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Abstract

Neural stem cells exist in specialized regions of the brain and have the capacity to give rise to 

neurons and glia over the lifespan. The process of giving rise to new neurons, also known as 

neurogenesis, is thought to be important in cognition and certain types of brain repair. However, 

during aging, neural stem cell function is reduced resulting in fewer new neurons and declines in 

learning, memory and repair. Recently, research has approached this problem through the lens of 

rejuvenation that now has produced several strategies, from dietary to pharmacological 

interventions, to restore functional neurogenesis that resembles the youthful brain. Here, we 

outline aging in the subventricular zone neurogenic niche, review the multiple modalities of 

rejuvenation strategies, and propose next steps for future studies to approach translational 

outcomes.

Introduction

Adult neurogenesis is the generation of new neurons from neural stem cells (NSCs). NSCs 

are known for their hallmark characteristics of long-term-self-renewal and differentiation 

into neurons and glia [1]. While many noncanonical sites of neurogenesis have been 

observed in the mammalian brain [2], the two main stem cell niches studied are the 

subventricular zone (SVZ) located along the walls of the lateral ventricles (LV) (Figure 1A, 

B) and subgranular zone (SGZ) in the hippocampus. The largest pool of NSCs in rodents lies 

in the SVZ, where the majority of NSCs are quiescent (qNSCs). These qNSCs undergo 

activation (aNSC) and proliferate to produce transit amplifying cells (TACs). TACs rapidly 

proliferate and then differentiate into neuroblasts that migrate in chains along the rostral 

migratory stream (RMS) to the olfactory bulb (OB) and become synaptically integrated into 

the existing circuitry [3] (Figure 1C). Importantly, the niche is comprised of several distinct 
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cell types that lie in a milieu of signals from blood and cerebrospinal fluid (CSF) that 

together makes up the ‘SVZ neurogenic niche.’ [4,5] (Figure 1C). Neurogenesis in the SVZ 

results in the functional integration of neurons in the OB. This has been shown to be 

important in olfactory behavior such as memory and scent/pheromone discrimination [6,7]. 

In addition, brain injury, in the form of ischemic stroke, induces NSC proliferation and 

production of neuroblasts (NBs) [8]. These NBs migrate to the site of injury to differentiate 

into astrocytes and neurons that synaptically integrate into the peri-infarct cortex [8,9]. 

Blockade of neuroblast migration results in increased lesion size and worsened behavioral 

outcomes as SVZ-derived neurons with synaptic function are critical to stroke recovery 

[9,10]. Additionally, post-stroke neurogenesis is plastic and can be increased and directed by 

overuse behavior that mimics current human neurorehabilitation therapies [9]. During aging, 

neurogenesis is reduced, which contributes to declines in olfactory memory and repair 

[11,12]. In this review, we discuss recent findings of murine SVZ aging and interventions 

aimed at rejuvenating neurogenesis in the aged brain (Table 1).

Age-Related Changes in the Subventricular Zone Neurogenic Niche

Most studies agree on a dramatic decline of proliferation in the SVZ as evidenced by 

decreases of up to 71% of BrdU positive cells between young (2-4 months) and old mice 

(19-25 months) and has been suggested to be due to increasing NSC quiescence [13,14]. 

Although, a significant decline in frequency of qNSCs, aNSCs, and TACs occurs as early as 

7-months [14]. Microglia, the resident macrophages of the brain, have been shown to 

acquire an activated phenotype and excrete increased levels of pro-inflammatory cytokines 

in mice as young as 6-months [15] (Figure 2A). The NB population also declines with aging 

and fewer migrate to the OB [16] (Figure 2B). Furthermore, the number of newborn neurons 

in the OB is reduced in 2-month vs 24-month old mice [11]. Structurally, the SVZ thins 

during aging and proliferation becomes restricted to the dorsolateral corner in 19-22-month 

old mice [16]. This is accompanied by the loss of the ependymal lining and interpolation of 

astrocytes and microglia into the ependyma [16,17] (Figure 2A). NSCs have an apical 

astrocytic process that extends through the ependymal layer to contact the CSF in the LV 

[18] (Figure 1C). During aging the number of NSCs is reduced resulting in less contact with 

the CSF signaling milieu [19] (Figure 2A). The niche vasculature, which is an important 

regulator of NSC quiescence and activation, decreases in density and branching (Figure 2A), 

resulting in reduced blood flow [20].

A study using RNA-sequencing (RNA-Seq) to profile the aging SVZ revealed reduced 

expression of genes associated with neurogenesis, proliferation, and cell cycle, which 

corresponded to an actual dip in TAC proliferation in 18-month old mice [21]. Unexpectedly, 

these trends were reversed at 22-months along with proliferation in remaining TACs [21]. 

Surprisingly, no evidence of DNA strand breakage has been found in aged (22-month) NSCs 

[14], although evidence of mutation accumulation and transcript mutations is yet to be 

elucidated. More recently, single-cell RNA-sequencing (scRNA-Seq) was employed to 

profile young (2-months) and old (22-months) NSCs which unexpectedly showed no major 

differences [14]. However, after deeper sequencing, signatures of inflammation were 

discovered in niche progenitors, microglia, and endothelial cells in the old (19-months) SVZ 

compared to young (2-months) controls and were shown to play a causative role in age-

Cutler and Kokovay Page 2

Curr Opin Pharmacol. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dependent increases in NSC quiescence [14]. The latest SVZ scRNA-Seq analysis has 

identified an almost exclusive enrichment of clonally expanded T-cells in the aged (3-month 

vs 28-29-months) SVZ, which express interferon-γ and decrease proliferation of NSCs in 
vitro [22] (Figure 2A).

Strategies to Rejuvenate Neurogenesis in the Aged Subventricular Zone 

Neurogenic Niche

Factors in Blood Plasma and Cerebrospinal Fluid

Multiple strategies to rejuvenate neurogenesis have come from experiments utilizing blood/

plasma exchange between young and aged rodents. Landmark studies utilizing heterochronic 

parabiosis, where a young and aged mouse are connected surgically to share circulation, 

showed that young circulating factors can rejuvenate neurogenesis in aged mice as well as 

old circulating factors that can reduce neurogenesis in young mice [20,23]. The field has 

since made further progress by identification of circulating rejuvenation factors of NSCs in 

the SVZ and hippocampus that include GDF11 [20] and TIMP2 [24] as well as the pro-

aging factors CCL11 [23], β2-microglobulin [25],TGF-β [26] and recently VCAM1 [27]. 

The lateral ventricle choroid plexus (LVCP), located within the LVs adjacent to the SVZ, 

produces CSF that carries signals which influence neurogenesis [28]. During aging (2-

months vs 18-months), the LVCP alters the composition of CSF that reduces proliferation of 

NSCs [28]. Using transcriptome and proteome analysis, BMP5 and IGF1 were discovered to 

be enriched in the young LVCP and promote NSC proliferation in vitro similar to young 

LVCP conditioned medium [28].

These interventions suggest that the aging niche is highly influenced by extracellular factors 

and that young homeostatic potential can be reprogrammed through alterations of the 

systemic milieu. However, the interaction network between these factors is understudied 

which may limit therapeutic potential of selectively upregulating or inhibiting certain factors 

to rescue neurogenesis. Future research should modulate factors in combination to study the 

interactions, as has been recently done with oxytocin and TGF-B to partially rejuvenate 

hippocampal neurogenesis [29].

Dietary Interventions

The dietary interventions caloric restriction (CR) (10-40% reduction in caloric intake) and 

the fasting mimicking diet (FMD) (50-90% reduction in caloric intake for 4 days twice a 

month) are perhaps the most robust, pleiotropic, and conserved methods of longevity 

extension [30] and rejuvenation [31] (reviewed in [32]). In a mouse model of caloric 

restriction starting at 14-weeks of age, the number of NB and new neurons in the OB were 

preserved in the aged (12- to 18-months) and comparable to levels of ad libitum fed young 

(6-months) mice. This preservation of neurogenesis resulted in olfactory memory in aged 

mice that was similar to young (6-month) mice [33]. Research should follow up this result 

by testing whether CR started at old ages, as has been tested in humans [34], produces the 

same magnitude of effect, as well as determining the optimal timing for this intervention. In 

addition, the FMD, a more compliant diet with similar effects as CR, should also be tested 

for increases of neurogenesis in the aging SVZ as it has already been shown to increase 
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neurogenesis and function in the hippocampus in 23-month old mice [31]. The LMN diet, 

rich in methionine-rich proteins, vitamins, and fish, is neuroprotective during aging [35]. 

After 5 months of feeding 18-month old mice an LMN diet, it was found that SVZ 

proliferation was comparable to 4-month old control mice [35].

The two top drugs that have emerged from CR research are rapamycin and metformin, 

which induce systemic rejuvenation primarily through inhibition of the mTOR and 

activation of the AMPK (downstream inhibition of mTOR) pathways, respectively [32]. 

Decreased activation potential of old qNSCs has been shown to be due in-part to faltering 

proteostasis [36]. A 3 month rapamycin treatment in 22-month old mice was shown to 

enhance the lysosome-autophagy axis and counteract the lack of qNSC activation [36]. 

However, other studies suggest that mTOR signaling is a mediator of TAC proliferation 

since rapamycin treatment decreases the number of TACs in 2-month old mice and mTOR 

activation decreases with age, concomitant with proliferation [37]. Metformin has been 

shown to enhance proliferation in the young (3-month) SVZ [38]. Metformin is known to 

downregulate IGF-1 signaling [39], and a study using NSC specific IGF-1R knockout 

prevented age-associated reductions in neurogenesis as well as improved olfactory function 

via increased OB neuron integration [40]. Despite interest in using metformin to ameliorate 

aging phenotypes, research with this drug in the aging SVZ is lacking. Thus, future research 

should address the in vivo rejuvenation potential of metformin and rapamycin in the aging 

SVZ, especially as some of these molecules are FDA approved and available to humans.

Inflammation Amelioration

Multiple lines of evidence now point towards an increased age-dependent inflammatory 

environment within the SVZ [14,15,22,28,33,41]. Factors contributing to inflammation 

include the cytokines IFN-ɑ, IFN-β, and IFN-γ related to the interferon response [22,41], 

CXCL10 [14], TNF-ɑ[15], IL-1 [15,42], and IL-6 [15]. A major source of this inflammation 

originates from aged microglia and should be a central target for inflammation reduction in 

future studies [15]. Having identified the neurogenic-inhibiting contribution of aged 

microglia to NSC proliferation, L’Episcopo and colleagues fed 8-month old mice the anti-

inflammatory drug HCT1026. This treatment restored redox/inflammatory balance to the 

niche, and substantially increased neurogenesis [42]. Acute inhibition of CXCL10, a ligand 

induced in the interferon response program, increased OB neurogenesis in addition to 

increasing activation of qNSCs in 22-month old mice [14]. In the CSF-producing choroid 

plexus of 22-month old mice, expression of type I interferon response is upregulated while 

type II interferon response expression is downregulated. This is associated with decreased 

neurogenesis in the SVZ and SGZ as well as a decline in hippocampal function [28,41]. 

However, inflammation and functional decline were ameliorated by a neutralizing antibody 

against interferon-α/β receptor in the CSF, which blocks binding of type I interferon 

cytokines [41].

It is becoming increasingly clear that aberrant inflammation signaling processes that 

originate from glia play an early [15] and causative role in SVZ niche aging. Thus, future 

studies must now look towards altered interactions/signaling between glial cells and NSCs 
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and intrinsic (mutations/epigenetics) modulating glia during early aging to pinpoint key 

drivers of niche aging.

Cellular Senescence and Senolytics

Cellular senescence research has made strides in the last several decades from identifying 

key markers of senescent cells (e.g. senescent associated secretory profile, P16, SA-β-

galactosidase) (reviewed in [43]), to the negative physiological impact of accumulating 

senescent cells during aging [44],and finally to the development of novel senescent cell 

ablation therapies [44,45]. Increase in senescent cell burden in the aging SVZ has been 

found in 12-18 month old mice [35]. Additionally, senescence-causing p16INK41 mRNA 

expression has been shown to be enriched in the 24-month old murine SVZ [46]. Avoidance 

of the senescence program was achieved with p16INK41−/− mice aged to 15-19 months that 

partially rescued OB neurogenesis [46]. A recent study showed that obesity is associated 

with increased senescence and reduced neuroblasts in the SVZ of middle-aged (10-13 

months) mice and clearance of senescent cells partially rescued the number of neural 

precursors [47]. Thus, removal of senescent cells in elderly mice, especially using treatments 

such as Dasatinib + Quercetin that have been used in clinical trials [48], appear to be 

favorable routes to rejuvenate neurogenesis but are in need of further study in aged animals 

to determine long term effects.

Conclusion

The studies gathered here present compelling evidence that aging of the SVZ niche is not a 

one-way street. Instead, the aging process is not only delayable through early interventions 

such as CR, but is also reversible by way of systemic interventions started late in life (Table 

1). The possibility of rejuvenation not only sheds light on the mechanisms of NSC aging, but 

is also an appealing therapeutic avenue for the rapidly increasing elderly human population 

[49].

Key to developing translational therapies in animal models is whether murine adult 

neurogenesis is conserved in humans. While there have been a large amount of studies on 

post-mortem human brains, a definitive answer to this question remains controversial. SVZ 

neurogenesis appears to be at least robust during human infancy, with evidence of migrating 

NBs along the RMS to the OB [50]. Once reaching adulthood, the number of NBs sharply 

decline and new neurons are not added to the OB [50,51]. Although, some still appear to be 

distributed along the RMS [52] as well as migrating to the neighboring striatum that depletes 

with aging [53]. In contrast, others have reported continued SVZ neurogenesis in adulthood 

that is not easily detectable because the RMS path in the adult brain is altered due to an 

enlarged frontal cortex [54]. Evidence remains on both sides of the aisle for the dentate 

gyrus (DG) as well. As with the SVZ, some reports indicate that DG neurogenesis primarily 

occurs during infancy [55], while others have shown that neurogenesis occurs over the 

lifespan but declines with aging and further with Alzheimer’s disease [56]. A meta-analysis 

of all current studies is needed to reach a consensus. What may underlie the discrepancies 

between these studies is the detection of proliferation and cell identity within the neurogenic 

Cutler and Kokovay Page 5

Curr Opin Pharmacol. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lineage using either proxy markers from mice, birth dating, or isolation and culture of NSCs 

[57].

Our review of the rejuvenation literature revealed a lack of reporting in this literature on the 

possible trade-offs that each rejuvenation strategy may bring. For example, inflammation 

signaling that appears to be detrimental in the aging niche also plays a crucial role in 

activation of the innate immune system in response to viral infections [58]. As normal 

homeostatic regulation of the niche is highly influenced by external signaling factors [5], it 

is not entirely surprising that this method of signaling also appears to be the mode in which 

aging phenotypes arise. This signaling interaction in the niche should be a major theme of 

future research. In conclusion, this review is just a first glimpse into the emerging field of 

rejuvenation research that is bound to continue to shed light on NSC aging and develop 

effective strategies to turn back time.
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Figure 1). 
The young SVZ Structure and Organization A) Sagittal section of murine brain showing 

lateral SVZ enface with the rostral migratory stream (RMS). B) Coronal section of murine 

brain showing the LV adjacent to lateral SVZ. C) Cellular SVZ niche cross section. The 

SVZ lies between the CSF (top) and VP (bottom). qNSCs make contact through the 

ependymal layer and receive signals from the CSF. Upon activation, qNSCs transition to 

aNSCs (1) where they either divide symmetrically or asymmetrically into TACs (2). TACs 

then produce NBs (3) that then exit the SVZ (4) and migrate along the RMS to the OB 

where they will terminally differentiation into inhibitory neurons. qNSC, quiescent neural 

stem cell; aNSC, active neural stem cell; TAC, transit amplifying cell; NB, neuroblast; OB, 

olfactory bulb; RMS, rostral migratory stream; LV, lateral ventricle; SVZ, subventricular 

zone; CSF, cerebrospinal fluid; VP, vascular plexus.
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Figure 2). 
Age-Related Changes in the SVZ. A) The SVZ becomes thinner and vasculature is reduced 

in density and branching. The ependymal layer itself thins and experiences cell loss, cilia 

become unevenly distributed, and inflammation can be detected in the CSF adjacent to the 

niche. qNSC, aNSC, TAC, NB, and are decreased in frequency while microglia trend in the 

opposite direction. Furthermore, microglia display activated and ameboid phenotypes that is 

associated with enrichment of pro-inflammatory cytokines within the SVZ. qNSCS in 

pinwheel formations are lost while microglia processes and astrocytes infiltrate the thinning 

ependymal layer. Lastly, T cells can be seen infiltrating the niche and then expand clonally, 

contributing to niche inflammation though IFN-γ. B). Sagittal view of murine brain 

depicting disappearance of the RMS due to fewer migrating NBs that results in decreased 

incorporation of immature neurons into the OB circuitry. C) The main functional outcomes 

of SVZ aging are decreased repair following brain injury and decreased olfactory 

discrimination & memory. qNSC, quiescent neural stem cell; aNSC, active neural stem cell; 

TAC, transit amplifying cell; NB, neuroblast; OB, olfactory bulb; RMS, rostral migratory 

stream; LV, lateral ventricle; SVZ, subventricular zone; CSF, cerebrospinal fluid; VP, 

vascular plexus; IFN-ɑ, interferon-alpha; IFN-β, interferon-beta; IFN-γ, interferon-gamma; 

TNF- ɑ, tumor necrosis factor alpha; IL-1 β, interleukin-1 beta; IL-6, interleukin 6.
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