles to modulate 

their susceptibility to neurodegenerative disease, in addition to other treatments.

Chronic Stress and Microglial Dysregulation in Neurodegeneration: From 

Perinatal Stages to Aging

Suffering from chronic lifestyle stress during certain periods of life has become a common 

feature of modern societies. Chronic lifestyle stress and, in particular, psychosocial stress 

might confer a risk factor for late-onset AD (LOAD) and associated cognitive deficits. AD is 

characterized pathologically by the accumulation of phosphorylated tau and β-amyloid (Aβ) 

plaques. AD patients have been shown to present 83% increased cortisol levels in their 

cerebrospinal fluid (CSF) compared with healthy age-matched controls (Sapolsky et al., 

1985; Swaab et al., 1994). Reactive gliosis, which consists of a range of molecular, 

morphological, and functional changes of glia in the CNS, and neuroinflammation are 

prominent hallmarks of AD (McGeer et al., 1987; Sarlus and Heneka, 2017). Microglia 

surround amyloid plaques in both human AD and animal models, although their role in 

disease progression is unclear (Sarlus and Heneka, 2017).
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Several epidemiological and preclinical studies have shown that environmental factors might 

influence AD incidence (Qiu et al., 2009) (Figure 1). Individuals with a life-long history of 

stress are at higher risk for developing brain atrophy, cognitive deficits, and AD (Alkadhi, 

2012; Gracia-García et al., 2015). Consistent with clinical studies, a retrospective study 

showed that aged primates stressed during early life presented significantly higher levels of 

Aβ plaque deposition and a reduction in synapse number compared with non-stressed 

primates (Merrill et al., 2011). Another study reported that restraint stress, or an unavoidable 

stress situation, elevates glucocorticoid hormones, which are key regulators of essential 

physiological functions in mammals, including the immune system (Smith and French, 

1997). In rodent models of AD, chronic stress exacerbates neurodegeneration and cognitive 

impairments (Alkadhi and Tran, 2015; Carroll et al., 2011; Srivareerat et al., 2009) and 

increases Aβ accumulation and tau phosphorylation (Catania et al., 2009; Green et al., 2006; 

Joshi et al., 2012). Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder 

occurring in response to traumatic stress such as a dangerous or shocking event. A 

retrospective study of veterans showed that PTSD is associated with a higher risk of 

developing dementia (Yaffe et al., 2010), AD, and frontotemporal dementia (Bonanni et al., 

2018). In addition, rodent models of PTSD present accelerated Aβ plaque formation and 

release (Rothman et al., 2012). Thus, chronic lifestyle stress is associated with increased 

vulnerability to neurodegenerative diseases along the lifespan. Frontal cortex and 

hippocampus are particularly vulnerable to the effects of stress. Interestingly, these regions 

are among the first regions to be affected in AD pathology. However, potentially common 

underlying mechanisms between stress and AD pathology have not yet been well 

characterized.

Neuroinflammation is a consequence of chronic stress and has been well characterized in 

AD. Epidemiological studies showed that PTSD is associated with immune system 

dysregulation (Hori and Kim, 2019). In particular, chronic psychosocial stress induces 

peripheral and CNS inflammation in the adult (Eidson et al., 2019). Restraint stress 

increased neuroinflammation, characterized by gliosis, and increased inflammatory gene 

transcription and lipid peroxidation independent of Aβ levels in an AD mouse model (Perez 

Nievas et al., 2011). Microglia are thought to play a pivotal role in AD pathology and plaque 

removal (Gandy and Heppner, 2013). Transcriptomic analyses have revealed a 

neurodegenerative signature termed MGnD (neurodegenerative microglia) or DAM (disease-

associated microglia) in plaque-associated microglia from both human and mouse AD 

models (Kamphuis et al., 2016; Keren-Shaul et al., 2017; Krasemann et al., 2017; Yin et al., 

2017) that was largely absent from microglia from non-plaque areas. This disease-associated 

signature includes upregulated expression of Apoe, Axl, Clec7a, Itgax, and Lgals3, forming 

a common core of neurodegenerative (Krasemann et al., 2017) and disease-associated 

transcriptomes demonstrated by several groups (Holtman et al., 2015; Keren-Shaul et al., 

2017; Srinivasan et al., 2016). This core phenotype is characterized by the induction of 

genes related to APOE signaling and the suppression of TGF-b signaling in microglia 

associated with cellular damage and neurodegeneration. The MGnD and DAM phenotypes 

includes expression of chemokines that can facilitate recruitment of inflammatory 

monocytes and activation of astrocytes (Liddelow et al., 2017). Association of MGnD/DAM 

microglia with Aβ plaques is clear; however, major questions remain regarding their 
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potential protective or disease-promoting functions. Innate immune cells can be protective in 

AD by reducing accumulation of Aβ (Frenkel et al., 2008; Simard et al., 2006), which 

happens early in the disease. Microglia might also lose their ability to phagocytose Aβ as 

they age (Hickman et al., 2013; Streit and Xue, 2009) and become neurotoxic with 

increasing Aβ deposition (Sastre et al., 2006; Streit et al., 2004). Chronic lifestyle stress 

sensitizes microglia toward a primed phenotype and induces neuroinflammation in the adult 

brain (Ramirez et al., 2016; Wohleb et al., 2014). Thus, stress might compromise the 

supportive roles of microglia for neurons and synapses, leading to deteriorating cognitive 

functions during aging. Once stressed, microglia change their gross morphology toward a 

more amoeboid, de-ramified phenotype with shorter and thicker processes (Kreisel et al., 

2014; Wohleb et al., 2014). A marker for phagocytic activity, CD68, is increased on 

microglia in chronically stressed mice associated with augmented phagocytosis (Lehmann et 

al., 2016). Acute stress increases the number of microglia (Lehmann et al., 2016), whereas 

chronic stress decreases it, largely in the hippocampus (Tong et al., 2017). Thus, the 

intensity and duration of microglial activation by stress are important features that might 

lead to different pathological outcomes (Stein et al., 2017). However, persistent microglial 

pro-inflammatory activation after long exposure to stress could exacerbate neuronal damages 

and amyloidosis already present in AD pathology (Heppner et al., 2015). The potential 

contribution of somatic mutations toward chronic activation of microglia in 

neurodegeneration has to be taken into consideration. Indeed, somatic mutations in the line-

age of erythro-myeloid progenitors (EMPs), to which microglia belong, might drive late-

onset neurodegeneration by leading to constant microglial nuclear factor κB (NF-κB) 

activation and resulting in neuronal loss (Mass et al., 2017).

During postnatal development, many environmental factors, transmitted via the mother-child 

interaction, can affect proper brain development. For example, an infant depends on 

maternal care during the first weeks of life. However, in developed countries, child abuse, 

neglect, and lack of quality and time of parenting care have been linked to increased risk of 

negative long-term consequences on child health (Kaplan, 2001; Mueller et al., 2010; 

Nelson, 2007). In 2012, the U.S. Department of Health and Human Services referred 3.4 

million cases to Child Protective Services, of which most related to child abuse or neglect. 

Early-life stress (ELS), in the form of childhood maltreatment, is the most common and 

potentially preventable cause of abnormal brain development (Kaffman and Meaney, 2007). 

ELS has been associated with social, emotional, cognitive impairment, and psychiatric 

disorders later in life (Delpech et al., 2016; Hanson et al., 2015; Pechtel and Pizzagalli, 

2011). Studies in the early 1950s showed that glucocorticoid levels were higher in premature 

infants (Levine et al., 1951), potentially because of the neonatal intensive care period (Smith 

et al., 2011). Stress-related glucocorticoids—cortisol in primates and corticosterone in 

rodents—have been associated with a reduction in synapse number and altered neuronal 

assemblies and wiring (Popoli et al., 2011), and they are known to affect neurocognitive 

development (Carson et al., 2016). Thus, these neuroendocrine factors might affect 

neurodevelopment early in life. However, how ELS alters brain development associated with 

multiple clinical outcomes is not yet well understood in humans.

Chronic inflammatory conditions induce age-associated development of an AD-like 

neuropathology in mice, including increased amyloid precursor protein (APP) loads (Krstic 
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et al., 2012). Thus, there is an emerging need to understand whether ELS affects the risk of 

developing AD by activating the brain’s innate immunity (Hoeijmakers et al., 2018). ELS 

aggravates neuropathology and alters disease progression in an AD mouse model 

(Hoeijmakers et al., 2017). However, the mechanism of microglial contribution to the effects 

of ELS is still unknown. It is possible that ELS drives neuroinflammation, which will alter 

microglial activity. ELS increases peripheral inflammation, which might play a role in many 

psychiatric disorders and alters microglial morphology and density, mainly in the rodent 

frontal cortex and hippocampus (Baldy et al., 2018; Gómez-González and Escobar, 2010; 

Roque et al., 2016). ELS is also associated with increased pro-inflammatory cytokines in the 

brain (Banqueri et al., 2019; Delpech et al., 2016; Gracia-Rubio et al., 2016). Thus, the link 

between early-life immune activation and deleterious consequences on the brain might affect 

microglial functions during development. Microglia mature during the second postnatal 

week (Butovsky et al., 2014; Matcovitch-Natan et al., 2016). The perinatal microglial 

phenotype resembles the MGnD and DAM phenotypes observed in neurodegenerative 

diseases (Hagemeyer et al., 2017; Krasemann et al., 2017; Wlodarczyk et al., 2017) and is 

represented by an APOE expression peak around postnatal day (P) 3, displaying gene 

characteristics of APOE-dependent MGnD signature (Butovsky et al., 2014; Hagemeyer et 

al., 2017; Matcovitch-Natan et al., 2016; Wlodarczyk et al., 2017) in a structure-dependent 

manner. This phenotype is associated with induction of MGnD genes such as Gpnmb, Spp1, 

and Apoe and an absence of expression of microglial homeostatic genes such as P2ry12, 

Tgfbr2, Mafb, Mef2a, and Sall1. However, this phenotype is considered non-toxic during 

development (Hagemeyer et al., 2017; Wlodarczyk et al., 2017).

Chronic stress might have a direct influence on microglial immune genes such as APOE and 

TREM2 associated with LOAD in genome-wide association study (GWAS) (Karch and 

Goate, 2015). These genes are associated with AD cognitive deficits and might be involved 

in stress-induced neuroinflammation. Human APOE has three alleles: ε2, ε3, and ε4. The 

APOE ε4 allele is found in about 15% of the population and in about 60% of patients with 

AD dementia (Mahley and Rall, 2000). Each additional copy of the ε4 allele is associated 

with a higher risk of developing AD and an earlier age of dementia onset (Corder et al., 

1993; Strittmatter and Roses, 1995). APOE ε4 allele is the major genetic risk factor for 

LOAD (Corder et al., 1993; Strittmatter et al., 1993) acting in an age- and gene-dose-

dependent manner (Corder et al., 1993; Farrer et al., 1997). APOE ε4 increases Aβ 
pathology and is associated with impaired memory performance (Liu et al., 2013). However, 

the pathophysiological mechanisms underlying the genetic association of APOE ε4 with AD 

remain elusive. One hypothesis is that long term exposure to chronic stress in older patients, 

which is associated with increased cortisol levels, might be associated with memory deficits 

in APOE ε4 variant carriers (Peavy et al., 2007). Chronic stress was shown to impair 

cognition in an APOE4-humanized mouse model at adult stages (Lin et al., 2016). Although 

cerebral Aβ deposition might begin 1 to 2 decades before the onset of cognitive impairment 

(Bateman et al., 2012; Price and Morris, 1999), recent studies suggest functional and 

structural brain alterations might precede the onset of Aβ deposition in APOE ε4 carriers 

(Bookheimer et al., 2000; Shaw et al., 2007). Young adult APOE ε4 carriers present 

impaired functional brain activity in regions preferentially affected by AD, decades before 

their average age at possible dementia onset (Shaw et al., 2007). Moreover, infant APOE ε4 
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carriers have decreased brain volumes in areas affected by AD (Dean et al., 2014). APOE ε4 
adult carriers whom had childhood epilepsy exhibit increased brain Aβ load at late middle 

age (Joutsa et al., 2017). Thus, pathological conditions associated with activation of APOE 

signaling, i.e., induced apoptosis during CNS development or activation of glucocorticoids, 

might lead to an altered developmental APOE-MGnD phenotype, which might lead to later-

life cognitive disorders and neurodegenerative diseases such as AD. Genetic variants of 

TREM2, most strongly R47H, also result in an increased risk of developing LOAD and other 

neurodegenerative diseases (Guerreiro et al., 2013; Ulrich and Holtzman, 2016). AD patients 

carrying the TREM2 mutation have increased brain atrophy and cognitive deficits (Jonsson 

et al., 2013). Moreover, naive Trem2−/− mice display impaired microglia-mediated synapse 

elimination (Filipello et al., 2018). However, how chronic stress affects TREM2 functions in 

microglia has yet to be investigated. A recent study reported that after chronic stress there is 

the presence of dark microglia that are TREM2+ and associated with AD pathology in 

APP/PS1 mice (Bisht et al., 2016). However, there is no study investigating cortisol levels or 

other measure of chronic stress in TREM2 variant carriers with AD or frontotemporal 

dementia. With the increase of personalized genetic testing in individuals, a patient’s 

knowledge of their genotype and potential risk of developing AD should be taken into 

consideration when cognition is measured in the elderly. Living with the knowledge of 

carrying the APOE ε4 variant and therefore being at increased risk for developing AD might 

adversely change the patient’s perception of their memory abilities and, thus, their 

performance on cognitive tests (Lineweaver et al., 2014). More importantly, it can be a 

source of chronic mental and emotional stress that could enhance the risk of developing 

neurodegeneration and AD pathology. An interesting observation is that women who 

breastfed had a lower AD incidence than women who did not (Fox et al., 2013). Ovarian 

hormone deprivation and/or insulin sensitivity present during breastfeeding might be 

responsible for this risk reduction. Promoting formula feeding and reducing maternity leave 

time in developed countries could be directly linked to an increase of AD in women.

Potential treatments for anxiety reduction such as selective serotonin reuptake inhibitors 

(SSRIs) might be used as preventive measures and treatments for AD (Figure 1). In clinical 

studies, long-term treatment with SSRIs is associated with reduced rates of dementia and 

delayed AD progression (Bartels et al., 2018; Kessing et al., 2009). Recently, a study 

showed that treating APP-PS1 mice with the SSRI fluoxetine improved memory 

performance, prevented loss of synapses and reduced Aβ plaques levels in the hippocampus 

(Zhou et al., 2019). Interestingly, these beneficial outcomes are potentially mediated through 

different cellular and molecular pathways including increased neurogenesis and gliogenesis 

(Banasr and Duman, 2007; Banasr et al., 2007), but also via activation of the TGF-β 
pathway in microglia mediated by astrocytic secretion (Caraci et al., 2018). However, 

genetic risk variants such as APOE4 and TREM2 R47H, which play a role in microglia 

modulation in AD, should be taken into consideration in future studies.

Diet Habits and Microglia Regulation: Influence of Microbiota

The gut microbiome has attracted significant attention from neuroscientists, because it 

modulates the CNS in both health and neurodegeneration. The adult microbiota depends on 
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both genetics (Spor et al., 2011) and environmental factors including diet, maternal 

environment, and exposure to new microbiota (Sommer and Bäckhed, 2013).

Nutritional habits might influence neurodegenerative disease onset and progression by 

acting through microglia via peripheral inflammatory pathways such as microbiota. 

Nutrients and metabolites are known to modulate the immune system (Calder et al., 2017). 

However, the mechanisms of diet-induced effects are unclear. For example, peripheral 

inflammation and gut microbiota dysbiosis can tune neuroinflammation and increase the 

incidence of neurodegeneration (Heneka et al., 2015; Kowalski and Mulak, 2019; Pistollato 

et al., 2018) but the mechanisms are not well studied. Moreover, many studies have been 

conducted based on one nutrient at a time. However, the effects of food and nutrients might 

need to be studied in combination, because they are consumed together (Féart et al., 2009). 

A lot of attention has focused on the Mediterranean diet, especially in regard to 

cardiovascular diseases. However, the Mediterranean diet has also been positively associated 

with a slower rate of cognitive decline (van de Rest et al., 2015) and reduced risk of 

developing AD (Lourida et al., 2013) (Figure 1). The traditional dietary pattern in 

Mediterranean countries is characterized by high intake of fruits, vegetables, and 

wholegrains; moderate intake of fish, poultry, and alcohol (particularly red wine) and low 

intake of red and processed meats with olive oil used as the main fat source (Davis et al., 

2015). On the opposite end of the spectrum, consumption of a Westernized diet, which is 

more prevalent in Western developed countries, has been associated with an increased risk of 

developing chronic inflammatory diseases (Uranga et al., 2016). The Western diet is 

characterized by a high content of proteins (derived from processed meats), saturated fats, 

refined grains, increased sugar and salt, alcohol, and mostly corn-derived fructose syrup and 

a decrease in fruit and vegetable consumption (Mozaffarian et al., 2011; Tilg and Moschen, 

2015). This diet directly contributes to the development of obesity, metabolic syndrome, and 

cardiovascular diseases (Shoelson et al., 2007; Tilg and Moschen, 2015). In addition, dietary 

composition of Western-like diets increases the release of cortisol, influencing the response 

to stress (Maurer et al., 2003). Western diet has been shown to have an effect on intestinal 

microbiota, leading to a decrease in total bacteria, as well as specific species such as 

Bifidobacterium and Eubacterium (Drasar et al., 1973; Reddy et al., 1975; Wu et al., 2011). 

On the opposing end, the Mediterranean diet leads to increased levels of microbiota 

metabolites (short-chain fatty acids [SCFAs]), Prevotella bacteria, and other Firmicutes (De 

Filippis et al., 2016). Beneficial aspects of the Mediterranean diet are potentially because of 

increases in Lactobacillus, Bifidobacterium, and Prevotella and decreases in Clostridium 
(Bialonska et al., 2010; Clemente-Postigo et al., 2012; Fava et al., 2013; Furet et al., 2010; 

Koloverou et al., 2016; Queipo-Ortuño et al., 2012), although the specific effects of these 

alterations on microglia are unknown. Several studies show that obesity, which is associated 

with the Western diet, and chronic low-grade peripheral inflammation are a risk factor for 

AD at midlife (Anstey et al., 2011; Chuang et al., 2016; Kivipelto et al., 2005) (Figure 1). 

Obesity might induce inflammation through alterations of metabolic hormones levels such 

as insulin (Procaccini et al., 2016). Changes in insulin signaling might affect cognitive 

deficits and dementia onset as it impairs the control of neuronal excitability for example. 

Lower serum levels of insulin-like growth factor 1 (IGF-1) have been observed in obese 

patients (Galli et al., 2012) and might contribute to neuronal loss, as observed in Igf-1-
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deficient mice (Beck et al., 1995). Consumption of a Western diet also induces astrocytosis 

and TREM2+ microglial activation during aging and in AD mouse model (Cope et al., 2018; 

Graham et al., 2016). In addition, obesity accelerates AD pathology in APOE4-humanized 

53FAD mice associated with an increase in Aβ pathology and microglial activation (Moser 

and Pike, 2017). Thus, obesity associated with a Western diet induces chronic 

neuroinflammation that might exacerbate AD pathogenesis.

Microglia from adult germ-free (GF) mice, which are not exposed to bacteria throughout 

life, display altered cell proportions and an immature phenotype, characterized by longer 

processes and greater numbers of branching and terminal points. This phenotype was 

associated with impaired CNS immune responses toward immune challenges (Figure 2) 

(Brown et al., 2019; Erny et al., 2015). Recolonization with complex microbiota or 

administration of bacterial metabolites, a mix of SCFAs, was able to restore defects in 

microglia density, proportions, and surface marker expression (Erny et al., 2015). A model 

of limited microbial diversity was used to examine the impact of a non-diverse gut 

microbiome (Erny et al., 2015). These mice displayed similarly altered microglia relative to 

GF mice, suggesting that a non-diverse microbiome is insufficient for normal microglial 

development. However, recolonization of these mice with a more diverse microbiome 

allowed microglial maturation to a phenotype similar to adult specific pathogen-free 

animals. Thus, it might be that the presence of particular microbiota species or a sufficiently 

diverse microbiome is required for proper microglial function. In humans, an individual’s 

microbiota is relatively stable with day-to-day variation (Costello et al., 2009). Large 

disruptions occur after antibiotic administration, infection, and large diet changes (David et 

al., 2014). Depending on the disruption frequency and length, microbiota recovery might be 

impaired (Dethlefsen et al., 2008; Levy et al., 2017; Ubeda and Pamer, 2012). The use of 

antibiotics might affect microglial function, which must be taken into account when 

considering the large-scale use of antibiotics. Interventions to enrich or entire reconstruction 

of an individual’s microbiome by probiotics or fecal matter transplant (FMT) might become 

viable options.

The maternal gut microbiome is also important for microglial development and maturation. 

The maternal gut microbiome helps shape microglial development close to birth. At 

embryonic day (E) 14.5, embryonic microglia from offspring of GF dams display only 

minor differences compared with controls; however, microglia isolated closer to birth, at 

E18.5, displayed considerable differences in transcriptomes, morphology, and distribution. 

Importantly, a strong gender effect was observed; major differences were specifically 

observed in embryonic males, whereas females displayed the largest differences later in 

adulthood (Thion et al., 2018). Metabolites such as SCFAs have been shown to influence 

microglial maturation and phenotype in health and disease (Hara et al., 1999; Raybould, 

2010). Mice lacking free fatty acid receptor 2 (FFAR2), a G protein-coupled receptor 

required for SCFA signaling in the gut, exhibited a similar microglial phenotype to that 

observed in GF mice (Erny et al., 2015), although the mechanism of action is still unclear 

(Chen et al., 2007; Erny et al., 2015). These important observations open up interesting 

avenues to explore the role of microbiome modulation of microglia in development and its 

potential consequences on neurodegeneration in adulthood (Figure 2). In humans, maternal 

anxiety during pregnancy (Hechler et al., 2019) and ELS (Jacquot et al., 2011; Rougé et al., 
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2010) can affect microbial composition in infants, linking psychological symptoms in 

pregnancy to microbiota alterations in offspring. The use of probiotics may ameliorate these 

effects (Cowan et al., 2019).

Several bidirectional signaling pathways have been identified by which the gut microbiota 

affects microglia, including immune and neural pathways (Figure 2) (Bravo et al., 2011; 

Erny et al., 2015; Tan et al., 2014b). Efferent signals can modulate gastroin-testinal (GI) 

motility, secretions, and permeability, modifying the microbiome environment and its 

composition (Collins et al., 2012). The vagus nerve connects the gut and the brainstem, 

serving as the afferent conduit for communicating satiety, stress, and mood, and recognizes 

gut microbial products (Forsythe et al., 2014; Goehler et al., 2005). The inflammatory state 

of the gut can directly activate chemoreceptors located at vagal nerve endings to influence 

microglia and the level of inflammation in the CNS (Forsythe et al., 2014). A peripheral 

immune challenge can cause upregulation of anti-inflammatory pathways in the brain via the 

vagus nerve, including decreased microglial pro-inflammatory cytokines (Frasch et al., 

2016; Kaczmarczyk et al., 2017; Meneses et al., 2016). Microbiota can influence the CNS 

through direct modulation of the peripheral immune system or by regulating intestinal 

permeability to control the entry of pathogenic, immune-stimulating, and neuroactive 

substances (Karczewski et al., 2010; Kelly et al., 2015). Astrocytes might also control 

microglia regulation during aging and in disease. Indeed, it has been shown that in 

combination with microbiota changes, dietary tryptophan is metabolized by the gut into aryl 

hydrocarbon receptor (AHR) agonists that have an effect on astrocytes to limit 

neuroinflammation via interferon type I (IFN-I) signaling (Rothhammer et al., 2016). In 

addition, microbial metabolites might limit pathogenic activities of microglia and astrocytes 

and suppress CNS inflammation via transforming growth factor α (TGF-α) and vascular 

endothelial growth factor B (VEGF-B) produced by microglia (Rothhammer et al., 2018). 

Mice fed a high-fat diet show elevated levels of Firmicutes and Proteobacteria compared 

with Bacteroidetes, a finding replicated in obese patients. Akkermansia muciniphila is one 

identified Bacteroidetes that is less abundant in obese individuals and has been implicated in 

intestinal integrity (Dao et al., 2016). A pro-inflammatory response could compromise the 

integrity of the blood-brain barrier (BBB) (Rochfort et al., 2014), and increased circulation 

of BBB-permeable cytokines and neurotoxic compounds could directly lead to microglial 

activation (Qin et al., 2008; Riazi et al., 2008). Microbiome-microglia communication might 

rely on specific microbiota and is likely mediated via multiple mechanisms. Identification of 

individual metabolites and their effects on microglia is a critical step in developing any 

therapeutic strategy. The effects of the microbiome on microglial phenotype and functions, 

such as phagocytosis of various substrates, milieu sensing, tolerance, and migration, remain 

to be investigated. Interesting questions remaining to be explored are whether and how 

microglia might modulate the composition or function of the microbiome.

Microbiome-Microglia Modulation in Neurodegeneration

Preclinical and human cross-sectional studies have associated microbiome alterations with 

several neurodegenerative diseases, including Parkinson’s disease (PD) (Fasano et al., 2013; 

Keshavarzian et al., 2015; Tan et al., 2014a), AD (Harach et al., 2017; Ho et al., 2018; 

Minter et al., 2016), amyotrophic lateral sclerosis (ALS) (Rowin et al., 2017; Zhang et al., 
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2017b), and multiple sclerosis (MS) (Cekanaviciute et al., 2017; Kosmidou et al., 2017; 

Miyake et al., 2015).

PD is the second most common neurodegenerative disorder after AD and is characterized by 

dopaminergic neuron death in the substantia nigra and neuronal accumulation of α-

synuclein (Goedert et al., 2013). Alterations of the microglial microenvironment might 

trigger a pathogenic phenotype associated with release of pro-inflammatory cytokines and 

other neurotoxic compounds (Zhang et al., 2005). Large-scale microglial molecular profiling 

in animal models of PD has not yet been conducted, but activated microglia are known to be 

prominent in both mouse models and human PD (Joers et al., 2017), including expression of 

AXL associated with MGnD/DAM microglia (Keren-Shaul et al., 2017; Krasemann et al., 

2017). One hypothesis contends that sporadic PD begins in the gut by α-synuclein 

aggregation, spreading via the vagus nerve (Braak et al., 2004; Rietdijk et al., 2017). Indeed, 

vagotomy might be associated with reduced risk of PD development in humans (Svensson et 

al., 2015a). In support of this hypothesis, a recent study found that gut injection of α-

synuclein fibrils converts endogenous α-synuclein into a pathological species that spreads to 

the brain, leading to PD features. Consistently, vagotomy or α-synuclein deficiency 

prevented neuropathological and neurobehavioral deficits (Kim et al., 2019). Gut-associated 

symptoms, including chronic constipation and GI distress, precede motor symptoms in up to 

80% of PD patients (O’Sullivan et al., 2008). Thus, it would be important to investigate 

whether patients with GI distress exhibit increased levels of α-synuclein production in the 

gut, thereby linking the GI issues with the potential mechanism of spreading to the brain. 

Moreover, PD patients exhibit significantly altered gut microbiome (Hill-Burns et al., 2017) 

and reduced SCFA concentrations (Unger et al., 2016). GF mice that overexpress human α-

synuclein display reduced motor deficits, GI dysfunction, and microglial activation (Figure 

2) (Sampson et al., 2016). Furthermore, administering SCFAs to these GF transgenic mice 

increased microglial activation and induced motor deficits (Sampson et al., 2016). 

Interestingly, in a toxin-induced model of PD, FMT attenuated microglial activation, along 

with motor deficits and decreased SCFAs (Sun et al., 2018). This supports the idea that 

microbiome components might have a beneficial effect and, if identified, could be 

therapeutic targets. Microglial phenotype in PD still needs to be defined to put their role into 

context with other neurodegenerative diseases.

The gut microbiome might be an important factor in the etiology of AD. Microbial 

metabolites were measured in the CSF of AD patients and associated with AD biomarkers, 

including phosphorylated tau and Aβ (Vogt et al., 2018). In addition, aged individuals 

exhibit a different microbiome (Claesson et al., 2011), which supports the possibility that an 

altered microbiome mediated by aging is associated with the AD etiology and pathogenesis. 

When comparing fecal microbiomes and SCFAs between AD and wild-type (WT) mice at 

different ages, the proportions of certain microbiota were different, including elevations in 

Verrucomicrobia and Proteobacteria, whereas the levels of SCFAs were reduced (Zhang et 

al., 2017a). An interesting approach would be to investigate whether FMT from old to young 

AD mice would exacerbate disease progression, as well as whether young-to-old 

microbiome transfers may be a treatment for AD. The oral microbiome has also become of 

interest after the pathogen Porphyromonas gingivalis, involved in chronic periodontitis, was 

identified in the brain of AD patients, and oral infection in mice resulted in brain 
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colonization and increased Aβ production (Dominy et al., 2019). GF AD mice displayed a 

reduction in Aβ pathology, and colonization of these mice increased pathology (Harach et 

al., 2017). Furthermore, long-term antibiotic treatment in an AD mouse model decreased Aβ 
plaque deposition associated with altered cytokine and chemokine signatures and microglial 

morphology (Figure 2; Minter et al., 2016). Strikingly, short-term postnatal antibiotic 

treatment (P14–P21) resulted in lasting gut microbiome alterations associated with a 

reduction in Aβ deposition later in life, along with alterations in the CNS inflammatory 

milieu and reduced plaque-associated microglia (Minter et al., 2017). Aβ pathology 

amelioration by antibiotics occurs only in brains of male mice associated with restoration of 

M0-homeostatic microglia. In addition, FMT of microbiota from age-matched AD male 

mice into antibiotic-treated AD males restored the gut microbiome and partially restored Aβ 
pathology and microglial morphology (Dodiya et al., 2019). In contrast to depleting the 

microbiome, administration of Lactobacillus plantarum was able to ameliorate cognitive 

deficits in AD mice (Nimgampalle and Kuna, 2017).

ALS is a fatal neurodegenerative disease characterized by the progressive loss of motor 

neurons. Most ALS patients die within three to five years of diagnosis because of respiratory 

paralysis (Alonso et al., 2009). Microglia isolated from the SOD1 mouse model of ALS 

upregulate MGnD/DAM pathways similar to microglia from AD mice, including APOE 

expression (Butovsky et al., 2015; Chiu et al., 2013; Krasemann et al., 2017), a finding 

confirmed in human ALS (Butovsky et al., 2015). The M0-homeostatic microglial signature 

is lost as early as 2 months before disease onset in SOD1 mice (Butovsky et al., 2015). 

Similar to AD, ALS is an age-dependent disease, potentially implicating age-related changes 

in the microbiome to disease vulnerability. SOD1 mice had an altered microbiome profile 

with reduced levels of Butyrivibrio fibrisolvens, Escherichia coli, and Fermicus, which was 

detected before disease onset (Wu et al., 2015), potentially linking changes in the gut 

microbiome to microglial changes. Importantly, Butyrivibrio fibrisolvens is a butyrate-

producing bacterium, and feeding SOD1 mice with the SCFA restored microbial 

homeostasis, improved gut integrity, and prolonged lifespan (Zhang et al., 2017b). In a small 

pilot study, the gut microbiome of 5 human ALS patients was examined, and all displayed 

altered gut microbiome characterized by low diversity with relatively intact abundance 

(Rowin et al., 2017). A recent study found that GF or antibiotic-treated SOD1 mice had 

significantly exacerbated disease (Figure 2; Blacher et al., 2019). This work identified 11 

distinct microbiota that correlated with disease severity and showed through individual 

supplementation that Akkermensia muciniphila ameliorated disease and Ruminococcus 
torques and Parabacteroides distasonis exacerbated disease. Interestingly, the authors 

identified that Akkermensia muciniphila-treated SOD1 mice displayed an accumulation of 

nicotinamide (NAM) in the CNS. They went on to systemically administer NAM, which 

significantly improved the performance of SOD1 mice in both behavioral and neurological 

motor tests and produced a trend toward increased survival. The authors compared the 

microbiome composition of ALS patients with healthy control household members and 

found significant differences overall, but only five specific bacterial species reached near 

significance. Functionally, the ALS microbiomes showed differences in bacterial gene 

content, with decreases in several key genes involved in NAM metabolism (Blacher et al., 

2019). These findings that microbiome depletion worsens disease in SOD1 mice stand in 
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contrast to those in other neurodegenerative models. However, they are consistent with the 

opposing effects of minocycline in MS and ALS (Gordon et al., 2007; Metz and Eliasziw, 

2017). Although the diseases share a common symptom, neurodegeneration, these 

discordant effects of microbiome depletion emphasize the consideration that opposing, 

disease-specific treatment approaches might be necessary. It is also possible that microglia 

might not be involved in disease pathogenesis in all neurodegenerative diseases. 

Nonetheless, defining microglia in the context of microbiome-depleted ALS models will 

likely be an area of intense research to investigate how their function in disease might differ 

in these models and to discover mechanisms that could serve as therapeutic targets.

MS is a chronic, inflammatory disease characterized by immune-mediated CNS 

demyelination resulting in neurological disorders. Microglia play an important role in MS, 

including during neurodegeneration in later stages. In the experimental autoimmune 

encephalomyelitis (EAE) mouse model of MS, microglia have different transcriptional 

phenotypes associated with disease stages. At disease peak, their phenotype is similar to that 

observed in other neurodegenerative disease models, such as AD and ALS (Chiu et al., 

2013; Krasemann et al., 2017). In human MS, microglia also have multiple phenotypes 

dependent on disease stage (relapsing/remitting or progressive) and lesion type (active or 

chronic) (Zrzavy et al., 2017). Microglia lose the expression of homeostatic markers, 

including P2RY12, and express pro-inflammatory markers, including phagocytic, antigen 

presentation, and reactive oxygen species markers (Zrzavy et al., 2017). Minocycline, which 

has been shown to specifically affect microglia (Kobayashi et al., 2013; Sriram et al., 2006), 

showed positive trends in a trial in MS (Metz and Eliasziw, 2017), although it worsened 

disease in ALS patients (Gordon et al., 2007). However, it is possible that minocycline 

affected the microbiota, which then affected disease progression (Vaughn et al., 2017). EAE 

studies showed that oral administration of antibiotics significantly reduced disease severity 

(Ochoa-Repáraz et al., 2009) and GF mice display attenuated EAE development (Lee et al., 

2011; Figure 2). In a clinical study, elevated levels of specific microbiota (Akkermansia 
muciniphila and Acinetobacter calcoaceticus) were observed in MS patients (Jangi et al., 

2016). Transplantation of these bacteria from patients with MS into GF mice leads to EAE 

exacerbation (Cekanaviciute et al., 2017). Further studies have shown that microbiota from 

pediatric MS patients exhibit relatively greater pro-inflammatory trends and that depletion of 

certain flora might be linked to increased relapse risk (Tremlett et al., 2016; Tremlett and 

Waubant, 2018). Treatment of MS with the probiotic VSL3, a cocktail of eight bacteria with 

a good safety profile, enriched specific microbiota in the intestines and inhibited monocyte-

mediated peripheral inflammation, an effect that disappeared after discontinuation (Tankou 

et al., 2018). Although the microglial phenotype in EAE and MS has been defined and 

significant investigation into the role of microbiota is ongoing, defining work into how 

microglia and the microbiome interact in MS and EAE remains to be conducted. One 

important question to be addressed is how microbiome alterations at different stages of the 

disease course might modulate disease progression and microglial phenotype.

A significantly altered gut microbiome is a common feature in neurodegenerative disease. 

Altered microbiomes might have many effects on brain physiology, including the consistent 

observation of an immature and functionally impaired phenotype in microglia. It is also 

possible that in microbiome-depletion conditions, microglia might be reset to a homeostatic 
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state. This hypothesis is supported by the appearance of M0-homeostatic microglia in the 

antibiotic-treated AD model (Dodiya et al., 2019). The identification of specific microbiota 

associated with worsening or ameliorated pathology is a critical step to investigate precise 

underlying mechanisms. Putative molecules are being identified that can potentially move to 

clinical trials to investigate their function in humans. Further work is needed to explore 

microbiome-mediated maintenance and polarization of M0 and MGnD and DAM microglia 

and to further define specific microbiome-dependent microglial phenotypes and functions in 

neurodegeneration. It is clear that lifestyle, including dietary choices and treatments like 

antibiotics, can significantly affect the human microbiome and microglia, possibly affecting 

predisposition to neurodegeneration.

Circadian Rhythm and Sleep Patterns Influence on Microglia Regulation in 

Neurodegeneration

We spend one-third of our lives sleeping. Sleep is required to maintain normal 

neurocognitive and immune functions (Dumaine and Ashley, 2015). During sleep, the brain 

processes information, consolidates newly formed memories (Abel et al., 2013), promotes 

spatial learning (Nguyen et al., 2013b), and clears the brain (Xie et al., 2013). Sleep loss 

might result from sleep deprivation (SD), chronic sleep restriction, and sleep fragmentation. 

Sleep fragmentation is commonly seen in sleep disorders such as obstructive sleep apnea or 

restless legs syndrome (Reynolds and Banks, 2010). SD and chronic sleep restriction are 

mainly caused by work, lifestyle, drugs, and aging.

Sleep plays an important role in Aβ clearance (Xie et al., 2013). The sleep-wake cycle can 

regulate interstitial fluid (ISF) and CSF levels of Aβ (Figure 3). It has been shown that Aβ 
clearance pre-dominantly occurs during sleep (Kang et al., 2009), which was ascribed to the 

glymphatic pathway operating most efficiently during sleep (Iliff et al., 2012; Lee et al., 

2015; Louveau et al., 2015; Xie et al., 2013). Using real-time in vivo two-photon 

microscopy, it has also been shown that patrolling monocytes might crawl onto the luminal 

walls of blood vessels to clear and carry Aβ out of the brain (Michaud et al., 2013). 

Interestingly, neuroimaging studies showed that short sleeping duration and poor sleep 

quality in cognitively healthy middle-aged and aged people might be associated with higher 

Aβ accumulation (Brown et al., 2016; Spira et al., 2013; Sprecher et al., 2015). A human 

positron emission tomography (PET) study showed that just one night of SD significantly 

induced Aβ levels in the brain (Shokri-Kojori et al., 2018). Acute SD is enough to elevate 

Aβ levels in mouse ISF (Kang et al., 2009) and human CSF (Ooms et al., 2014). Chronic 

sleep restriction significantly increases the ISF level of Aβ in Drosophila (Tabuchi et al., 

2015) and mouse (Kang et al., 2009) models of AD. Sleep disturbance and circadian rest-

activity pattern alterations observed in preclinical AD studies might be risk factors for 

developing AD (Jagust, 2016; Mucke and Selkoe, 2012; Musiek et al., 2018). Furthermore, 

in human brains, the rhythmic DNA methylation of brain and muscular Arnt-like 1 

(BMAL1) is altered in AD, which might be one reason for the circadian alterations in AD 

brains (Cronin et al., 2017). In addition to Ab, CSF tau and α-synuclein might increase in 

sleep-deprived humans. In a transgenic P301S tau mouse model and in human CSF, tau 
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levels were increased after chronic SD that could facilitate the spread of tau pathology 

(Holth et al., 2019) (Figure 3).

SD and sleep restriction alter brain functions at molecular, cellular, and network levels, 

which might lead to severe cognitive and emotional problems (Musiek and Holtzman, 2016; 

Pires et al., 2016). SD-induced cognitive impairment is associated with elevated 

inflammatory cytokine levels in the hippocampus, gliosis, and morphological changes of 

microglia and astrocytes (Wadhwa et al., 2017a). Several studies have shown that SD 

modulates astrocytes and microglial phenotypes and functions, which might contribute to 

neurodegeneration (Figure 3). Interestingly, inhibiting microglial activation with 

minocycline during SD decreases the hippocampal immunoreactivity and improves 

cognition and adult hippocampal neurogenesis (Wadhwa et al., 2017b). Tyrosine kinase 

receptor Mertk and its ligand GAS6, which mediate microglial process extension and induce 

phagocytosis (Fernandes et al., 2016; van der Meer et al., 2014), are upregulated in both 

microglia and astrocytes during SD (Grommes et al., 2008). Both acute SD and chronic SD 

impair the cognition and immune functions, in which microglia play an active role. Further 

studies on microglial molecular signature alteration during SD are needed. The sleep-wake 

cycle affects synaptic remodeling via microglia. Mice lacking cathepsin S, which is a 

microglial-specific lysosomal cysteine protease, present impaired diurnal variations in spine 

density and activity of cortical neurons (Hayashi et al., 2013). Phagocytic microglia mediate 

synapse elimination via C1q and C3 complement factors (Schafer et al., 2012; Stevens et al., 

2007). In addition, early synaptic loss in AD mouse models is mediated by microglia 

through C1q and C3 (Hong et al., 2016) (Figure 3). Interestingly, C3 levels are upregulated 

in the brain after acute and chronic SD (Bellesi et al., 2017). Thus, complement-mediated 

synaptic pruning might be exacerbated by SD, which might contribute to early synaptic loss 

and AD onset. Potential molecular pathways and upstream regulators could be therapeutic 

targets for preventing brain impairments caused by sleep loss.

Microglial inflammatory responses can be tightly controlled by the circadian clock and, if 

altered, might predispose individuals to neurodegeneration. When immune challenged, 

microglia display higher expression of pro-inflammatory cytokines, and their process 

extension is significantly increased during the light phase (Fonken et al., 2015; Takayama et 

al., 2016). In addition, chronic stress during the light phase could amplify microglial 

responses (Fonken et al., 2016b). Glucocorticoids play a pivotal role in stress-induced 

priming of neuroinflammatory responses (Frank et al., 2012, 2014). Thus, the circadian 

dependency of microglia responsiveness to glucocorticoids might be one mechanism for the 

diurnal rhythm of microglia toward inflammatory stimuli (Fonken et al., 2016b). Another 

possibility could be that circadian genes are involved in regulating immunological activities 

of microglia. For example, circadian protein circadian locomotor output cycles kaput 

(CLOCK) regulates NF-κB-mediated transcription (Spengler et al., 2012). Circadian gene 

BMAL1 has been found to regulate diurnal oscillation of Ly6CHi classical inflammatory 

monocytes in trafficking to sites of inflammation (Nguyen et al., 2013a). BMAL1−/− mice 

have been shown to present massive gliosis and degeneration of synaptic terminals (Musiek 

et al., 2013). miR-155 plays an important role in induction of inflammatory microglial 

phenotype in neurodegeneration (Butovsky et al., 2012, 2015; Koval et al., 2013). BMAL1 

inhibits NF-kB activation and suppresses miR-155 in peripheral myeloid cells (Curtis et al., 
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2015). In addition, depletion of miR-155 diminishes the circadian rhythm of cytokine 

responses to lipopolysaccharide (LPS) (Curtis et al., 2015). Thus, circadian genes regulate 

the immune response of microglia and might contribute to neurodegeneration directly by 

enhancing neuroinflammation or via alterations of the microbiome. A jetlag circadian 

paradigm can change gut microbiota (Phan and Malkani, 2018) and thus potentially 

microglial responses. Future studies are needed to investigate the association between 

circadian rhythm disorder and microglial functional alterations, as well as their contribution 

to neurodegeneration.

Aging is associated with altered sleep patterns and disrupted circadian rhythm of microglia. 

Sleep in aged people is characterized by an increased number of arousals from sleep, 

decreases in total sleep time and sleep efficiency, and a reduction of nonrapid eye movement 

(non-REM) sleep (Miner and Kryger, 2017). In addition, the common feature of age-related 

change in circadian rhythmicity is the shift of sleep to earlier hours, i.e., early morning 

awakening hours, that are often earlier than desired (Duffy et al., 2015). Microglia isolated 

from aged animals displayed suppressed expression of diurnal clock genes and inflammatory 

cytokines compared with young microglia (Fonken et al., 2016a). Glucocorticoid rhythm is 

dysregulated in aged hippocampus (Herbert et al., 2006), despite aged microglia maintaining 

the responsiveness to corticosterone (Fonken et al., 2016a). The dysregulated glucocorticoid 

rhythm in aging subjects is associated with chronic stress, which contributes to 

neurodegeneration (Vyas et al., 2016). Aging-related microglia-specific circadian genes 

expression profiling is still lacking. In the future, targeted therapies that enhance molecular 

rhythmicity might be a potential approach to prevent age-related sleep-wake change and 

improve cognition. Deeper understanding of how the circadian clock change during aging 

influences microglial function might create insight to regulate circadian clock and improve 

health and longevity.

Exercise Modulates Microglia in Neurodegeneration

The neuroprotective roles of physical exercise and environmental enrichment have been 

recognized in several studies (Chen et al., 2016; Ziv et al., 2006). Beneficial effects of 

physical exercise include anti-inflammatory effects, improvement of hippocampal 

neurogenesis, and stimulation of brain-derived neurotrophic factor (BDNF) release (Gleeson 

et al., 2011). In addition, physical exercises reduce anxiety and modulate the gut microbiota, 

independent of diet, and have positive health effects in the brain (Mailing et al., 2019) 

(Figure 3). An hour of wheel running by mice can increase the relative abundance of 

Lachnospiraceae, which is positively associated with reduced anxiety-like behavior in mice 

(Kang et al., 2014). Accumulating evidence also suggest that aerobic exercise could protect 

the brain from systemic inflammation by directly regulating inflammatory cytokines 

(Beavers et al., 2010), by mediating the secretion of anti-inflammatory adipokines and 

myokines through the muscle-adipose crosstalk (Kelly, 2018; Leal et al., 2018; Mazur-Bialy 

et al., 2017), or via the hypothalamic-pituitary-adrenal axis (Ortega, 2016). The effects of 

short- or long-term physical exercises on brain functions have been shown in various AD 

mouse models and include improvement of cognitive performance, reduction of pro-

inflammatory cytokine levels, and most importantly, amelioration of Aβ deposition and tau 

pathology (Kelly, 2018). Physical exercises reduce the production of cerebral pro-

Madore et al. Page 15

Immunity. Author manuscript; available in PMC 2020 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammatory cytokines by promoting clearance of Aβ (Prado Lima et al., 2018) and reduce 

GFAP+ astrocyte density in the hippocampus of APP-PS1 (Tapia-Rojas et al., 2016). 

Environmental enrichment has been shown to reduce Aβ levels in an AD mouse model 

(Lazarov et al., 2005) and to prevent microglia-mediated neuroinflammation in injected with 

human Aβ oligomers (Xu et al., 2016). Physical exercise and environmental enrichment 

ameliorate Aβ and tau pathology not only when they are provided before the pathology 

starts to show but also at the late stage of the disease (Leem et al., 2011; Tapia-Rojas et al., 

2016). In a 16-month-old transgenic tau mouse model, treadmill running for 3 months could 

significantly decrease tau phosphorylation, as well as microglia-induced neuroinflammation 

(Leem et al., 2011). The anti-inflammatory effects of exercises were also shown in a PD 

mouse model (Svensson et al., 2015b). Beneficial effects include amelioration of motor 

deficits and reduction of pro-inflammatory cytokine secretion (Svensson et al., 2015b). 

Treadmill running for 30 min/day for 2 weeks in rats leads to reduced expression of 

downstream targets of Toll-like receptor (TLR) pathways, such as myeloid differentiation 

primary response gene 88 (MyD88) and NF-κB (Altmeppen et al., 2013). The reduction in 

TLR signaling in microglia could be one mechanism for the anti-inflammatory effects of 

physical exercise. Exercise could reverse aging and infection-induced memory deficits 

(Barrientos et al., 2011) by directly increasing the levels of interleukin-10 (IL-10), an anti-

inflammatory cytokine in the hippocampus of aged rat (Gomes da Silva et al., 2013). CD86+ 

and major histocompatibility complex class II-positive (MHC class II+) microglia are 

increased with aging (Kohman et al., 2013). Wheel running by mice has been shown to 

decrease the proportion of both CD86+ and MHC class II+ microglia in the hippocampus. 

However, these effects are gender dependent, and aged male mice showed a decrease in 

CD86+ microglia and an increase in MHC class II+ microglia (Kohman et al., 2013). 

Microglial functions might also be restored in an enriched environment promoting neuronal 

support. In addition, the beneficial effect of exercise on cognition in a transgenic AD mouse 

model has been suggested to be mediated by both improvement of neurogenesis and 

elevation of BDNF secretion genetically and pharmacologically (Choi et al., 2018). 

Interestingly, elevated neurogenesis alone could not restore cognitive impairment in 53FAD 

mice. The effect has to be combined with increased BDNF. This will be a potential way to 

improve cognition in neurodegeneration. However, it remains to be determined whether 

these beneficial effects are microglia mediated. In summary, exercise and enriched 

environment could play a strong protective role in aging and neurodegeneration by reducing 

neuroinflammation and modulating microglial phenotypes and functions.

Concluding Remarks

Here we reviewed current knowledge of how modern societal lifestyle factors such as diet, 

sleep patterns, physical activity, and microbiota affect microglia regulation and 

neurodegeneration in both animal models and humans. Determining the true role and 

importance of microglia in the onset and progression of neurodegenerative diseases remains 

an active area of research, as does how different lifestyle factors regulate microglia to 

potentially lead to increased susceptibility to neurodegeneration. It is important to consider 

that neurodegenerative diseases are complex and multi-factorial, and an individual’s 

predisposition to neurodegenerative disease is likely driven by numerous other factors as 
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well. Recent findings have made clear the importance and impact of the gut microbiome on 

microglial phenotype and pathology in models of neurodegenerative diseases. However, 

further work remains to be done on how microglia and the gut microbiome might interact 

and whether findings will be validated in human studies. Furthermore, precisely how the 

composition of the human gut microbiome over the lifespan, potentially changing with 

dietary choices, living environments, and age, contributes to predisposition to 

neurodegenerative disease remains a necessary question to answer. Such information would 

allow individuals to make informed choices, as well as allowing potential governmental 

regulatory oversight over food options. Microglial immune response is controlled by the 

circadian clock. Circadian rhythm sleep disorders and sleep loss contribute to 

neurodegeneration via microglia-induced neuroinflammation and elevated protein 

aggregation. Circadian rhythm also strongly affects stress level and the composition of the 

gut microbiome, which have been shown to closely relate to neurodegeneration. Physical 

exercises and environmental enrichment play a neuroprotective role by mediating anti-

inflammatory effects, promoting neurogenesis, and regulating the gut microbiota. 

Mediterranean diet patterns have been observed in different countries but are particularly 

effective in so-called blue zones. In these areas, including Sardinia, Italy; Okinawa, Japan; 

Loma Linda, California; Nicoya Peninsula (Costa Rica); and Icaria, Greece, populations 

share similarities in their diet pattern but also common features regarding lifestyle stress 

factors such as stress-free environment, regular physical exercise, and familial and social life 

(Buettner and Skemp, 2016), and a higher rate of longevity (Pes et al., 2013). In Sardinia, 

they also present lower cognitive deficits, better working memory performance, and lower 

levels of depressive symptoms associated to their lifestyle pattern (Fastame, 2014; Fastame 

et al., 2015; Fastame and Penna, 2014). Microbiome composition and sleep patterns should 

be investigated in these populations to put findings from animal models in a human context. 

Altogether, better use and control of our diet, environment, and our way of living might lead 

to decreased susceptibility to neurodegenerative disorders.
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Figure 1. Lifestyle Factors Might Hijack Microglia Regulation and Predispose Individuals to 
Neurodegeneration
ELS, chronic adult stress, or changes in diet, microbiota, or social contexts might predispose 

individuals to neurodegenerative disease onset, as observed by associations with neuronal 

loss, cognitive deficits, and AD-related pathology. These phenotypes during aging could be 

influenced by a change in an individual’s dietary pattern, changes in an individual’s 

microbiota, and drug medications such as SSRIs. This preventive mechanism could be acting 

through astrocyte release of TGF-b that could modulate microglial functions and restore a 

phenotype that can stop neurodegeneration.
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Figure 2. Microbiome Depletion Modulates Microglial Phenotype and Neurodegenerative 
Disease Pathology
The microbiome can communicate with CNS resident cells, including microglia, through 

various pathways, including the vagus nerve, microbial metabolites (SCFAs), and direct and 

in-direct immune signaling pathways. Upon microbiome depletion either in a GF context or 

after antibiotic administration, microglia adopt an immature phenotype associated with 

impaired responses to LPS and viral infections. In the context of neurodegeneration, 

microbiome depletion in AD and PD is associated with amelioration of disease progression 

and pathology, with increased M0-homeostatic gene expression in microbiome-deplete AD 

mice and evidence of less inflammatory microglia in microbiome-deplete PD mice. In ALS, 

disease pathology is markedly worsened in a microbiome-depleted context. Microglial 

phenotype remains to be explored in microbiome-depleted ALS mice.
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Figure 3. Sleep Loss Might Promote Neurodegenerative Functions of Microglia and Can Be 
Prevented by Physical Exercise
Forms of sleep loss, including deprivation, restriction, and fragmentation, could promote 

neurodegeneration by decreased neurogenesis, elevated stress, altered microbiome 

composition, synaptic loss, increased neuroinflammation, and protein aggregation. These 

conditions could lead to the acquisition of MGnD, which could exacerbate disease. 

Conversely, physical exercises might support increased neurogenesis, reduced stress, altered 

microbiome composition, reduced neuroinflammation, and protein aggregation, which might 

restore microglial phenotype and prevent neurodegeneration.
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