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A B S T R A C T

In recent years, new types of interactive analytical dashboard features have emerged for operational decision
support systems (DSS). Analytical components of such features solve optimization problems hidden from the
human eye, whereas interactive components involve the individual in the optimization process via graphical
user interfaces (GUIs). Despite their expected value for organizations, little is known about the effectiveness of
interactive analytical dashboards in operational DSS or their influences on human cognitive abilities. This paper
contributes to the closing of this gap by exploring and empirically testing the effects of interactive analytical
dashboard features on situation awareness (SA) and task performance in operational DSS. Using the theoretical
lens of SA, we develop hypotheses about the effects of a what-if analysis as an interactive analytical dashboard
feature on operational decision-makers' SA and task performance. The resulting research model is studied with a
laboratory experiment, including eye-tracking data of 83 participants. Our findings show that although a what-if
analysis leads to higher task performance, it may also reduce SA, nourishing a potential out-of-the-loop problem.
Thus, designers and users of interactive analytical dashboards have to carefully mitigate these effects in the
implementation and application of operational DSS. In this article, we translate our findings into implications for
designing dashboards within operational DSS to help practitioners in their efforts to address the danger of the
out-of-the-loop syndrome.

1. Introduction

In the wake of the COVID-19 pandemic, dashboards that summarize
large amounts of information have become a topic of public interest. In
particular, an interactive web-dashboard from Johns Hopkins
University has proven useful in monitoring the outbreak of the pan-
demic and keeping billions of people informed about current develop-
ments [1,2]. Such dashboards help to illustrate key figures on a screen
full of information [3] and provide visual, functional, and/or inter-
active analytical features to handle chunks of information effectively
[2]. Similarly, these tools can also help ensure that operational deci-
sion-makers in organizations are not overwhelmed by the avalanche of
data when trying to use information effectively [4]. The challenge for
contemporary organizations and related research is, therefore, to make
the collected data more valuable to operational decision-makers.
Dashboards and their underlying features have become an essential
approach to addressing this challenge [4]. Negash and Gray [5] de-
scribe dashboards as one of the most effective analysis tools. As the
interaction between operational decision-makers and decision support

systems (DSS) largely occurs via graphical user interfaces (GUIs) [3],
the design and implemented features of a dashboard are of specific
importance for the effectiveness of a DSS, particularly at the operational
level [4]. Over the years, research has proposed several possible solu-
tion types. A first research direction focuses on reporting current op-
erations to inform operational decision-makers [3]. Such dashboards
are rather static by nature and do not interact with the user. Static
dashboards focus on visual features, which attempt to present in-
formation efficiently and effectively to a user [4]. Few [3] reports 13
common mistakes in visual dashboard design (e.g., introducing mean-
ingless variety or encoding quantitative data inaccurately). However,
static dashboards appear no longer sufficient to account for the in-
creased need to analyze complex and multidimensional data at the
operational level. This issue is a key challenge for the visualizations
used in static dashboards, which are often labeled “read-only” [6].

Echoing this concern, a second research direction complements
static dashboards with functional features [6]. Functional features refer
indirectly to visualization but define what the dashboard is capable of
doing [4]. The aim is to create interactive dashboards that involve users
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during data analysis. Scientific articles in this stream suggest that in-
dividuals should drill down, roll up, or filter information, or are auto-
matically alerted to business situations [7]. Such involvement appears
to support users' comprehension of the complex nature of the data.
However, obtaining this understanding comes at the expense of cog-
nitive effort and time required to process the data manually, which
might lead to delayed decisions or errors [8].

Against this backdrop, interactive analytical dashboards have
emerged in recent years as a third research direction [9]. Such dash-
boards recognize the limits of low human involvement with static
dashboards, the high human involvement with interactive dashboards,
and value the introduction of interactive analytical features [10]. The
idea is to solve optimization problems automatically via computational
approaches in the backend (analytical component) but to (still) involve
the individual in the optimization process via the GUI (interactive
component) [11]. Implementations range from robust trial-and-error to
more advanced approaches such as interactive multi-objective optimi-
zation [12]. Yigitbasioglu and Velcu [4] and Pauwels et al. [9] argue
that the promise of interactive analytical features such as a what-if
analysis is unrealized in current dashboard solutions for operational
DSS. A what-if analysis is a trial-and-error method that manipulates a
dashboard's underlying optimization model to approximate a real-
world problem [13]. However, by introducing an interactive analytical
feature, operational decision-makers can interact with the optimization
system without knowing the optimization model or understanding how
the optimization procedure behind the results operates [14]. Such be-
havior can harm an individual's comprehension of the current situation,
nourishing an out-of-the-loop problem—a situation in which a human
being lacks sufficient knowledge of particular issues [15]. The fear is
“that manual skills will deteriorate with lack of use” and individuals
will no longer be able to work manually when needed ([15], p. 381).

Although what-if analyses have been investigated for DSS, empirical
results have shown conflicting results. In particular, opposing patterns
for the relationship toward decision performance have been reported in
different studies. Benbasat and Dexter [16], as well as Sharda et al.
[17], found a positive relationship. However, Fripp [18] and Goslar
et al. [19] have demonstrated no statistically significant effect. In turn,
others like Davis et al. [13] found that decision-makers performed
better without a what-if analysis. With these conflicting results, it is
surprising that academic literature gives relatively little attention to (1)
how interactive analytical dashboard features should appear or (2) how
they influence human beings' cognitive abilities in operational DSS [4].
An adequate level of situation awareness (SA) is emphasized as a pro-
mising starting point to examine this unfolding research gap [20].
Human factors research confirms that human beings' SA represents a
key enabler for operational decision-making and task performance
[21,22]. The importance of SA raises the question of how dashboard
features can be designed to influence SA positively [23,24]. The ob-
jective of this study is, therefore, to examine the relationship between
an interactive analytical dashboard feature, human beings' SA, and task
performance in operational DSS. We implement a what-if analysis to
study this relationship. Prominent references acknowledge that present
dashboards “just perform status reporting, and development of [a]
what-if capability would strongly enhance their value” ([9], p. 9). We
rely on Endsley's [25] SA model as a theoretical guide for our analysis.
It is established in academia and has shown favorable outcomes in
different studies [21]. We formulate the following research question:
How does a what-if analysis feature in an interactive analytical dashboard
influence operational decision-makers' situation awareness and task per-
formance in operational DSS?

The primary contribution of this work resides in linking the what-if
analysis feature to SA and task performance. A second contribution
resides in incorporating an analysis of eye-tracking parameters and the
Situation Awareness Global Assessment Technique (SAGAT) in one of
the first large-scale lab experiments (n = 83) on this topic to offer in-
sights from a holistic viewpoint. A third contribution resides in the

translation of our findings into implications for designing dashboards
within operational DSS to help practitioners in their efforts to address
the danger of the out-of-the-loop syndrome.

We have chosen production planning as the study context, focusing
on advanced planning and scheduling (APS), the synchronization of
raw materials and production capacity (cf. section 4.2). First, the
amount of APS data sets up severe challenges concerning the display
resolution in dashboards [26]. Second, until now, few publications
addressed dashboards and their influence in APS and production
planning in general. For instance, Wu and Acharya [27] outlined a basic
GUI design in the context of metal ingot casting. In addition, another
study by Zhang [28] visualized large amounts of managerial data for
evaluating its feasibility. There is a need to understand how planners
effectively use dashboards because planning is not a static, one-time
activity but rather requires continuous adaption of vast data amounts.
Third, this challenge is even more daunting because planners must in-
creasingly make business-critical decisions in less time [26].

The ensuing section introduces the background related to SA theory
and dashboards. The section thereafter develops the study's hypotheses.
In the fourth section, we illustrate the research method. The data
analysis and results are explained in the fifth section. The sixth section
discusses the theoretical and practical implications. The final section
concludes the study.

2. Background

2.1. Theory of situation awareness

In recent decades, SA has become one of the most discussed con-
cepts in human factors research [24]. Although the original theoretical
impetus of SA resided in military aviation, the concept has splashed
over almost any area that addresses individuals executing tasks in
complex and dynamic systems. We used the model by Endsley [25] as
this model is one of the most prominent and widely used perspectives in
the scientific community and debate around SA. Its robust and intuitive
nature has been confirmed in different domains enabling scholars to
measure the concept and derive corresponding requirements for DSS
[21].

SA refers to an individual's knowledge about a specific situation
[25]. It arises through his or her interaction with the environment. An
adequate level of SA is known to affect subsequent decisions and ac-
tions positively. The resulting activities induce changes to the en-
vironment. As the environment changes, SA must be updated, which
requires a cognitive effort of the respective individual. Due to this in-
teraction, forming and maintaining SA can be difficult to achieve.
Endsley [25] describes these difficulties as obstacles such as the out-of-
the-loop problem. The resulting degree of SA is thereby often described
as “high” or “low” [29]. Thus, we define SA as a quality criterion in
terms of completeness and accuracy of the current state of knowledge,
stating whether a human has an appropriate SA level.

However, measuring SA refers to a complex proposition. A plethora
of approaches exists and academic discourse continues regarding which
of those represent the most valid and reliable one to measure SA [29].
In general, research advocates a mixture of approaches, such as (1)
freeze-probe or (2) process indices. In addition, most SA studies also
measure (3) task performance indicators [29]. In the following, these
three measurement approaches will be introduced.

2.1.1. Freeze-probe technique
Freeze-probe techniques involve random stops during task simula-

tion and a set of SA queries concerning the current situation [29].
Participants must answer each query based on their knowledge of the
current situation at the point of the stop. During each stop, all displays
are blanked. The Situation Awareness Global Assessment Technique
(SAGAT) is an established freeze-probe procedure that is in line with
the model by Endsley [25]. The SAGAT approach has been specifically
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created for the military and aviation domain. However, over the years,
different SAGAT versions have been created in other fields, making this
measurement approach one of the most popular ones to assess SA [29].
The benefits of this approach represent their alleged direct, objective
nature, which eliminates the problems associated with assessing SA
data post-trial [22]. This approach possesses a high validity, reliability,
and user acceptance [29].

2.1.2. Process indices
Process indices assess cognitive processes of human beings to form

and maintain SA during task execution [29]. Specifically, eye-tracking
supports the definition of proficient process index measures and
therefore refers to a further technique to measure SA [29]. Such devices
capture fixations of human beings on the elements of the screen to in-
dicate the degree to which such elements have been processed. This
operationalization is based on the assumption that a high fixation level
engages the participant in information-relevant thinking. Although this
assumption represents only a proxy for true SA, it follows the same logic
as attempts in other research communities that leverage gaze patterns
to deduce attention or assign elaboration to memory or recall [30,31].
However, whereas freeze-probe techniques abound in academic dis-
course [29], only few investigations rely on process indices (such as
eye-tracking) or study their reliability and validity to measure SA.

2.1.3. Task performance indicators
Most SA studies typically include task performance indicators [29].

Depending upon the task context, different performance measures are
defined and collected. For instance, “hits” or “mission success” re-
present suitable measures in the military context. In turn, driving tasks
could involve indicators like hazard detection, blocking car detection,
or crash avoidance. Task completion, on the other hand, has been used
as a measure in the study of user performance under the influence of
instant messenger technologies [32]. Due to their non-invasiveness and

simplicity to collect, relying on task performance indicators appears
beneficial [29].

2.2. Dashboard components and types

Classical business intelligence and analytics (BIA) refers to a data-
centric approach promoting strategic and tactical decisions based on
(mostly) retrospective analysis connected to a restricted audience of
BIA experts and mangers [33]. Nowadays, BIA refers to all methodol-
ogies, techniques, and technologies that capture, integrate, analyze, and
present data to generate actionable insights for timely decision-making
[34]. The transformation of raw data into actionable insights requires
three BIA technologies: data warehouses (DWH), analytical tools, and
reporting tools [35]. A DWH is a “subject-oriented, integrated, time-
variant, nonvolatile collection of data in support of management's de-
cision-making process” ([36], p. 33). Typically, extract, transform, load
(ETL) processes load data into a DWH, before analytical tools produce
new insights. On this basis, dashboards are created to inform decision-
making and next actions [37]. Hereby, dashboards are usually called
the “tip of the iceberg” of BIA systems. In the backend, complex and
(often not-well) integrated ETL infrastructure resides, attempting to
retrieve data from diverse operational systems. The relevance of these
backend systems is indisputable. However, dashboards appear to hold a
significant role in this information processing chain because the inter-
action between operational decision-makers and DSS primarily occurs
via GUIs [3]. Thus, the dashboard design is relevant for BIA systems due
to its influence on an individual's efficiency and productivity. However,
whereas press articles [38,39] and textbooks [3,40] are abundant, few
scientific studies have looked at dashboard features and their con-
sequences for users; thus, limited guidance for scholars and practi-
tioners is currently offered [4,9]. The handful of dashboard articles
have studied intentions for their usage [41], case studies of instantia-
tions used in organizations [39], different implementation stages [42],

Fig. 1. Components of a Dashboard based on Meignan et al. [11].
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adoption rates [43], and metrics selection [44]. In the following, we
describe the components and types of a dashboard (cf. Fig. 1).

2.2.1. Visual features
In any dashboard type, different visual features are used to present

data in a graphical form to reduce the time spent on understanding and
perceiving them. Visual features relate to the efficiency and effective-
ness of information presentation to users [4]. A good balance between
information utility and visual complexity is therefore needed. Visual
complexity refers to the level of difficulty in offering a verbal descrip-
tion of an image [45]. Studies show that varying surface styles and
increasing numbers and ranges of objects increase visual complexity,
whereas repetitive and uniform patterns decrease it [46]. Usually,
dashboards leverage colors to differentiate objects from one another.
The colors red and yellow, which are more likely to attract attention,
are examples for signaling distinction [25]. Using such properties too
often or inappropriately may lead to confusion or errors because the
user would no longer be able to identify the critical information. Si-
milarly, superfluous information within charts, so-called “chart junk”
such as overwhelming 3D objects or non-value-adding frames, can ap-
pear impressive but severely distract users and induce undesired “visual
clutter”. According to Tufte [47], a high data-ink ratio can reduce this
problem. Data-ink ratio is a parameter that defines the relationship of
ink used to illustrate data to the overall ink leveraged to represent the
chart. A potential strategy refers to the erasing method by eliminating
all components in charts with non-data ink. Some chart types promote
visual illusions, which can potentially bias decision-making. Gridlines
within charts are suggested as a useful technique to overcome such
pitfalls [48]. A detailed discussion on visual features can be found in
Few [3] and Tufte [47].

2.2.2. Functional features
Functional features indirectly link to visual features and comprise

what a dashboard can do [4]. Functional features in the form of point
and click interactivity enable the user to drill-down and roll-up. Tra-
ditional approaches to point and click interaction refer to merely
clicking the mouse on the favored part of a list or chart to receive de-
tailed information. Cleveland [49] initiates brushing, an approach that
illustrates details of the data, by placing a mouse pointer over the data
display. Such details might show information ranging in size from
single values to information from related data points. Filtering is an-
other valuable functional feature. It enables users to not only sort for
relevant information but also identify hidden data relationships [7].
Alerts and notifications also describe functional features [7]. They can
recommend corrective actions or make the user aware of issues as soon
as measures no longer meet critical thresholds. Common influencing
variables address type (e.g., warning or announcement), modality (e.g.,
visual, audio, or haptic), rate of frequency (i.e., how often to alert the
user), and timing (i.e., when to induce the alert).

2.2.3. Interactive analytical features
Recent developments have emphasized the introduction of inter-

active analytical features within dashboards [10]. Such features (still)
involve the operational decision-maker in the optimization process via
the GUI (interactive component). Computational approaches and soft-
ware tools solve the optimization problem in the backend (analytical
component). Any optimization system contains an optimization model
and optimization procedures to solve an optimization problem auto-
matically. An optimization model describes an approximation of a real-
world problem. Usually, it includes the definition of the objectives,
decision variables, and constraints of the optimization problem. The
problem data define the values of the parameter of the optimization
model when the optimization problem is triggered. In turn, the opti-
mization procedure solves the problem instances directly linked to the
optimization problem by issuing either candidate solutions or inter-
mediate results. An intermediate result is not necessarily a solution and

refers to information obtained during this optimization process. Can-
didate solutions are final solutions to an optimization problem [11].
Interactive optimization systems involve the user at some point in time,
allowing him or her to modify the outcomes of the optimization system
significantly. These systems leverage user feedback from the presented
candidate solutions and intermediate results to adjust either the opti-
mization model or the optimization procedures via a preference model.
The preference model contains the preference information obtained
from the user feedback [12]. Common examples of a preference model
represent weight values in an objective function or heuristic informa-
tion for the optimization procedure.

The user can refer to different interactive analytical features to offer
various forms of feedback to the produced candidate solution or in-
termediate results. The user feedback can consist of adjustments of
parameter values leveraging interactive multi-objective optimization.
In an interactive evolutionary algorithm, the user can choose the most
promising solution from a set of alternatives. Trial-and-error features
are used for both modifying the optimization model and optimization
procedures. The first approach corresponds to a what-if analysis in
which the user modifies the data, constraints, or objectives of the op-
timization problem, whereas the optimization system offers a solution
for evaluating these adjustments. In the second case, users modify some
parameter values in an optimization procedure.

Although not exhaustively implemented, preference learning gen-
eralizes the feedback of a user to develop a model of his or her pre-
ferences. Such a model can be used to extend the optimization model
(e.g., by adding new constraints). However, it is also possible to in-
tegrate user feedback into the preference model without preference
learning. User values can be directly linked to the parameters of the
optimization model. A detailed discussion of interactive analytical
features can be found in Meignan et al. [11].

2.2.4. Types of dashboards
By now, numerous types of dashboards have been suggested not

only for performance monitoring but also for advanced analytical
purposes, incorporating consistency, planning, and communication
activities [9]. Next, we consider the dashboard concept as a whole and
describe it in terms of three different types.

Static dashboards are reporting tools used to summarize informa-
tion into digestible graphical forms that offer at-a-glance visibility into
business performance. The value resides in their capability to illustrate
progressive performance improvements via fitting visual features to
users. Depending upon the purpose and context, data updates can occur
once a month, week, day, or even in real-time [3]. Static dashboards
can fulfill both the urgency of fast-paced environments, offering real-
time data support, and tracking of performance metrics against en-
terprise-wide strategic objectives based on historical data. However,
such dashboards do not involve the user in the data visualization pro-
cess and have issues with handling complex and multidimensional data
[6]. Interactive dashboards can be considered a step toward directly
involving the user in the analysis process. Interactive dashboards con-
sider not only visual features, but also introduce functional features
such as point and click interactivity [4]. These capabilities allow op-
erational decision-makers to enable more elaborate analyses [6]. Ad-
dressing the impediments of static dashboards, they are used to estab-
lish a better understanding of the complex nature of data, which can
also foster decision-making. However, the benefits of interactivity could
increase the users' cognitive effort and required manual analysis time,
increasing the probability of delayed decisions or (even) errors [8].

In more recent years, research has called for more interactive ana-
lytical dashboards to address the limits of low human involvement
within static and high human involvement within interactive dash-
boards [10]. Such dashboard types rely on interactive analytical fea-
tures [50]. The dashboard literature has confirmed and highlighted the
potential value of a what-if analysis feature to quickly access and assess
different aspects of the data in current dashboards [9]. Despite the good
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prospects, these new types of features have (thus far) not materialized
[4]. Potential obstacles concerning users trusting the interactive ana-
lytical functionality implicitly appear to remain [14]. Such behavior
can induce adverse effects on SA that, in turn, can evolve into an out-of-
the-loop problem [15].

3. Hypotheses development

This section describes the research model and the hypothesized ef-
fects. We expect different effects of the what-if analysis (in an inter-
active analytical dashboard) on an individual's SA and task perfor-
mance. Furthermore, we study the effect of an interactive dashboard
(without what-if analysis) to introduce a baseline for the interpretation
of our empirical results. Finally, we study the effect of one control
variable, an individual's mental workload because it has been ac-
knowledged as a bias in DSS development [51].

3.1. Impact of dashboard design on situation awareness (H1)

Dashboard design can induce significant effects on operational de-
cision-makers' SA because the set of dashboard features available de-
fines the quantity and accuracy of information obtained by a human
being [4]. In turn, SA defines the state of knowledge for perceiving and
comprehending the current situation and projecting future events [25].
Such information appears to be important because it defines the basis to
engage in effortful processing. Thus, the selection of dashboard features
should be offered in a way that transmits the information required to
the human being in the most effective manner, which (ideally) in-
creases SA. We theorize that such transmission can be affected and
optimized by the respective dashboard design and set of features em-
ployed. An interactive dashboard design assists operational decision-
makers with manual data analysis [4]. The value of such designs stems
from their capability to offer means for comparisons, reviewing ex-
tensive histories, and assessing performance. In contrast to static
dashboards, interactive dashboards can go beyond “what is going on
right now,” enable filtering options, and drill down into causes of
bottlenecks. Such dashboards allow operational decision-makers to
move from general-abstract to more concrete-detailed information and
thereby identify hidden data relationships from different perspectives
[9]. Such data activities enable a detailed review of the current situa-
tional context.

Interactive analytical dashboards introduce interactive analytical
functionality that facilitates operational decision-makers to simulate
trends automatically. What-if analyses allow users to quickly receive
system support (even) without the need to review information in a more
detailed manner or to understand the overall business situation [4].
Such automated analysis can represent a useful feature to enable in-
dividuals immediate assessment of potential areas of improvement,
specifically when the dashboard is used as a planning tool [52]. Op-
erational decision-makers can leverage such interactive analytical fea-
tures to obtain quick feedback on how specific changes in a variable
(e.g., order fill rates) influence other values (e.g., profits). This way,
they can emphasize the significance of bottleneck components [9].

We expect that the interactive dashboard design will outperform the
interactive analytical one in terms of SA. Concerning the interactive
analytical dashboard, exceptional planning situations remain. These
cannot be handled properly by the optimization model. The real-world
problem can involve constraints that are hard to quantify. Furthermore,
the operational decision-maker must know several limitations of the
quality and efficiency of the optimization procedure [11]. Thus, op-
erational decision-makers (still) play a critical role in the optimization
process and are required to be aware of the specifics of the planning
situation [53]. However, by increasingly relying on a what-if analysis,
planners can be deluded into no longer scrutinizing all objective and
relevant information. Shibl et al. [14] showed that trusting DSS re-
presented a success factor; however, the majority of users appeared to

trust the DSS implicitly or even “overtrust” the system. “As an opera-
tor's attention is limited, this is an effective coping strategy for dealing
with excess demands” ([53], p. 3). The result, however, would be that
such human-machine entanglement can lead to intricate experiences
such as a loss of SA or (even) deteriorating skills [15].

Research shows that humans who rely on system support have dif-
ficulties in comprehending a situation once they recognize that a pro-
blem exists. Even when system support can operate correctly most of
the time, when it does fail, the ability to restore manual control is
crucial [54]. Likewise, a planner can rely on a what-if analysis without
understanding the limits of the optimization model or the performance
inadequacy behind the results, nourishing an out-of-the-loop problem.
Many situations might exist for which neither the optimization model
nor the optimization procedures have been implemented, trained, or
tested [11]. Such situations require manual intervention. Interactive
dashboards offer the possibility for manual data analysis (e.g., via point
and click interactivity) to scrutinize all object-relevant information [9].
Typically, such actions are known to keep the human in the loop and
aware of the situation [24].

In conclusion, a what-if analysis within an interactive analytical
dashboard is an effective coping strategy to quickly show operational
decision-makers potential areas of improvement. However, it simulta-
neously increases the possibility of getting out-of-the-loop. Thus, we
theorize that the impact of an interactive dashboard on SA is higher
than the impact of the interactive analytical counterpart.

H1. : An interactive analytical dashboard design leads to lower
situation awareness than an interactive dashboard design without
analytical features.

3.2. Impact of dashboard design on task performance (H2)

The value of dashboards resides in their capability to increase
control and handling by the user and thus foster task performance [3].
Task performance relies on the degree to which an operational decision-
maker scrutinizes the set of available information within a dashboard.
This assumption is based on the importance of human beings' SA when
assessing information [24]. However, when the universe of potential
solutions is large or time constraints exist, operational decision-makers
cannot reasonably assess every possible alternative [31]. They rather
create a consideration set, a subgroup of alternatives, which the in-
dividual is prepared for and aware of to assess further [55]. Interactive
dashboards can guide the planner through the current planning in-
formation. Based on the cognitive effort and time constraints of the
planner, he or she will create a consideration set from the presented
view. In case of breakdowns, interactive dashboards enable human
beings to manually review detailed information and analyze their
causes (if necessary) [9]. In production planning, these derived insights
can be used to adjust the production plan.

Operational decision-makers can also rely on a what-if analysis to
adjust their consideration set [10]. They can leverage this functionality
to obtain quick feedback for specific relationships of variables (e.g., the
effect of order fill rates on profit) [9]. Studies have acknowledged the
potential value of such features to outline critical information that il-
lustrates most of the difference [52].

However, we expect that the interactive analytical design will out-
perform the interactive one in terms of task performance. Interactive
dashboards can represent a less effective means to promote task per-
formance. The underlying reasoning is that manual analysis activities
(as offered by interactive dashboards) are cognitively demanding and
require time. Operational decision-makers must consider information
critically and question its relevance before generating a carefully in-
formed (although not necessarily unbiased) judgment [56]. However,
due to the limits of the human mind with storing, assembling, or or-
ganizing units of information, operational decision-makers might not be
able to transfer an (even) increased level of SA into their planning
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activities and thus might experience lower task performance [54].
Common obstacles arise from restricted space or natural dissolution of
information over time in human beings' working memory. Given ab-
stract information, such dissolution can occur (even) in seconds. Con-
versely, with interactive analytical dashboards, the cognitive effort and
time required are lower because planners can rely on interactive ana-
lytical features. For example, a what-if analysis can help to identify
defective components rather than scrutinizing all of the information
presented on its own [56]. Hence, we expect the following.

H2. : An interactive analytical dashboard design leads to higher task
performance than an interactive dashboard design without analytical
features.

3.3. Association between situation awareness on task performance (H3)

SA is an important antecedent to improving the likelihood to
achieve higher task performance. Effective decisions require a good
state of knowledge in terms of perception, understanding, and projec-
tion of the situation at hand [24]. Individuals experience more suc-
cessful performance outcomes when they obtain a complete overview
and knowledge of the current situation [54]. When issues emerge, they
typically do so because some considerations of this overview are in-
complete or incorrect [24]. The underlying reasoning is that a better SA
can increase the control and handling of the system by the individual
and thus contribute to task performance. Studies confirmed this re-
lationship in different domains (e.g., automotive, military, or aviation).
A decrease of SA is often correlated with reduced task performance,
representing the most critical cause of aviation disasters in a review of
over 200 incidents [57]. Hence, we hypothesize the following.

H3. : Situation awareness is associated with higher task performance.

Fig. 2 summarizes the overall research model.

4. Research method

We developed two dashboards. The interactive design assists the
user with manual data analysis to filter, roll up, or drill down into the

causes of problems, whereas the interactive analytical one offers a
what-if analysis on top. We conducted a laboratory experiment using a
single-factor within-subject design to enhance statistical power for each
setup and minimize error variance induced by individual differences
[58]. We used a common technique to minimize the bias from potential
carryover and order effects. We randomized the order of experimental
sequences. First, we calculated the number of possible experimental
sequences (i.e., 2). Second, we randomly allocated each participant to
one of the two sequences. Randomization is a well-known technique to
prevent unintentionally confounding the experimental design [59].
Before the data collection, we tested the setup to check on the in-
telligibility of the experimental tasks and to evaluate the measures. We
included feedback rounds with practitioners to ensure closeness to
reality.

4.1. Participants

We conducted our laboratory experiment with graduate students
who were enrolled in an advanced IS course. In total, 83 graduate IS
students (48 males, 35 females) took part. Their ages ranged from 20 to
34 years, with an average age of 24.1 years. We used students as a
proxy for dashboard users in APS. We relied on students because similar
laboratory experiments have shown that students are an appropriate
population not normally biased by real-world experiences [60]. Second,
the costs (e.g., financial compensation, physically presence at the
campus) to incentivize students to take part in the experiment are re-
latively low. In turn, one of the main limitations of relying on profes-
sionals in experiments is that it is problematic to incentivize them [59].
Third, APS represents a challenging, complex, and cognitive-de-
manding task. IS students have learned the abilities or knowledge to
apply it in complex contexts. Hence, these students seem to fulfill the
necessary prerequisite for conducting the experimental task. In this line,
we concur with the review by Katok [59] that students can perform as
good as professionals do. Bolton et al. [61] confirmed this conclusion in
a carefully executed experiment. Fourth, to account for the lack of
system experience, we applied different techniques to prepare partici-
pants for using the dashboard (e.g., personal support, training tasks,
small groups, help button). Because both dashboards participants

Fig. 2. Research model.
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committed 2.5 errors on average, it appears that they had no difficulties
in using them. Lastly, we discussed our study with two production
planners and followed their experienced advice regarding several as-
pects, that is, how to assess the degree of SA and performance or how to
design both dashboard types and determine appropriate areas of in-
terest (AoI).

4.2. Experimental task

The problem type at hand was an APS task. Participants had to plan
the production of bicycles in a fictional manufacturing company.
Different components (e.g., bicycle handlebar, bell, lamp, reflectors,
tire, chair) were available for each bicycle. Hereby, the amount of
available components or which component was required for which bi-
cycle could differ. Per planning week, only a limited amount of com-
ponents was available. In addition, for each product, the minimal
amount of planned customer demands of all planning weeks was of-
fered. Customer demands represented the basis for the calculation of
needed components per planning week. In total, four planning weeks
had to be planned by the participants so that all constraints were met
and the total revenue was maximized. Three parameters were critical to
generate an effective production plan: (i) the number of available
components, (ii) the number of products to be produced (demand), and
(iii) information about which component is linked to which product.
Both designs shared the same APS process and objective to create an
optimal production plan solving a planning problem within the given
constraints. Both plans comprised initial states and planning restric-
tions. The initial state was characterized by a set of raw data that did
not comply with the planning restrictions. For each plan, all decision
packages shared the same complexity. The initial raw data for both
plans only differed in their conditions, such as component numbers or
weekly demand. We introduced constraints to ensure that users could
execute the tasks within an appropriate amount of time: component
shortage represented the only restriction for planning, whereas human
and machine resources were assumed unrestricted. The participants
were required to create a production plan by modifying the changeable
raw data with (w/) and without (w/o) a what-if analysis.

4.3. Treatment conditions

Fig. 3 shows a screenshot of the interactive dashboard design. The
design comprises three elements: i) a toolbar to navigate through dif-
ferent areas of interest at the very top, ii) a navigation bar top right to
perform different means of analysis and iii) a content area showing the
respective results. To support a holistic view of the as-is planning

situation, the planner obtains access to supply and retail data within
sortable tables and bar charts. The sortable tables and bar charts are
combined with drill-down, roll-up, and filter functionality to explore
the underlying sets of data deeply.

Concerning the what-if analysis, the interactive analytical dash-
board design introduces a simulation area capable of visualizing bot-
tleneck components and their criticality for the production plan (cf.
Fig. 4). The bar chart uses colorful indications (i.e., green/ red) to assess
the effects and criticality of bottleneck components. In this way, it
emphasizes immediately whether the current data entries form a valid
production plan. In the event of a component shortage or surplus, the
chart is colored in red. The difference between needed and possible
orders is visualized as a number within the bar chart.

4.4. Experimental procedure

The study lasted for approximately one hour and three minutes and
comprised three sections: an introduction (10 min), training (25 min),
and the actual testing section (28 min). Upon arrival, participants
started by signing the information consent form. The computer lab was
prepared with running Tobii pro X2–30 eye-tracker equipment. The
eye-tracker recorded the participant's eye movements as X and Y co-
ordinates (in pixels) at intervals of 30 ms, applying dark-pupil infrared
technology and video. Participants were introduced to the production-
planning problem and the dashboard design by the experiment in-
structor. They had the opportunity to go through the problem for some
minutes to become familiar with the topic. The training section fol-
lowed the introduction, aiming to practice the generation of a pro-
duction plan with both alternatives. The training sections comprised
small groups of three to five participants to offer participants the pos-
sibility to ask questions individually. The instructor and a help menu
offered by the application provided guidance and support. Participants
could use as much time as they needed; they required approximately
25 min to finish both training activities (one for each design). In the
testing section, each participant finished one session for each design.
Each session lasted a maximum of 14 min.

4.5. Measurement

4.5.1. Situation awareness
We employed the SAGAT freeze-probe technique to measure SA. In

our study, we halted the task four times within each alternative and
blanked out the screen. A message on the screen asked the participants
to respond to questions related to their perceptions of the situation in
order to obtain a periodic SA snapshot. Participants answered three

Fig. 3. Screenshot of the interactive dashboard design.
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questions at each stop (cf. Table 1).
To evaluate whether participants' replies were correct, we con-

trasted them with logged data at the moment of the freeze. We analyzed
the SA scores as the percentage of correct answers for each dashboard.

Eye-Tracking. Two AoIs for each dashboard feature were defined.
An AoI refers to the “area of a display or visual environment that is of
interest to the research or design team” ([62], p. 584). We oper-
ationalized SA via two eye-tracking measures: (i) participant's fixation
duration and (ii) fixation count spent scrutinizing the information of the
respective AoI. A fixation occurs if an eye concentrates on a particular
point for a specific period in time. Any eye-movement around 2° of
visual arc for at least 60 ms in time is called a fixation [62]. Fixation
count refers to the total number of fixations counted in an AoI. Fixation
duration is defined as the average fixation time spent on an AoI. By
studying the fixation duration and fixation count with both designs, we
can conclude which alternative drew more attention.

Task Performance. We measured task performance by the number of
errors committed for each dashboard alternative. Participants could
save their production plan when they felt they had arrived at a suitable
solution. If a participant did not successfully manage to save the plan,
we took the last version.

Mental Workload. We controlled for individuals' perceived mental
workload because it induces a direct effect on their ability to execute
tasks. Hence it can influence the effectiveness and efficiency of inter-
actions with computers or GUIs [51]. We have employed the NASA-TLX
based on Hart and Staveland [63] to measure perceived mental work-
load. This index possesses high validity and refers to “a multi-
dimensional, self-reported assessment technique that provides an esti-
mation of the overall workload associated with task performance”
([51], p. 72). Table 2 summarizes the corresponding items.

Participants rated each subscale immediately after completing a
production plan with the respective dashboard type. We used a
Wilcoxon signed-rank test to identify whether there is a significant
difference in mental workload for both alternatives. This non-para-
metric test compares two related samples on non-normally-distributed
data (cf. Table 3).

The test showed no statistical significance (p> .1), confirming that
the perceived mental workload between both designs was comparable.
Table 4 summarizes the results.

5. Data analyses and results

5.1. Normality assumption

We used the Shapiro-Wilk statistic to test the data for assumptions
of normality. As the p-values were less than the depicted alpha level
(alpha = .1), the null hypothesis was rejected (cf. Table 5). Hence, we
applied the Wilcoxon signed-rank test statistic. This test is capable of
obtaining the non-normally-distributed data of two related samples.
This way, we could test our hypothesis in terms of participants' SA
(measured by SAGAT score, fixation duration, and fixation count) and
task performance (measured by errors committed).

5.2. Impact of dashboard design on situation awareness (H1)

In the following, we assess the descriptive statistics for the con-
structs employed, compare their statistical significance and calculate
the corresponding effect sizes. Our results indicate that the interactive
analytical dashboard was able to outperform the interactive design in
terms of task performance. Furthermore, the participants' fixation
count, duration, and SA scores were significantly higher for the inter-
active alternative. All participants answered more than 50% of the
SAGAT questions correctly (compared with their maximum values) for
both alternatives. Thus, both designs appeared to achieve sufficient SA
levels. We confirmed hypothesis H1 because the interactive design
(Mean = 0.53, Standard Deviation = 0.18) outperformed the coun-
terpart (M = 0.39, SD = 0.16) on the SA scores. The Wilcoxon signed-
rank test revealed a significant difference (p = .000) with a medium
effect size r of 0.306.

The collected fixation duration and fixation count for each alter-
native were subjected to a Wilcoxon signed-rank test. Participants fix-
ated more on the interactive design (M = 716.34, SD = 314.59) as
compared to the interactive analytical screen (M = 335.70;
SD = 185.12). The difference between both designs was significant,
with a p-value less than .001 with a large effect size r of 0.549.

Fig. 4. Screenshot of the interactive analytical dashboard design.

Table 1
SAGAT questionnaire.

1. What is the current quantity of P1 in the stock?
2. What is the current size of the purchase order for K26?
3. What is the current size of the purchase order for K9?
4. The production of which product is in danger?
5. Select the machine(s) which have problems:
6. Enter the current Delivery Reliability:
7. Enter the supplier which does deliver purchased part K13:
8. In comparison to the current state, what would happen to Delivery

Reliability if machine 1 broke down?
9. What is the needed amount of purchased part E9 to fulfill all production

orders?
10. What would you do concerning the production orders?
11. What would you do concerning the purchased parts?
12. What would you do concerning the workplace capacity?
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Similarly, the interactive design (M = 208.26; SD = 102.29) out-
performed the interactive analytical design (M = 75.97; SD = 49.88)
on average in terms of fixation duration. Analyses indicated that this
difference was significant (p= .000) with a large effect size r of 0.584.
Thus, eye-fixation data also confirmed that the interactive design sup-
ported higher levels of participants' SA, compared to the interactive
analytical design (H1).

5.3. Impact of dashboard design on task performance (H2)

In turn, participants produced more errors (M = 2.82; SD = 1.08)
within the interactive design when trying to create a production plan.
They committed fewer errors (M = 2.18; SD = 1.31) within the in-
teractive analytical design. In line with our assumptions, this difference
was significant between both dashboards (p= .000; H2), however only
with a small effect size r of 0.295. This seems in line with the de-
scriptive statistics as, on average, both dashboard alternatives produced
approximately two to three errors per plan, indicating a low degree of
errors committed during planning in general. Both dashboards ap-
peared to achieve appropriate scores of task performance (cf. Table 6).

5.4. Association between situation awareness and task performance (H3)

On average, the correlation analysis by Spearman's Rho showed that
participants' fixation duration shared a significantly positive effect on
the associated SAGAT scores for both alternatives (p < .05). Thus, the

more time participants spent on the screen, the higher their SAGAT
scores became. The effect size of the interactive design (r = 0.313) was
larger than for interactive analytical design (r = 0.296). Concerning the
participant's fixation count, the correlation analysis by Spearman's Rho
confirmed a significantly positive correlation of the SAGAT scores for
each design alternative, constituting a larger effect size within the in-
teractive analytical design (r = 0.305). The interactive design showed
only weak significance (p < .1). In summary, the correlation analysis
for both alternatives indicated that a participant's higher fixation
duration (count) led to a greater ability to answer the SAGAT ques-
tionnaire correctly (cf. Table 7).

In terms of the relationship between fixation duration (count) and
the performance indicator errors committed, we found a significant
negative correlation for the interactive analytical design. The inter-
active analytical design shared a high effect size for both fixation
duration (r = −0.435) and fixation count (r = −0.366). In other
words, participants made fewer errors during their planning efforts, the
longer they looked at and the more they fixated on the interactive
analytical dashboard screen. For the interactive design, participants'
fixation duration (count) did not significantly correlate with errors
committed.

Concerning SAGAT scores and errors committed, the correlation
analysis confirmed the expected negative correlation for each alter-
native, constituting a larger effect for the interactive analytical design
(r = −0.421; p= .004). In summary, for the SAGAT scores, the results
confirmed that a participant's higher SA led to higher task performance
with both designs (H3). However, the eye-tracking data confirmed this
relationship only for the interactive analytical design (cf. Table 7).

Table 2
NASA-TLX questionnaire.

Mental demand How mentally demanding was the task?
Temporal demand How hurried or rushed was the pace of the task?
Performance How successful were you in accomplishing what you were asked to do?
Effort How hard did you have to work to accomplish your level of performance?
Frustration How insecure, discouraged, irritated, stressed, and annoyed were you?

Table 3
Testing distributions of normality by treatment for mental workload.

Term Skewness Kurtosis Shapiro-Wilk test

statistic p-value

Interactive (w/o what-if analysis)
Mental demand −0.653 −0.015 0.953 0.004⁎⁎

Temporal demand −0.276 −0.933 0.954 0.005⁎⁎

Performance −0.479 −0.685 0.951 0.003⁎⁎

Effort −0.157 −0.862 0.960 0.011⁎

Frustration −0.605 −0.155 0.953 0.004⁎⁎

Interactive-analytical (w/ what-if analysis)
Mental demand −0.671 0.939 0.939 0.001⁎⁎

Temporal demand −0.167 −0.979 0.958 0.008⁎⁎

Performance −0.613 −0.184 0.946 0.002⁎⁎

Effort −0.046 −1.231 0.938 0.001⁎⁎

Frustration −0.579 −0.586 0.931 0.000⁎⁎⁎

*** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1, ns = not significant.

Table 4
Wilcoxon signed-rank test by treatment for mental workload.

NASA-TLX index Experiment treatment Wilcoxon signed-rank test

Interactive (Mean, SD) Interactive & analytical (Mean, SD) U r p-value

Mental demand 62.3 (21.7) 59.0 (23.3) −1.025 0.0796 0.305 (ns)
Temporal demand 51.6 (28.3) 49.1 (27.2) −0.945 0.0733 0.345 (ns)
Performance 58.4 (26.6) 61.9 (25.5) −1.248 0.0969 0.212 (ns)
Effort 47.7 (26.9) 43.1 (28.0) −1.211 0.0940 0.226 (ns)
Frustration 60.4 (22.1) 56.4 (23.8) −1.485 0.1153 0.137 (ns)

*** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1, ns = not significant.

Table 5
Testing distributions of normality of constructs by treatment.

Term Skewness Kurtosis Shapiro-Wilk test

Statistic p-value

Interactive (w/o what-if analysis)
Fixation duration −0.263 −0.823 0.971 0.058†

Fixation count −0.508 −0.349 0.964 0.020⁎

SAGAT 0.369 −1.383 0.821 0.000⁎⁎⁎

Errors committed −1.103 1.101 0.821 0.000⁎⁎⁎

Interactive-analytical (w/ what-if analysis)
Fixation duration 1.212 2.050 0.920 0.000⁎⁎⁎

Fixation count 0.770 1.079 0.959 0.010⁎

SAGAT 0.569 −0.991 0.831 0.000⁎⁎⁎

Errors committed −0.444 −0.885 0.876 0.000⁎⁎⁎

*** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1, ns = not significant.

M. Nadj, et al. Decision Support Systems 135 (2020) 113322

9



Table 8 summarizes the results of the hypotheses.

6. Discussion

6.1. Theoretical implications

There are four central theoretical implications we want to empha-
size. First, our analyses indicated that the interactive analytical dash-
board showed significantly higher task performance. This result con-
firms the value of interactive analytical dashboards and encourages the
trend toward introducing interactive analytical features for operational
decision-making. We showed that a what-if analysis has the potential to
direct participants to the most critical pieces of information such as
bottleneck components that require immediate attention. Obstacles to
the what-if analysis included a lack of knowledge of operational deci-
sion-makers of the current planning situation, which, in turn, resulted
in a lower degree of SA (compared with the interactive design).
However, our results indicated that if the underlying optimization
model and optimization procedure can account for the planning situa-
tion (as in our experiment), high-performance outcomes can be possible
even in the absence of high participant SA levels. When a planner
searches for optimization potential by identifying bottleneck compo-
nents within production data, the optimization system leads the parti-
cipant to certain areas of interest. Such focusing, by definition, removes
awareness of the ongoing production context, decreasing the overall
SA. In conclusion, these cases appear beneficial for task performance as
long as the employed optimization model and optimization procedures
behind the what-if analysis are capable of addressing the occurring

situation.
Second, our analyses revealed that the introduction of interactive

analytical features is not cost-free. Participants who used the interactive
dashboard maintained a significantly higher SA when creating a pro-
duction plan, whereas the interactive analytical design led to a lower
degree of SA. Hence, participants who used the interactive analytical
variant appeared to follow the system support (through the results
proposed by the what-if analysis). Subsequently, they reduced their
effort and SA to scrutinize all object-relevant information. These find-
ings illustrate the danger for operational decision-makers of trusting the
system results implicitly or (even) of “overtrust”, leading to potentially
adverse effects such as an out-of-the-loop problem [53]. With in-
creasing simulation abilities, operational decision-makers can become
less aware and slower acting in recognizing problems on their own.
Thus, if problems require manual intervention, further time is necessary
to comprehend “what is going on”, which sets boundaries on a quick
problem resolution. Following this argumentation, eye-tracking studies
[64] confirmed that continuous use of simulation reduces individuals'
cognitive skill set because such skills rapidly deteriorate in the absence
of practice. These effects can lead to an increasing tool dependence and
problems when the underlying optimization model or procedures are
not implemented, trained, or tested for the current situation [11].

Third, our correlation analysis showed the link of SA to task per-
formance concerning the SAGAT scores. This finding is in line with
extant conceptual arguments as task performance is expected to cor-
relate with SA [54]. Still, in comparison to our Wilcoxon signed-rank
tests for both dashboards, these findings might suggest that tension
between maintaining high SA and accomplishing high task performance
exists. We conclude that high levels of SA are necessary in general but
do not suffice for high task performance. Although SA is relevant for
decision-making, different influencing variables might be involved in
converting SA into successful performance while “it is possible to make
wrong decisions with good SA and good decisions with poor SA” ([22],
p. 498). For instance, a human with high SA of an error-prone system
might not be sufficiently knowledgeable to correct the error or lack the
skills needed to trigger that remedy. Due to the good task performance
scores for both dashboards, our results, however, do not indicate a
problem with regards to the knowledge or skill set of the participants.
Thus, future work could delve deeper into other influencing variables
that might be involved in converting SA into task performance.

Finally, assessing the SA of operational decision-makers describes a
key component to design and evaluate DSS [24]. Comparable with most
other ergonomic constructs (e.g., mental workload and human error), a
plethora of methods for measurement exists [22]. However, studies

Table 6
Descriptive statistics of constructs by treatment.

Term Experiment treatment Wilcoxon signed-rank test

Interactive (Mean, SD) Interactive & analytical (Mean, SD) Z r p-value

SAGAT (in %) 0.53 (0.18) Min. 0.17
Max. 0.92

0.39 (0.16) Min. 0.13
Max. 0.75

−3.946 0.306 0.000⁎⁎⁎

Fixation duration (in msec) 208.26 (102.29) 75.97 (49.88) −7.528 0.584 0.000⁎⁎⁎

Fixation count (in no.) 716.34 (314.59) 335.70 (185.12) −7.074 0.549 0.000⁎⁎⁎

Errors committed (in no.) 2.82 (1.08) 2.18 (1.31) −3.804 0.295 0.000⁎⁎⁎

*** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1, ns = not significant.

Table 7
Construct correlations by treatment.

Term [1] [2] [3] [4]

Interactive (w/o what-if analysis)
[1] Fixation duration –
[2] Fixation count 0.812⁎⁎⁎ –
[3] SAGAT 0.313⁎ 0.253† –
[4] Errors committed −0.125 (ns) −0.062 (ns) −0.311⁎ –

Interactive & analytical (w/ what-if analysis)
[1] Fixation duration –
[2] Fixation count 0.935⁎⁎⁎ –
[3] SAGAT 0.296⁎ 0.305⁎ –
[4] Errors committed −0.435⁎⁎⁎ −0.366⁎⁎ −0.421⁎⁎ –

*** p < 0.001, ** p < 0.01, * p < 0.05, † p < 0.1, ns = not significant.

Table 8
Summary of hypotheses.

Hypothesis Result

H1: An interactive analytical dashboard design leads to lower situation awareness than an interactive dashboard design without analytical features. Supported
H2: An interactive analytical dashboard design leads to higher task performance than an interactive dashboard design without analytical features. Supported
H3: Situation awareness is associated with higher task performance. Supporteda

a The SAGAT confirmed the relationship for both designs, whereas the eye-tracking data confirmed this only for the interactive analytical design.
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have not agreed upon which of the techniques available represents the
most appropriate for assessing SA [65]. This study compared two dif-
ferent measures to assess participants' SA: (i) the established freeze-
probe approach (leveraging SAGAT) and (ii) the rather scarcely ad-
dressed assessment of SA via eye-tracking [22]. The results indicated
that there was a significant correlation between the constructs em-
ployed for both methods (i.e., eye-tracking and SAGAT scores). This
finding suggests that those approaches were measuring similar aspects
of participants' SA during task execution. More interestingly, the ana-
lyses showed that only the participants' SAGAT scores derived via the
freeze-probe method generated significant correlations with task per-
formance for both dashboard designs. Our eye-tracking data only con-
firmed the relationship of fixation duration (count) toward errors
committed for the interactive analytical dashboard. Hence, the freeze-
probe technique seems to represent a stronger predictor of task per-
formance compared with the eye-tracking assessment of SA. This sug-
gests that the rating type in use appears to be a determinant of the
respective measure's predictability. In closing, our analyses supported
the usage of the freeze-probe technique to assess SA during planning
tasks. The findings can be contrasted with previous research that con-
firmed that SAGAT is one of the most appropriate methods to use when
the experimenter knows what SA should comprise beforehand [22].

6.2. Practical implications

Next, we translate our findings into implications for designing
dashboards to help practitioners in their efforts to address the danger of
the out-of-the-loop syndrome. First, our analyses showed evidence to
support design efforts that advocate a higher degree of automation
within analytical tools. The underlying reasoning is to provide opera-
tional decision-makers relief from their cognitively demanding task by
introducing more realistic optimization models and more efficient op-
timization procedures. This design trend accounts for the challenges
decision-makers are facing at the operational level. For instance, they
must make increasingly business-critical decisions in a shorter period
with exponentially growing amounts of data. In such situations, op-
erational decision-makers experience increasingly high mental work-
load in their attempt to process data with their own working memory
[8] – a rather limited, laggard, and error-prone resource [66]. Over the
long term, this design trend drives continuously reducing the human
level of authority in the optimization process. The ultimate goal is to
diminish the role of human interaction and allow most decision-making
procedures to occur automatically in the backend of the system.

However, inherent limitations remain on the integration of opti-
mization systems into DSS such as dashboards. One issue refers to the
difficulty of constructing an optimization model that accounts for all
aspects of the real problem (i.e., diversity/ number of constraints). In
other cases, the problem is not completely specified due to a lack of
context knowledge or must be (over-)simplified to be appropriate for
the computational optimization approach. Other issues relate to the
optimization procedure, which might not be appropriately para-
meterized before leveraging the system under real circumstances.
Furthermore, the performance of the optimization method might not fit
the real user requirements. Thus, the importance of having more rea-
listic optimization models and more efficient optimization procedures is
indisputable; however, neither of these currently appears to be suffi-
cient [11].

Second, an alternative approach to interpreting our results might be
to increase the design efforts to keep the human in the loop of the
current situation. Such a trend endorses a higher interaction of opera-
tional decision-makers with interactive analytical dashboards. The un-
derlying reasoning is to realize an effective human-computer interac-
tion but simultaneously consider the cognitive abilities of individuals.
Our analyses showed that the degree of SA human beings possess de-
fines a relevant factor in such a system design. One promising design
attempt might be to introduce a periodic SA audit to increase the

cognitive engagement of an operational decision-maker. Gaze-aware
feedback could implement such an audit. This technique has already
shown promising improvements in operational decision-makers' visual
scanning behavior. Sharma [67] revealed that gaze-aware feedback
showed beneficial effects for both a teacher's visual attention allocation
and students' gain in knowledge in an e-learning context. However,
despite the promising results using eye-tracking data to assess partici-
pants' SA, our analysis raised (at least) partial concerns concerning the
validity of eye-tracking data to predict the number of errors.

An alternative design attempt is to make information more trans-
parent to operational decision-makers. This information should concern
the underlying optimization model (e.g., used problem specifications)
and optimization procedures (e.g., parameter setting) behind the in-
teractive analytical dashboard. Research reports that the effect on SA
was improved to a substantial degree by the transparency of the opti-
mization system, thus offering understandability of its actions [54].
Such transparency can help individuals to understand the cause of ac-
tions and reduce the downside effects of the out-of-the-loop syndrome.

Finally, training should highlight the significance of frequent visual
attention scanning to prevent a loss of SA or skills. In other fields, in-
dividuals are required to periodically perform in a manual mode to
maintain their skills and appropriate SA levels [68]. The measurement
of SA is thus key not only to improve SA-related theory but also to
advance the design of training and evaluation efforts for practitioners.
Hence, scholars demand valid and reliable methods to verify and en-
hance SA theory. System designers require a means to ensure that SA is
increased by new features, GUIs, or training programs [54].

7. Conclusion

Dashboards are important for DSS as they have a significant impact
on their effectiveness, particularly at the operational level. Our study
objective was to examine the effects of an interactive analytical dash-
board feature, a what-if analysis. To date, little is understood about its
influence on human cognitive abilities. We argued that designing such a
dashboard feature requires a profound understanding of SA because a
lack of awareness is known to interfere with human information pro-
cessing. Further, it entails downstream effects on the human ability to
make informed decisions. We created a model that relates a what-if
analysis to support SA that, in turn, would positively affect task per-
formance. We conducted one large-scale laboratory experiment, in-
cluding eye-tracking and SAGAT data, to study this model from a hol-
istic viewpoint.

The significance of our study contributes to DSS literature in several
ways. Our results indicate that interactive analytical features induce
significant effects on task performance. We showed that the introduc-
tion of a what-if analysis could reduce the role of required SA for the
operational decision-maker. However, such cases appear only beneficial
for task performance as long as the underlying optimization model and
optimization procedures behind the dashboard address the occurring
situation. We also reported that the implementation of a what-if ana-
lysis is not cost-free and can trigger adverse effects such as a loss of SA.
This finding confirms the notion of the out-of-the-loop syndrome ap-
plying in the APS context and extends it to the dashboard feature level.
In addition, our correlation analyses indicated the expected link of SA
to task performance. Although multiple studies have shown the re-
levance of SA for decision-making, we illustrated that low task perfor-
mance could result from good SA and vice versa. Thus, we believe that
other influencing variables could be involved in converting SA into
successful performance that require further assessment. However, how
SA is assessed is also fundamental because correlations within both
dashboard alternatives differed according to the measurements con-
cerning the link of SA to task performance. The SAGAT scores con-
firmed this relationship for both alternatives, whereas the eye-tracking
data showed significant correlations only for the interactive analytical
design. We, therefore, provided evidence that using SAGAT seems most
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appropriate.
Although our results appear promising, some limitations require

discussion. We used graduate students as proxies for planners. Thus,
other studies could verify how professionals interact with the proposed
designs. We studied the effects of a what-if analysis, which we expected
to play a key role in the creation and reduction of SA. Future work
might consider further interactive analytical features, such as inter-
active multi-objective optimization [12]. Other approaches involve the
user at different points in time (i.e., user feedback on candidate solu-
tions vs. on intermediate results), leverage the feedback loops with the
user for different parts of the preference model (i.e., adjustments of the
optimization model vs. optimization procedures), and occasionally in-
clude preference learning. It might be interesting to compare in-
dividuals' SA and task performance scores obtained with those features.
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