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Abstract

Up to forty percent of dairy cows develop metritis or endometritis when pathogenic bacteria infect 

the uterus after parturition. However, resilient cows remain healthy even when exposed to the same 

pathogens. Here, we provide a perspective on the mechanisms that dairy cows use to prevent 

postpartum uterine disease. We suggest that resilient cows prevent the development of uterine 

disease using the three complimentary defensive strategies of avoiding, tolerating and resisting 

infection with pathogenic bacteria. Avoidance maintains health by limiting the exposure to 

pathogens. Avoidance mechanisms include intrinsic behaviors to reduce the risk of infection by 

avoiding pathogens or infected animals, perhaps signaled by the fetid odor of uterine disease. 

Tolerance improves health by limiting the tissue damage caused by the pathogens. Tolerance 

mechanisms include neutralizing bacterial toxins, protecting cells against damage, enhancing 

tissue repair, and reprogramming metabolism. Resistance improves health by limiting the 

pathogen burden. Resistance mechanisms include inflammation driven by innate immunity and 

adaptive immunity, with the aim of killing and eliminating pathogenic bacteria. Farmers can also 

help cows prevent the development of postpartum uterine disease by avoiding trauma to the genital 

tract, reducing stress, and feeding animals appropriately during the transition period. 

Understanding the mechanisms of avoidance, tolerance and resistance to pathogens will inform 

strategies to generate resilient animals and prevent uterine disease.
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1. Introduction

Theriogenology published a set of definitions for postpartum uterine diseases in cattle in 

2006 [1]. Since then, there has been increased understanding about the incidence, etiology, 

pathogenesis and consequences of the main postpartum uterine diseases - metritis and 

endometritis [2–7]. It is less clear why some dairy cows develop postpartum uterine disease 

when infected with pathogenic bacteria around the time of parturition, whilst other resilient 

cows remain healthy, even when exposed to the same pathogens. We suggest that resilient 

dairy cows prevent the development of uterine disease by avoiding, tolerating and resisting 

infection with pathogenic bacteria (Fig. 1).

The scientific framework for understanding defense against pathogens has developed over 

the last 120 years. The origins of the study of resistance – often equated with immunology - 

are often based on the work of Metchnikoff and Ehrlich, which led to their shared Nobel 

Prize in 1908 “in recognition of their work on immunity.” Among several Nobel Prizes 

awarded in the field of immunology, the most recent was in 2011, for discoveries about 

innate immunity and dendritic cells. The importance of tolerance was first recognized in 

plants, which have evolved mechanisms to counter the damage caused by pathogens and 

herbivores [8]. More recently, tolerance mechanisms were identified in animals and the role 

of tolerance in countering pathogens is an emerging area of animal research [9–12]. The role 

of avoidance behaviors in countering pathogens is also a relatively new field of research, 

with the recognition of pathogen-mediated avoidance behaviors in the last 25 years [13, 14]. 

Here we have adapted and applied the three defensive strategies of avoidance, tolerance and 

resistance, to help understanding of the prevention of postpartum uterine disease in cattle.

Avoidance is the ability to limit the exposure to pathogens [14]. Typically, this involves 

animals using intrinsic behaviors to avoid pathogens and reduce the risk of infection. 

Tolerance is the ability to limit the tissue damage caused by the pathogen burden [9]. 

Tolerance mechanisms include neutralizing bacterial toxins, protecting cells against damage, 

enhancing tissue repair, and inducing adaptive metabolic responses. Resistance is the ability 

to limit the pathogen burden [10, 12]. Resistance is the function of immunity, which aims to 

kill and remove pathogen. Resilience is the aggregate of the complimentary defensive 

strategies of avoidance, tolerance and resistance. Resilient animals prevent disease or restrict 

the severity of disease [7, 10, 12]. We assume that the evolutionary ancestors of cattle were 

resilient to postpartum uterine infections, but it is now common to read reports that twenty to 

forty per cent of modern dairy cows develop some form of postpartum uterine disease [2, 

15–20].

We treat animals with uterine disease because the disease causes pain, reduces milk yields, 

and reduces fertility [21, 22]. However, the current use of antibiotics to treat uterine disease 

needs rethinking because, although antibiotics help resolve the clinical signs, there is still 

reduced fertility [23]. Furthermore, the use of antimicrobials in food-producing animals is 

increasing discouraged by governments that are concerned about the spread of antimicrobial 

resistance [24]. The annual cost of the reduced fertility, lost milk production, and treatment 

of metritis was estimated to be €1.4 billion in the European Union and $650 million in the 
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USA [2]; a case of metritis costs farmers up to $410 in the USA [25]. Prevention of 

postpartum uterine disease would be better than cure, for both the animals and the economy.

Here we outline the role of bacteria in postpartum uterine disease and provide a perspective 

on the mechanisms that dairy cows use to prevent postpartum uterine disease. We encourage 

readers to consult comprehensive reviews if they require information on pathogens other 

than bacteria, or more detail about the pathogenesis, diagnosis and treatment of uterine 

disease [2–7]. Instead, we aim to bring new ideas to light and challenge readers to think 

about how resilient dairy cows prevent postpartum uterine disease. In particular, we focus on 

how preventing postpartum uterine disease depends on avoiding, tolerating and resisting 

infections with pathogenic bacteria.

2. The postpartum period

Optimal fertility in dairy cows depends on completing several integrated physiological 

processes in the first five weeks after parturition: prompt involution of the uterus and 

restoration of a receptive endometrium; resumption of ovarian cyclical activity and ovulation 

of competent oocytes; and, control of pathogenic bacteria in the uterus. Uterine involution 

involves reparative inflammation, remodeling the extracellular matrix, and regenerating the 

epithelium [26, 27]. There is concurrent return of ovarian cyclic activity, driven by 

coordinated endocrine programs in the hypothalamus, pituitary, ovary, and uterus [28–30]. 

The high concentrations of steroid hormones during pregnancy decrease to basal values 

within days of parturition. Plasma follicle stimulating hormone concentrations increase 

about 7 days after parturition, which prompts the emergence of a cohort of growing follicles 

in the ovary, with subsequent waves of growing follicles every 7 to 10 days. In normal 

animals, the first postpartum dominant follicle should ovulate, indicating the return of 

ovarian cyclic activity. However, disease or inadequate nutrition during the transition period 

(3 weeks before to 3 weeks after parturition) delays uterine involution and the return of 

ovarian cyclic activity [28, 31, 32].

We propose that animals control (tolerate) rather than eliminate (resist) pathogenic bacteria 

in the postpartum uterus because healthy animals have an endometrial microbiota – a 

community of commensal, symbiotic and pathogenic microorganisms [33–35]. For example, 

uterine pathogens such as Trueperella pyogenes, Fusobacteria species and Prevotella species 

have been identified in the uterus of healthy cattle, even during pregnancy [33, 34]. 

However, these data require caution after a study of 537 women found that despite the 

expectation there would be a microbiota, the placenta and amnion did not usually contain 

bacteria [36]; most of the nucleotide signals for bacteria were from contamination of 

samples or laboratory reagents. Irrespective of whether there is a microbiota in the bovine 

uterus during pregnancy, the microbial community blooms after parturition. The bacterial 

load expands massively and fluctuates widely, presumably because vaginal and cervical 

dilation and trauma allow contamination of the genital tract with bacteria from the vagina, 

skin, blood, feces and environment.

The pathogenic bacteria cultured from animals with uterine disease include Escherichia coli, 
T. pyogenes, Fusobacterium necrophorum, and Prevotella and Bacteroides species [37]. 
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Genomic techniques have identified additional bacterial phyla that are more abundant in the 

uterus of animals with metritis compared with the healthy uterus, including Bacteroidetes, 
Fusobacteria, Lactococcus, Proteobacteria and Firmicutes [35, 38, 39]. However, prior to the 

development of disease there is evidence that many of the bacteria are common amongst 

animals that will or will not develop metritis. Using high-throughput metagenomic 

sequencing of the 16S rRNA gene on the Illumina MiSeq platform it was reported that, 

although the microbiota changed in uterine samples from the day of parturition to 6 days 

postpartum, cows that would subsequently develop metritis or maintain a healthy uterus had 

a similar uterine microbiota on the day of parturition [40]. The proportion of core bacterial 

genera shared between cows developing metritis and healthy cows was 77% at parturition, 

79% by 2 days postpartum, and 60% by 6 days postpartum. Similar experimental approaches 

also independently reported that cows that remain healthy and cows that develop metritis 

share bacterial phyla and genera in postpartum uterine samples [41, 42]. Furthermore, apart 

from Bateroides, there was no significant difference in the abundance of the 15 most 

frequent bacterial genera in the uterus of healthy and metritis cows 0, 2 or 6 days postpartum 

[43]. As many pathogens infect both healthy and diseased uteri, it is unclear whether specific 

keystone bacteria, combinations of bacteria, failures in tolerance, or an increased abundance 

of bacteria causes uterine disease. For example, in the first weeks after parturition, strains of 

endometrial pathogenic E. coli are found in cows with uterine disease [44, 45]. Beyond three 

weeks after parturition, Trueperella pyogenes is the pathogen most correlated with the 

severity of endometritis and extent of the infertility [46–48].

3. Uterine disease

The clinical definitions of postpartum uterine disease are well established [1, 7, 49, 50]. 

Metritis commonly occurs within 10 days of parturition, and cows have an enlarged uterus, 

containing watery red-brown fluid to viscous off-white pus, which has a fetid odor. The 

severity of disease ranges from inapparent signs of metritis to pyrexia and inappetence in 

animals with puerperal metritis, and even toxemia and shock in some animals. Clinical 

endometritis is characterized by the presence of pus in the uterus 21 days or more after 

parturition, usually with a purulent uterine discharge detectable in the vagina. Subclinical 

endometritis is diagnosed when there are no signs of clinical endometritis but the proportion 

of neutrophils in endometrial flush or cytobrush samples exceeds thresholds associated with 

reduced reproductive performance, which is usually about 5% of cells. New knowledge is 

required to understand how the etiology and pathogenesis of endometritis differs from 

purulent vaginal discharge caused by cervicitis or vaginitis [19]. Future longitudinal studies 

should examine the temporal interrelationships amongst the pathogens, and the progression 

of disease in the reproductive tract.

The lactational incidence of metritis was 21% in a survey of farm records of 97,318 Holstein 

cows in the USA [16]; although the farmers included retained fetal membranes when 

recording metritis, this incidence is the same as the 21% lactational incidence of metritis in 

456 animals in Florida that were examined daily after parturition [51]. The lactational 

incidence of endometritis was 19% in a survey of farm records for 19,870 Holstein cows in 

Germany [17]; again, similar to the 17% lactational incidence of clinical endometritis in 

1,865 cows in Canada examined in detail 20 to 33 days postpartum [52]. Metritis is also 
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important in purebred Bos indicus cows, crossbred Bos indicus x dairy cows, and buffalo. 

For example, in 1,609 Sahiwal lactations, 2,549 crossbred Holstein x Tharparkar lactations, 

and 1,604 Murrah buffalo lactations, the incidence of metritis was 10.3%, 22.6%, and 9.7%, 

respectively [53]. Uterine disease is important because it causes infertility or reduces 

fertility, even after successful treatment of the disease. Even though farm records can have 

imprecise case definitions, in a meta-analysis of more than 10,000 cases, metritis increased 

the time to first insemination by 7.2 days, reduced conception rates to first insemination by 

20%, and increased the calving-to-conception interval by 18.6 days [22]. These data are 

similar to a precise case-controlled study of 1,865 cows in Canada, where clinical 

endometritis increased the time to first insemination by 5 days, reduced conception rates to 

first insemination by 8%, increased the median days open by 28 days, and cows were 1.7 

times more likely to be culled for reproductive failure than cows without endometritis [52]. 

The reduced fertility is caused by inflammation of the genital tract, disruption of ovarian 

follicle growth and function, abnormal estrous cycles, and damage to oocytes [4, 15, 20, 37, 

54, 55]. To avoid reduced fertility, we argue that prevention of disease is more important 

than developing new treatments for metritis or endometritis.

4. Defense against pathogens in the uterus

Uterine disease provides an opportunity to study animal resilience because, despite exposure 

of the uterus to similar bacteria, the incidence of disease varies amongst groups of animals, 

levels of milk production, breeds, and farms. We suggest that preventing uterine disease 

depends on the complimentary defensive strategies of avoidance, tolerance and resistance. 

These are evolutionary ancient strategies used by plants and animals to counter infection or 

damage [8, 10, 12]. Avoidance, tolerance and resistance are integrated and complementary 

strategies, but they have different implications for the interaction between pathogen burden 

and health. This interaction between pathogen burden and health can be visualized using a 

reaction norm plot (Fig. 2). Reaction norms for a population of animals also allow 

comparisons between different genotypes, breeds or environments [8, 10, 12, 56–58]. For 

example, dairy cows in straw yards are more able to avoid fecal pathogens than cows in 

cubicles [59]; dairy cows with lower milk yields are more able to tolerate uterine pathogens 

[7]; and, cows with higher cell mediated immune response are more able to resist uterine 

pathogens causing metritis [60].

4.1 Avoidance

Avoidance mechanisms that limit exposure to pathogens have an evolutionary advantage 

over tolerance and resistance mechanisms because there is no direct metabolic cost to the 

animal of countering the pathogens. Furthermore, basal metabolism fuels the indirect 

metabolic costs of avoidance mechanisms such as barriers and behavior. Examples of 

physical barriers to infection that help avoid bacteria ascending the genital tract into the 

uterus are the vulva, vagina, cervix, and cervical mucus. However, calving, dystocia, and 

poor conformation of the vulva or vagina, breach these physical barriers and allow bacteria 

to invade the uterus.
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Maintaining hygiene is an intrinsic behavior that has evolved over millennia in most species 

of animals [61]. The preference of animals to avoid feces, clean themselves, and prefer dry 

and clean bedding is such an intrinsic behavior that it often goes unremarked. For example, 

self-grooming and grooming each other is an intrinsic behavior used by many species to 

maintain hygiene, remove parasites, and for social interaction. Similarly, cows use grooming 

to maintain coat hygiene and limit stress [62, 63].

A greater understanding is needed about whether cows use intrinsic behaviors to avoid 

uterine pathogens. However, cows seek seclusion from herd-mates around the time of 

parturition, and cows with metritis display sickness behaviors, including inappetence, 

inactivity, isolation, and depression, which result in sick cows spending more time away 

from healthy herd-mates [64]. Other intrinsic behaviors to avoid pathogens, which have been 

studied in non-ruminants, are keeping away from other animals of the same species because 

they are most likely to harbor pathogens, and using disgust to avoid the odor of pathogens or 

infection [13]. For example, the nematode Caenorhabditis elegans, which feeds on bacteria, 

learns to avoid the odor of pathogenic bacteria, whilst being attracted to odors from 

nonpathogenic bacteria [65]. Bullfrog tadpoles avoid other tadpoles that are infected with a 

pathogenic yeast by detecting chemical signals from infected individuals [14]. Mice use the 

vomeronasal system to detect the odor of animals that have an infection or even an 

inflammatory response to the bacterial endotoxin lipopolysaccharide [66]. In the case of 

postpartum metritis, the fetid odor is disgusting to humans. Although cows use averse odors 

to avoid feces [59], it remains to be determined whether herd-mates use the fetid odor to 

avoid cows with metritis.

The value of avoidance behaviors for postpartum uterine disease depends on how 

transmissible uterine pathogens are, and how easily these pathogens spread when there is a 

high density of animals. Confined dairy cows often have a higher incidence of postpartum 

uterine disease than herds of free-ranging beef cattle or wild ungulates. There is an urgent 

need to better understand the behavior of postpartum cows because modern dairy production 

systems and buildings are likely to compromise the ability of postpartum animals to use 

avoidance behaviors [67]. If they are important, allowing cows to use behaviors that avoid 

infections may require a revaluation of current housing design and transition cow 

management.

4.2 Tolerance

Tolerance - not to be confused with immunological tolerance - aims to benefit an animal’s 

health by limiting the tissue damage pathogens cause without affecting the pathogen burden 

[7, 10, 12]. An advantage of tolerance over resistance mechanisms is that tolerance does not 

exert a selection pressure on the pathogens that would provoke the pathogen to develop 

countermeasures, such as antimicrobial resistance. Tolerance mechanisms against uterine 

pathogens include functional barriers to bacterial infection, neutralization of bacterial toxins, 

repair of tissue damage, and adaptive metabolic responses (Table 1). For example, the 

epithelial barrier of the endometrium and the overlying mucus layer facilitate the 

coexistence of pathogens and host. However, these tolerance mechanisms are not always 

passive and some integrate with resistance. Mucus from the reproductive tract contains 
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antimicrobial peptides, acute phase proteins, such as haptoglobin and serum amyloid A, and 

mucosal glycoproteins that neutralize bacteria or their toxins [68–70]. Furthermore, there is 

increased expression of antimicrobial peptides and acute phase proteins in the inflamed 

endometrium and the peripheral plasma of postpartum cows [71, 72].

Damage control and tissue repair help tolerate the presence of pathogens [56, 73]. However, 

damage, repair and regeneration of the endometrium is also a consequence of parturition 

[26, 27]. The importance of the epithelial barrier for tolerating pathogens in the uterus is 

highlighted by the need to damage the epithelium when generating animal models of 

endometritis [74]. Crucially, loss of the epithelium allows pathogens to reach the underlying 

sensitive stroma in postpartum animals or when inducing disease. For example, stromal cells 

are ten times more sensitive than epithelial cells to damage by the pore-forming toxin 

pyolysin, which is the cholesterol-dependent cytolysin secreted by T. pyogenes [75]. 

However, it is possible, without impairing the intrinsic viability of stromal cells, to protect 

stromal cells against the damage caused by pyolysin in vitro, by reducing their cellular 

cholesterol content using methyl-β-cyclodextrin (Fig. 3), or by inhibiting cholesterol 

biosynthesis using statins or squalene synthase inhibitors [75–78]. These findings could lead 

to products that protect the endometrium against pathogen damage.

Damage and pore-forming toxins also prompt cell stress responses: activating the mitogen-

activated protein kinases, activating the unfolded protein response, activating caspase 

enzymes, suppressing protein synthesis, and inducing autophagy [76, 79]. These cell stress 

responses aim to help repair damaged membranes and organelles, and to induce a quiescent 

state [58]. Sickness behaviors, such as inappetence, also activate catabolic pathways that 

induce cell quiescence and support tolerance to pathogens in humans and mice [58]. 

However, dairy cows often struggle to meet the metabolic requirements of lactation (the 

metabolisable energy required to produce 40 liters of milk is 200 MJ/d; three times the 

energy needed for resting metabolism), and higher milk yields are associated with reduced 

tolerance to postpartum uterine infections [7]

4.3 Resistance

Whilst the research fields of avoidance and tolerance are still developing, there is extensive 

knowledge about resistance mechanisms against pathogens, and particularly the roles of 

innate and adaptive immunity. The innate immune system generates an immediate, non-

specific response to pathogens that does not depend on prior exposure to pathogens [57, 80]. 

This innate immune response is ideal for uterine infections because they are polymicrobial 

and fluctuate during the postpartum period. Innate immune cells use pattern recognition 

receptors, such as Toll-like receptors, to recognize pathogen-associated molecular patterns, 

including bacterial DNA, lipopeptides, flagellin and lipopolysaccharide (endotoxin). In the 

uterus, endometrial epithelial and stromal cells also have a role in innate immunity, 

generating inflammatory responses to bacteria, lipopeptides, and lipopolysaccharide [81, 

82]. The immune response typically results in the secretion of antimicrobial peptides, 

cytokines such as interleukin (IL)-1β and IL-6, chemokines such as IL-8, and prostaglandin 

E2 [80, 83]. These inflammatory mediators help counter bacteria in the tissue by inducing 

vasodilation, attracting and activating immune cells, and inducing the production of acute 
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phase proteins and reactive oxygen species [7, 80, 83, 84]. The inflammatory mediators also 

suppress the hypothalamic-pituitary-ovary axis, and induce sickness behaviors, such as 

inappetence and lethargy [58]. The complement system, which promotes phagocytosis of 

pathogens by neutrophils and macrophages, provides additional non-specific defense [32].

A general concept is that rapid and robust inflammatory responses efficiently control 

pathogens, whereas delayed or blunted inflammatory responses lead to persistent 

inflammation [7, 57, 58, 80, 83]. Interestingly, intrauterine infusion of IL-8 recombinant 

protein reduced the incidence of clinical metritis from 34% to less than 10% [18]. However, 

excessive or unrestrained inflammation causes immunopathology, such as toxemia and 

shock in some cases of metritis. Conversely, subclinical endometritis is an example of 

persistent or unresolved inflammation. Fortunately, innate immunity usually regulates the 

inflammatory response to match the level of pathogen challenge and tissue damage. For 

example, feedback loops, such as STAT3 (signal transducer and activator of transcription-3), 

regulates the IL-6 and IL-8 response to lipopolysaccharide in endometrial cells [85]. Tissue 

damage, with the release of damage-associated molecular patterns also scales the immune 

response [86]. Damaged endometrial cells release the intracellular cytokine IL-1α, which 

stimulates further secretion of IL-6 [84]. Innate immunity also integrates with tolerance 

because the innate immune response induces the production of mucins and antimicrobial 

peptides [87].

Adaptive immunity depends on prior exposure to specific antigens and takes longer to 

develop than innate immunity. Adaptive immunity is evident in the postpartum 

endometrium, with lymphocytic foci of T cells and B cells [27, 47]. Furthermore, 

postpartum uterine disease is less likely if cows have increased levels of circulating 

antibodies, and vaccines containing components of E. coli, F. necrophorum and/or T. 
pyogenes can protect against metritis [88]. Unfortunately, domestication and selective 

breeding have reduced the diversity of major histocompatibility complex antigens, and 

retained fetal membranes are more common in animals with reduced major 

histocompatibility complex antigen diversity [89]. Another concern is that adaptive 

immunity is short-lived in the uterus. Spontaneous metritis does not protect against uterine 

disease after the next calving.

Unfortunately, the biosynthetic demand to repair the endometrium after parturition and resist 

pathogens is at odds with the additional metabolic demands of lactation [3]. For example, 

cows in severe negative energy balance after parturition have persistent endometritis, 

whereas animals with mild negative energy balance repair their endometrium by two weeks 

after parturition [32]. Even reduced feeding behavior before parturition predicts the 

development of metritis [90]. A widely accepted mechanism is that metabolic changes 

around the time of parturition impair neutrophil function [3, 91]. Furthermore, deficiencies 

in glucose or glutamine also blunt the inflammatory response in the endometrium [92, 93]. 

Perhaps this interaction between metabolism and immunity is not surprising. It is 

energetically expensive to mount an immune response, secrete inflammatory mediators, and 

repair tissue damage, and this often results in negative energy balance and negative nitrogen 

balance [94]. Not only do immune cells require metabolites, the immune response also 

reprograms cellular metabolism to deliver the immune response [58, 95]. Estimated 
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energetic costs of an immune response range from a 15% to 30% increase in resting 

metabolic rate [94]. An example of the energetic cost of innate immunity in the whole 

animal is that cows metabolize an extra kilogram of blood glucose in the first 12 hours after 

challenge with lipopolysaccharide [96]. Allocating additional metabolic resources to 

resistance during an infection requires trade-offs with other metabolically demanding 

processes that are not essential, which in many species is exemplified by reduced 

reproduction [58, 94]. The negative energy balance of lactation is one such trade-off in dairy 

cows, often made worse by an inadequate food supply or by sickness behaviors that reduce 

feeding. In an extreme example, challenging bees with lipopolysaccharide when they are 

starved increases mortality by 1.5 fold [97]. Despite evidence that negative energy balance is 

a risk factor for developing disease, and the metabolic cost of resisting pathogens, it is not 

clear how diets should be formulated for cows to optimize their immunity during the 

transition period [31].

5. Managing cows to prevent uterine disease

Whilst resilience to uterine infection depends on an animals’ avoidance, tolerance and 

resistance strategies, good management can also help support animal resilience (Fig. 4). 

Uterine disease is not inevitable; many well-managed dairy farms have high milk yields but 

a low incidence of postpartum uterine disease. Conversely, and perhaps more important for 

animal welfare, suboptimal management of dairy cows can make cows more susceptible to 

postpartum uterine disease.

An obvious way to avoid postpartum uterine disease is to avoid parturition. Farmers already 

use extended lactations as a management tool to reduce the frequency of parturition in Bos 
taurus dairy cows, which reduces the annual incidence of postpartum problems. Whilst 

extended lactations are often thought to reduce herd reproductive performance, in some 

cases extended lactations improve performance [98]. Unfortunately, extended lactations are 

impractical in seasonally calved herds, and for Bos indicus and crossbred dairy cows that 

have less persistent lactation than Bos taurus cows. Pharmaceutical induction of lactation 

with estrogens and progesterone also avoids parturition, but the protocols need further 

development to reduce the number of injections administered to each cow, and many 

countries prohibit the use of estrogens in food-producing animals.

Farmers can also try to control the risk factors for uterine disease. The predominant risk 

factors for postpartum uterine disease are trauma to the genital tract followed by 

colonization with pathogenic bacteria. Trauma to the genital tract is more likely in the first 

parity, after induction of parturition, or following dystocia, stillbirths, twins, male calves, or 

retained placenta [99–101]. Selection of easy-calving breeds and easy calving sires within a 

breed could reduce the risk of parturient trauma to the genital tract, but may produce only 

short-term benefits if the smaller offspring are then used as replacement dairy cows. Using 

sexed semen to produce female calves, which are smaller than male calves, is a practical 

way of reducing the risk of uterine disease; mathematical modelling of the replacement of 

male calves by female calves estimates that this strategy would prevent more cases of 

clinical endometritis in a herd than eliminating an infrequent risk factor, such as retained 

fetal membranes [101]. Cows should have a clean, comfortable, quiet, and spacious 
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environment to calve without stress. If there is need for intervention during parturition, 

farmers and veterinarians should ensure that they use clean techniques, they are gentle, and 

they maintain the cleanliness of the environment.

Prevention of uterine disease also requires appropriate nutritional management during the 

transition period [3, 31]. Cows should be dried off at the target body condition score, fed a 

prepartum cow diet that provides the appropriate fiber, vitamins and minerals, and then feed 

a postpartum diet with sufficient energy and protein to satisfy the metabolic requirements for 

lactation [102]. Farmers should also minimize stress, for example by avoiding transport or 

multiple changes in animal groups, which lead to social stress [103]. After parturition, it is 

important to monitor animal health carefully, particularly those cows that experience risks 

factors for uterine disease. Veterinary examination of the reproductive tract is important to 

identify animals with disease and decide on their treatment [6]. However, the routine use of 

antimicrobials in cows after parturition to try to prevent uterine disease is no longer 

acceptable because this metaphylaxis increases the risk of antimicrobial resistance, and 

reducing antimicrobial resistance is a priority for most human health agencies [24].

Encouraging a return to ovarian cyclic activity by appropriate nutrition and reproductive 

management during the transition period also helps counter uterine disease. Estrus and 

estradiol increase protection against uterine disease in cattle, and the induction of estrus is 

often used to treat endometritis [104]. Conversely, progesterone is used to suppress 

immunity when generating animal models of endometritis [74]. Interestingly, estrus and 

estradiol increase the expression of components of the complement system [105], but estrus 

and estradiol do not alter the innate immune response by endometrial tissues or cells in ex 

vivo studies [106]. It remains an open question as to how steroids influence the susceptibility 

of animals to uterine disease.

6. Future perspectives

In the present review, we suggest that resilient cows prevent the development of uterine 

disease using the three complimentary defensive strategies of avoiding, tolerating and 

resisting infection with pathogenic bacteria. Preventing endemic diseases is important for 

delivering sustainable intensification of dairy farming, which will be necessary to feed the 

projected world population of 9.4 billion people by 2050 [107]. Improving resistance, 

particularly by developing vaccines probiotics or biopharmaceuticals holds promise [18, 88]. 

Unfortunately, this does not overcome the problem that high-milk-yield dairy cows are 

intrinsically more prone to develop uterine disease than other cattle or domesticated species. 

Farmers should also be aware that suboptimal management of dairy cows increases the risk 

of uterine disease. The simplest piece of advice is for farmers, nutritionists, and veterinarians 

to pay attention to detail when designing buildings, managing dairy herds, planning and herd 

health programs.

A long-term solution to preventing uterine disease is to breed resilient dairy cows that not 

only have a robust immune system, but also tolerate uterine pathogens [108]. Phenotypic 

selection could be based on the occurrence and severity of clinical disease but this is 

subjective, and the time required to collect the data results in long generation intervals. 
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Genomic selection for resilient animals has high potential but depends on identifying 

genomic markers of animal resilience, rather than just focusing on genes that determine 

resistance [108]. However, genomic selection requires care because there can be a negative 

correlation between resistance and tolerance genes [10, 12]. Improving avoidance or 

tolerance is another highly attractive strategy for preventing disease because, unlike 

resistance or using antimicrobials, avoidance and tolerance do not exert a selection pressure 

on the microbes. Improving avoidance or tolerance would also reduce the dependence on 

antimicrobials to kill pathogens, which helps reduce the danger to human health posed by 

antimicrobial resistance [24]. We propose that developing new ways to prevent uterine 

disease will depend on improving our understanding of the mechanisms of avoidance and 

tolerance of pathogens, to complement our knowledge about resistance in the postpartum 

uterus.
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Highlights

• Up to forty percent of dairy cows develop metritis or endometritis when 

pathogenic bacteria infect the uterus after parturition.

• It is unclear why the other sixty percent of dairy cows do not develop uterine 

disease when exposed to similar pathogenic bacteria after parturition.

• We provide a perspective on the mechanisms that dairy cows use to try to 

prevent the development of postpartum uterine disease.

• We suggest that resilient dairy cows prevent the development of uterine 

disease using the three complementary defensive strategies of avoiding, 

tolerating and resisting infection with pathogenic bacteria.
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Figure 1. 
Resilient animals defend themselves against pathogens using the complimentary defensive 

strategies of avoidance, tolerance and resistance. The cartoon sets out the concept for each 

strategy and provides examples of the mechanisms that animals use to defend themselves 

against pathogens.
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Figure 2. 
Reaction norms: a conceptual framework for understanding resilience to pathogens. A 

theoretical reaction norm plot of health status, where health increases vertically, against 

pathogen burden, where the pathogen burden increases horizontally [7, 10, 12]. Avoidance 

maintains health by avoiding exposure to pathogens. Tolerance improves health by limiting 

the tissue damage caused by the pathogen burden. Resistance improves health by limiting 

the pathogen burden. In the case of uterine disease, avoidance limits the quantity of 

pathogens reaching the uterus, tolerance limits the damage that pathogens infecting the 

uterus cause to the endometrium, and resistance reduces the quantity of pathogens that infect 

the uterus.
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Figure 3. 
Reducing cellular cholesterol protects stromal cells against pyolysin. Bovine endometrial 

stromal cells were treated for 24 h in medium containing vehicle or methyl-β-cyclodextrin 

(MBCD) to deplete cellular cholesterol, and then challenged for 2 h with control medium or 

medium containing the cholesterol-dependent cytolysin, pyolysin. The formation of cell 

membrane pores was determined by the leakage of lactate dehydrogenase (A) and cell 

viability was examined using a colorimetric assay for mitochondrial activity (B). Data are 

presented as mean + SEM (n = 4 animals), and analyzed by ANOVA with Bonferroni post 

hoc tests. Redrawn from data published previously [77].
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Figure 4. 
Management can help prevent postpartum uterine disease. Potential strategies that farmers 

can use to help prevent postpartum uterine disease.
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Table 1.

Potential disease tolerance mechanisms

Mechanism Examples

Functional barriers to infection
Mucus

Epithelium

Neutralization of bacterial toxins
Antimicrobial peptides

Acute phase proteins

Repair of tissue damage

Cell membrane repair in response to damage caused by bacterial virulence factors, such as pore-forming 
toxins

DNA repair in response to DNA damage caused by endotoxin

Unfolded protein response to intracellular proteins damaged by bacteria

Adaptive metabolic responses

Autophagy in response to damage to cellular organelles by intracellular pathogens or changes in cell 
metabolism

Hypoxia responses to the reduced oxygen availability in damaged tissues

Oxidative stress responses to hemolysis or inflammation

Reprogramming cell metabolism, such as using aerobic glycolysis to generate substrates and energy for 
tissue repair
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