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Abstract
The objective of the proposed research is to classify electroencephalography (EEG) data of covert speech words. Six subjects 
were asked to perform covert speech tasks i.e mental repetition of four different words i.e ‘left’, ‘right’, ‘up’ and ‘down’. 
Fifty trials for each word recorded for every subject. Kernel-based Extreme Learning Machine (kernel ELM) was used for 
multiclass and binary classification of EEG signals of covert speech words. We achieved a maximum multiclass and binary 
classification accuracy of (49.77%) and (85.57%) respectively. The kernel ELM achieves significantly higher accuracy 
compared to some of the most commonly used classification algorithms in Brain–Computer Interfaces (BCIs). Our findings 
suggested that covert speech EEG signals could be successfully classified using kernel ELM. This research involving the 
classification of covert speech words potentially leading to real-time silent speech BCI research.

Keywords Multiclass classification · Covert speech · Brain–computer interface (BCI) · Electroencephalography (EEG) · 
Wavelet transform

1 Introduction

Verbal communication is the natural way by which humans 
interact. However, individuals having neuromuscular impair-
ments like brain injury, brainstem infarcts, stroke and 
advanced amyotrophic lateral sclerosis (ALS), their condi-
tions prevent normal communication. In some circumstances 
e.g due to security aspects, it would be desirable to commu-
nicate using brain signals. In this context, the brain–com-
puter interface (BCI) is promising to use as an alternative 
communication technology that uses brain signals emerging 
from distinct mental tasks to control an assistive device or 
convey a message.

The neuroimaging technique electroencephalography 
(EEG) is the most common choice for researchers due to 
its convenience of recording and noninvasive nature. Sev-
eral previous studies of EEG signal classification based on 
motor imagery [1–4]. The various actions required by motor 
imagery such as limb and foot movement, which is unin-
tuitive for the locked-in syndrome individuals. In contrary 

EEG based covert speech, BCI is the imminent modality for 
thought detection and is the utmost direct communication 
channel for locked-in individuals [5]. In addition, the speech 
BCI has also applications in cognitive biometrics, synthetic 
telepathy, and silent speech communication [6, 7].

Current research of covert speech classification using 
EEG signals was focused majorly on vowels and syllables. 
DaSalla et. al. [8] compared speech imagery BCI accuracy 
of English vowels /a/ and /u/. Brigham and Kumar [9] car-
ried out the investigation on EEG signals of syllables /ba/ 
and /ku/ for speech imagery classification. Both of these 
studies are offline and reported accuracy is above chance 
level i.e (60%) across participants.

In terms of the covert articulation of words; several 
reports based on meaningful and complete non-English 
words. Torres-Garcia et al. [10] investigated the possibility 
of classifying imagined articulation of five distinct Span-
ish words: ‘arriba’ (up), ‘abajo’ (down), ‘izquierda’ (left), 
‘derecha’ (right), and ‘seleccionar’ (select). In [11] Wang 
et. al. reported classification performance for Chinese char-
acters corresponds to ‘left’ and ‘one’ in English. Both of 
these cases reported the average offline classification accu-
racy of (67%) across participants. In [12] Serekhseh et. al 
reported binary and ternary classification of EEG based 
covert rehearsal of the words ‘Yes’, ‘No’ and unconstrained 
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rest. The binary classification surpassing the chance level 
i.e (57.8%) and ternary classification surpassing the chance 
level i.e (39.1%). With the emergence of electrocorticogram 
(ECoG) several studies of covert speech in terms of vowels, 
syllables, and words [13–15] are reported with accuracies 
significantly higher than EEG. The ECoG is not suitable for 
practical BCI due to its invasive nature.

The most prior EEG based covert speech studies have 
focused on very small units of language such as vowels and 
syllables. Moreover, the research is also lagging in the field 
of multiclass classification of words considering the covert 
speech. As the human speech production always originates 
in the brain first, the effort is made to develop EEG based 
covert speech BCI for multiclass classification of simple and 
meaningful English words ‘left’, ‘right’, ‘up’, and ‘down’.

The covert speech recognition from EEG signals is an 
interesting challenge for researchers. The EEG neural sig-
nals of meaningful words could include additional informa-
tion other than the acoustic features. The neuronal electrical 
activity in the brain causes time-varying potential differ-
ences on the scalp, which range from a few microvolts to 
several hundreds of microvolts. The EEG is a registration of 
these potential differences, measured with electrodes placed 
on standard positions on the head. In general EEG signals 
are mixed with other signals and may be distorted by arti-
facts like electrooculography (EOG) and electromyography 
(EMG). The artifact-free EEG signals are acquired using the 
independent component analysis (ICA) which is a powerful 
approach of EEG analysis which is used for data decomposi-
tion and artifact removal from neuronal activity.

There is a need to address multiclass classification in cov-
ert speech recognition of words. The use of an optimized 
classifier that categorizes EEG signals into different classes 
is essential. These classifiers are divided into various cat-
egories like the neural network, linear classifiers, nonlinear 
classifiers, nearest neighbor classifier and the combination 
of classifiers [16]. For instance, different classification algo-
rithms have been used in speech classification such as sup-
port vector machine (SVM)[8, 11], the k-nearest neighbor 
classifier (KNN) [9, 17], and linear discriminant analysis 
(LDA) [18, 19]. However, these classifiers are expected hur-
dles to achieve local optimum or overfitting solution since 
their underlying binary classification mechanism. Hence-
forth, the selection of appropriate classifier which can pro-
vide generalized and optimal solutions for multiclass covert 
speech recognition of words is the first challenging issue.

Furthermore, these classifiers have high computational 
cost during both training (calibration) and testing process. 
For the real-time covert speech recognition the accuracy, as 
well as computational speed, are crucial to be concerned. 
Thus how to obtain a balance between enhancing computa-
tional efficiency and maintaining high accuracy is the second 
challenging issue in covert speech recognition.

In general, the word production commences with con-
ceptual preparation (semantic), lemma retrieval (lexical), 
phonological code retrieval and syllabification (phonetic) 
linguistic processes followed by phonetic encoding i.e the 
movements of language muscles for articulation [20, 21]. 
The most notable language brain regions for word produc-
tion are the prefrontal cortex (stimulus-driven executive con-
trol), Wernicke’s area i.e the left superior temporal gyrus 
(phonological code retrieval), right, and left inferior frontal 
gyrus i.e Broca’s area (syllabification) and primary motor 
cortex (articulation) [22]. Indeed the same language areas 
are activated in the covert and overt speech articulation [23, 
24]. However, in covert speech, the activity of the primary 
motor cortex is highly attenuated [25] and thus might be 
difficult to detect by EEG. Thus our third challenge is to 
determine whether the data acquired from these language 
regions (including and excluding primary motor cortex) is 
sufficient compared to whole brain areas without compro-
mising the classification accuracy.

Extreme Learning Machine (ELM) [26] is based on a 
single hidden layer feedforward neural networks architec-
ture. The first most advantage of using ELM is that input 
weights (connection between the input and hidden layer) do 
not require any tuning due to random assignment of weights, 
whereas the output weights (connection between hidden 
layer and output layer) are trained without layer by layer 
backpropagation tuning and as a result having significant 
reduction in training time. The second advantage is ELM has 
good generalization as the cost function includes the norm of 
output weights. With the consideration of these advantages, 
ELM can be one of the best choices to obtain the generalized 
and optimal solution for multiclass recognition and is a bet-
ter solution for our priorly mentioned first challenging issue.

Moreover, randomly assigned input weights can reduce 
the computational cost of training. ELM consists of one hid-
den layer also decreases the computational speed of the clas-
sification process. In addition, the kernel function of ELM 
can enhance the stability and generalization performance 
of the algorithm [27]. The wavelet transform among the 
time-frequency analysis method sticks out with efficiency 
and algorithmic elegance due to its multiresolution analy-
sis, where a source signal is processed at multiple levels 
by decomposing it into diverse resolutions. Hence, as for 
the priorly mentioned second challenge, the combination of 
kernel ELM algorithm and dwt features can obtain a good 
balance between computational efficiency and maintaining 
robustness with high accuracy.

In this paper, we propose an efficient method for covert 
speech classification of words from the EEG signal. It first 
extracts wavelet features of covert speech EEG signals and 
then employs kernel extreme learning machine for multi-
class classification. We present an investigation of how 
the choice of kernel ELM classifier against the previously 
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applied techniques influences the multiclass classification 
accuracy in the problem of covert speech words recognition 
from EEG data. To adhere to our third challenging issue, 
the comparative classification experiments were performed 
not only on the EEG data obtained from the electrodes with 
respect to most significant language processing brain regions 
also on the whole brain area EEG data.

The paper is organized as follows: Sect. 2 explains about 
materials and methods used for the research covering the 
EEG dataset, preprocessing, feature extraction, and clas-
sification techniques. Section 3 carries results followed by 
a discussion in Sect. 4. Finally, we conclude in Sect. 5 by 
discussing the future scope.

2  Materials and methods

2.1  Participants

In this study 6 healthy fluently English speaking human 
subjects were recruited (2 women and 4 men; mean age: 
27.6 ± 3.2 ; 5 right-handed). All participants reported normal 
vision and auditory function. None of the participants had 
any history of neurological disorders or serious health prob-
lems. Written informed consent was acquired from all the 
participants and all procedures performed in studies involv-
ing human participants were in accordance with the ethical 
standards of the institutional research ethics committee.

2.2  Choice of covert speech words

The choice of words was carefully selected to maximize 
acoustic features variability, no. of syllables and semantic 
categories. Four English words ‘Left’, ‘Right’, ‘Up’, ‘Down’ 
used in this study for the covert speech task. The /L/,/R/,/U/ 
and /D/ in ‘left’, ‘right’, ‘up’ and ‘down’ have diverse man-
ners and places of articulation.

2.3  Experimental protocol

The subjects were comfortably seated in an armchair and 
covert speech trials for words ‘left’, ‘right’, ‘up’, ‘down’ are 
acquired in pseudorandom order. The subjects were coached 
beforehand and rehearsed. Hence conceptual preparation and 
lemma selection are fulfilled before stimulus onset. Figure 1 
depicts the experimental paradigm of the covert speech trial. 
At first, the non-emotive question appeared on screen i.e 
what is the direction of the arrow with one of the direction 
arrows (left, right, up, down). Subsequently, two beeps were 
given to maintain a consistent time cue to covertly speak 
the words. Approximately 2 s after the second beep, subject 
starts the mental repetition of answer which is among the 
words ‘left’, ‘right’, ‘up’, ‘down’ for 10 s. The duration of a 
single trial was 15 s.

Trials are separated with a random rest within a time 
duration of 8 and 10 s, which prevents the subject to antici-
pate stimulus onset time. This ensures the inclusion of the 
remaining linguistic activities such as phonological code 
retrieval, syllabification, and covert articulation in a trial 
and perfect synchronization of system.

A single experimental session includes 100 trials divided 
equally into ‘left’, ‘right’, ‘up’ and ‘down’ trials. For each 
word total, 50 EEG responses were recorded for every par-
ticipant during two separate sessions. E-Prime 2.0 software 
was used to design the experimental paradigm. The EEG 
data were recorded using 64 channel Neuroscan synamps 
2 amplifier in a continuous mode at a sampling rate at 
1000 Hz.

2.4  Signal processing

Prior to feature extraction, EEG signals are digital band fil-
tered with cut-offs 0.5 Hz to 128 Hz. After that, the Inde-
pendent component analysis (ICA) was applied for artifact 
removal from EEG signal based on the inference that EEG 
data obtained from multiple channels are linearly combined 

Fig. 1  Schematic sequence of 
the experimental paradigm. The 
diagram shows capturing of a 
single covert trial of a particular 
word
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by temporally independent components. The adjust algo-
rithm is used which is effective by means of removal of 
artifact components corresponds to EOG, blinks and eye 
movements [28].

2.5  Feature extraction

The effective analysis of nonstationary EEG signals is very 
difficult and araises the need of efficient features. Among the 
time-frequency analysis methods, wavelet transform stands 
out in algorithmic elegance and efficiency. Discrete wavelet 
transform features are using multiresolution analysis where 
a source signal is processed at multiple levels by decompos-
ing it into diverse resolutions [29]. In general, a signal is 
decomposed into subbands, where each subband is distinct 
based on its characteristics. The Daubechies wavelet is used 
for multiresolution representation; since these wavelets are 
precisely supported with the maximal number of vanishing 
moments and the utmost phase for an inclined support width. 
Daubechies-4 (db4) was selected after various experiments 
with different levels of Daubechies wavelet such as db2, db4, 
and db6.

The entropy and energy computed at each decomposition 
level were used as features. 

1. Energy: The energy for each frequency bands is calcu-
lated by squaring the wavelet coefficients as shown in 
Eq. 1. 

2. Entropy: The entropy of the signal act as an eminent 
feature and is computed as in Eq. 2. 

where in Di(p) , D stands for decomposition, i is the wavelet 
decomposition level and p is the number of wavelet coef-
ficients varies from 1 to N.

Hence, for the whole brain area considering 62 electrodes 
(without consideration of ground and reference electrodes) 
from each 1200 trials 496 features were generated (62 elec-
trodes × 4 decomposition levels × 2 features, i.e., Entropy 
and Energy).

2.6  Channel selection

The process of identification of language processing brain 
areas initiated in 1861, when french neurologist Paul Broca 
discovered that left inferior frontal gyrus (Broca’s area) con-
tains most expressive language centers [30]. A decade later, 

(1)ENGi =

N∑
p=1

Di(p)
2

(2)ENTi = −

N∑
p=1

(Di(p)
2)log(Di(p)

2)

Carl Wernicke investigated that left superior temporal gyrus 
(Wernicke’s area) is responsible for language comprehension 
[31]. Other reserachers also carried out the studies to describe 
the neual areas of speech processing and their functional sig-
nificance [20, 21, 32]. These studies have identified that the 
most prominent brain areas involved in perception and produc-
tion of speech are prefrontal cortex, right inferior frontal gyrus, 
broca’s area, wernicke’s area, and primary motor cortex.

This paper focuses on the classification of covert speech 
words. We investigated whether only the EEG channels from 
the brain regions that are responsible for language processing 
could be sufficient for the discrimination or not. The same lan-
guage motors are activated in covert and overt speech. How-
ever, in the covert speech, the activity of the motor cortex is 
attenuated, we also investigated the classification performance 
by considering the language processing brain areas with inclu-
sion and exclusion of primary motor cortex. We selected the 
channels with respect to three sets of brain areas (BA): BA1 
consists of prefrontal cortex, Wernicke’s area, right inferior 
frontal gyrus, Broca’s area. BA2 consists of prefrontal cortex, 
wernicke’s area, right inferior frontal gyrus, Broca’s area and 
the primary motor cortex. The whole brain area is considered 
in BA3.

2.7  Classification

2.7.1  Extreme learning machine (ELM)

Extreme Learning Machine (ELM) [26] is a machine learn-
ing algorithm based on Single Layer Feedforward Network 
(SLFN). Figure 2 describes the structure of ELM with input 
layer nodes ( P ), hidden layer nodes ( L ), output layer nodes ( V ) 
and the g(x) as the hidden layer activation function.

The feature vector x with dimension p is given as input 
to the input layer. The g(x;wi, bi) = g(x.wi + bi) is the hidden 
node (index i ) output where g represents the activation func-
tion, the wi is the input weight vector between all input nodes 
and the ith hidden node, the bias of ith hidden node is denoted 
as bi where i = 1, 2,… , L.

The output vector of hidden layer is denoted as h(x) which 
maps the input feature space ( p-dimensional) to ELM feature 
space(L-dimensional).

A generally effective feature mapping is the sigmoid 
function.

The number of output nodes V  represents the covert speech 
words. Bi,j is the output weight vector between the hidden 
node i and the output node j where j = 1, 2,… ,V .

(3)h(x) = [g(x;w1, b1),… , g(x;wL, bL)]

(4)g(x;wi, bi) =
1

1 + exp[−(x.wi + bi)]
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The value of output layer node with index j is computed 
as in Eq. 5

Thus, for the input sample x , its output vector at the hidden 
layer can be written as:

where,

During the recognition process, the class label of test sample 
x can be determined as

2.7.2  Training of ELM

ELM is a supervised machine learning algorithm 
requires N  training sample pairs consists of feature vec-
tor xk and its ground truth i.e binary class label vectors 
tk = [tk,1, tk,2,… , tk,V ] , where k = 1,… ,N  . Each entry in 
the label vector indicates belonging of sample xk to the 

(5)fj(x) =

L∑
i=1

�i,j × g(x;wi, bi)

(6)f (x) = [f1(x),… , fM(x)] = h(x)�

(7)� =

⎡
⎢⎢⎢⎢⎢⎣

�1
�2
�3
⋮

�L

⎤
⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣

�1,1 �1,2 ⋯ �1,V
�2,1 �2,2 ⋯ �2,V
⋮ ⋮ ⋱ ⋮

�L,1 �L,2 ⋯ �L,V

⎤⎥⎥⎥⎦

(8)label(x) = argj=1⋯Vmaxfj(x)

corresponding class. A matrix T = [t1, ⋅, tN]
T is formed by 

all labels.
The ELM training parameters incorporate two parts such 

the input weights,biases {wi, bi}i=1,2,…,L and the � as the out-
put weight matrix as shown in Eq. 7.

The actual output vector is denoted by yk for the input xk . 
The linear representation can be formed by considering all 
training samples {xk} into 5

where

and

For reduction in training error and the improvement in the 
generalization performance of neural net, the training error 
||H� − T|| and the output ||�|| should get minimized at the 
same time i.e

(9)H� = Y

(10)

H =

⎡⎢⎢⎢⎣

h(x1)

h(x2)

⋮

h(xN)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣

g(x1;w1, b1) g(x1;w2, b2) ⋯ g(x1;wL, bL)

g(x2;w1, b1) g(x2;w2, b2) ⋯ g(x2;wL, bL)

⋮ ⋮ ⋱ ⋮

g(xN ;w1, b1) g(xN ;w2, b2) ⋯ g(xN ;wL, bL)

⎤⎥⎥⎥⎦

(11)Y =

⎡⎢⎢⎢⎣

y1
y2
⋮

yN

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

y1,1 y1,2 ⋯ y1,V
y2,1 y2,1 ⋯ y2,V
⋮ ⋮ ⋱ ⋮

yN,1 yN,1 ⋯ yN,V

⎤⎥⎥⎥⎦

Fig. 2  Structure of ELM
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The least square solution of (12) based upon KKT conditions 
as in Eq. 13

If the number of training samples is less than the number 
of hidden neurons, Eq. 13 can be used; otherwise, Eq. 14 
can be used.

where H denotes the hidden layer output matrix, T  denotes 
the intended matrix of samples, I is unity matrix and C is 
used as the regulation coefficient to compromise between 
the smoothness of decision function and closeness of train-
ing data, hence improving the generalization performance.

2.7.3  Kernel‑based ELM

The output function of ELM learning algorithm is:

The Mercer’s conditions based ELM mapping for the 
unknown feature mapping h(x) is as in Eq. 17, where kernel 
function of hidden neurons is denoted as k(xi, xj).

Equation 18 represents the kernel based ELM output func-
tion f (x).

(12)Minimize ∶ ||H� − T||, ||�||

(13)� = HT
(
I

C
+ HHT

)−1

T

(14)� =

(
I

C
+ HTH

)−1

HTT

(15)f (x) =h(x)�

(16)f (x) =h(x)HT
(
1

C
+ HHT

)−1

T

(17)h(xi)h(xj) = k(xi, xj)

where

where Nk represents the number of training samples which 
are randomly selected for kernel ELM.

In this paper we used the Gaussian function as kernel k.

where � represents standard deviation (i.e spread) of the 
gaussian function. Figure 3 depicts the overall building of 
classification model including analytical steps.

3  Results

This research aims to classify the multiclass classification 
of covert speech words. Moreover, we were also interested 
in the brain area electrodes that play a significant role in 
Language and Speech processing. Therefore we consider the 
three different sets of brain areas BA(1–3) for multiclass and 
binary classification of covert speech words.

3.1  Multiclass classification results

Table 1 shows the multiclass classification of covert speech 
words with the mean accuracy, average standard deviation 

(18)f (x) =

⎡
⎢⎢⎢⎣

k(x, x1)

k(x, x2)

⋮

k(x, xNK
)

⎤
⎥⎥⎥⎦

�
1

C
+ k

�−1

T

(19)

k = HHT =

⎡
⎢⎢⎢⎢⎣

k(x1, x1) k(x1, x2) ⋯ k(x1, xNK
)

k(x2, x1) k(x2, x2) ⋯ k(x2, xNK
)

⋮ ⋮ ⋱ ⋮

k(xNK
, x1) k(xNK

, x2) ⋯ k(xNK
, xNK

)

⎤
⎥⎥⎥⎥⎦

(20)k(xi, xj) = exp

(
−
||xi − xj||2

2�2

)

Fig. 3  Analytical steps involved 
in building classification model
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(SD), and kappa score for all the 6 subjects using kernel 
ELM where gaussian function is used as kernel function. 
Bold value depicts the highest scores. In the one versus all 
multiclass settings we achieved the highest classification 
mean accuracy (49.77%) for the subject S4. Among all the 
channel selections concerning brain areas (BA), the highest 
accuracy was obtained with BA3 and statistically signifi-
cant difference was not found between the average accuracy 
for all subjects between the channel selection as per brain 
areas (BA1, BA2, BA3) by considering Tukey’s posthoc test 
where p < 0.05 [33].

3.2  Comparison of different classification 
techniques

We compared the classification accuracies of kernel-based 
ELM (Gaussian-ELM) with the same wavelet features with 
ELM, linear support vector machine (Linear-SVM), SVM 
with the polynomial kernel (Polynomial-SVM) and regular-
ized LDA, k-nearest neighbor (KNN), and navie bays (NB). 
The tuning parameters were chosen using same computation 
platform and tenfold cross-validation such as ELM (no. of 
hidden nodes L=78), kernel ELM (gaussian kernel spread 
sigma = 75), Linear-SVM (slack variable = 0.05), Polyno-
mial-SVM (slack variable = 0.2, degree = 2), regularized 
LDA (gamma = 0.70, delta = 0.13), KNN (K=5).

We selected the best average cross-validated accuracy for 
each algorithm. Table 2 elaborates the multiclass classifica-
tion accuracies for every subject using all these algorithms. 
Evidently in all channel selection concerning brain areas, 
Gaussian-ELM provides significant improvement in classi-
fication accuracy compared to all applied classifiers (Tukey’s 
posthoc test where p < 0.05 ). Probable reasons for the vari-
ation in the performance of these algorithms are elaborated 
in the discussion section.

3.3  Binary classification results

We calculated the pairwise classification accuracies between 
each word for every subject. However, the article is focused 

on multiclass classification, the highest accuracies among 
every class pair with a range between (80.17%) and (85.57%) 
are reported in Table 3.

The whole brain area channel selection (BA3) reported 
the highest mean classification accuracy, however, there are 
statistically significant differences were not found between 
averaged accuracy for all subjects between channel selection 
as per brain areas (BA1, BA2, BA3) by considering Tuk-
ey’s posthoc test where p < 0.05 . We obtained the utmost 
classification accuracy between ‘left’ and ‘up’ classes i.e 
(85.57%).

3.4  Computation time

The computational time was also compared among the 
Gaussian-ELM, ELM, Polynomial-SVM, linear SVM, and 
LDA under the MATLAB R2014a environment and hard-
ware configuration as Intel(R) Core(TM) i3-3240 CPU 
(3.40 GHz) and 32 GB RAM. It should be noted that KNN 
and naive bays are not considered since they led to the lowest 
accuracy among applied classifiers. Table 4 lists the multi-
class classification accuracy with computation time (calibra-
tion time) for each classifier. It is evident from the results 
that kernel ELM requires the least computation time and the 
highest classification accuracy compared to other classifiers.

4  Discussion

This section discusses the diverse factors which cause varia-
tion in observations and the potential reasons for differentia-
tion in the performance of classification techniques.

4.1  Evaluation of channel selection and frequency 
band

As discussed earlier one of the aims of this paper is to deter-
mine whether the data acquired from the language regions of 
the brain is sufficient to compare to whole-brain areas with-
out compromising the classification accuracy. Moreover, we 

Table 1  Classification 
accuracies and kappa score in 
(%) for all channel selection 
with different brain areas using 
kernel ELM (Gaussian-ELM)

Subjects BA1 BA2 BA3

Accuracy kappa Accuracy kappa Accuracy kappa

S1 43.67 29.48 44.17 30.23 47.19 33.13
S2 41.50 27.20 42.20 28.42 45.89 31.81
S3 45.96 31.93 47.86 33.81 48.04 34.11
S4 46.23 32.21 48.18 34.38 49.77 35.71
S5 43.87 29.92 45.18 31.10 47.88 33.84
S6 44.89 30.87 42.82 28.91 48.77 34.81
AVG 44.35 30.27 45.07 31.14 47.92 33.90
SD 5.38 4.28 7.56 5.50 6.89 4.78
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are also interested to determine the efficacy of attenuation 
of the primary motor cortex during channel selection on the 
classification accuracy.

As per the results in Tables 1 and 3, there is no statisti-
cally significant difference were found between the average 
accuracy for all subjects between the channel selection of 
diverse brain areas (BA1, BA2, BA3). Our findings sug-
gest that prefrontal cortex, the left superior temporal gyrus 
(Wernicke’s area), the right, and left inferior frontal gyrus 
(Broca’s area) and primary motor cortex are the most promi-
nent brain regions for covert speech recognition. Moreover, 
the primary motor cortex can be attenuated, since it is having 
a marginal penalty in classification accuracy.

Furthermore, we obtained the optimized results in the 
gamma frequency band (30–128  Hz) in comparison to 
other frequency bands such as alpha (8–13 Hz) and beta 
(13–30 Hz). However, several ECoG based studies were 
reported with optimized results for imagined speech classi-
fication in gamma frequency band [34, 35], this study might 
be the first report which reveals the significance of gamma 
frequency bands in EEG based covert speech classification 
of words.

4.2  Comparison of different classification 
techniques

We compared the performance of kernel ELM (Gaussian-
ELM) among the previously reported classification algo-
rithms using covert speech EEG data including SVM [8, 
11], LDA [18, 19], KNN [9] and navie bays [36]. Among all 
the algorithms kernel ELM yields the highest classification 
accuracy and least computation time (Table 4). The various 
EEG studies using ELM reported better or similar classifica-
tion accuracy with less computation time in comparison with 
other algorithms [37–40]. We achieved consistent results 
with the other research using ELM and better or similar clas-
sification accuracies for previous research of covert speech 
EEG data using different algorithms.

The reason for the superior performance of kernel ELM 
as it guarantees not only generalization but also provides 
fast learning speed. The hidden layer outputs calculation Ta
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Table 3  Binary classification 
accuracies in (%) for all 
channel selection with different 
brain areas using kernel ELM 
(Gaussian-ELM)

Subjects BA1 BA2 BA3

S1 83.15 84.19 85.57
S2 80.18 82.18 83.88
S3 81.87 80.17 83.19
S4 82.67 83.24 85.39
S5 83.23 84.88 85.38
S6 81.88 83.56 83.89
AVG 82.16 83.04 84.55
SD 7.56 3.42 10.23
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is avoided in kernel ELM since it is inherently encoded 
in the kernel matrix. The SVM with the polynomial ker-
nel, ELM and linear SVM are the second, third and fourth 
best classifiers. SVM is not sensitive to the overfitting and 
dimensionality curse due to the margin maximization and 
regularisation term. The drawback of SVM is its sensitiv-
ity to noise and outliers and less suitability to model arbi-
trary classification boundaries. However, the polynomial 
kernel SVM has superior performance due to its ability to 
support nonlinearity. The ELM is an effective approach 
to minimize training error as well as the norm of output 
weights.

LDA achieved lower accuracy compared to kernel 
ELM. The major shortcoming of LDA is its linearity 
which restricts its performance with complex EEG data. 
Among the applied classification algorithms KNN and 
Naive bays led to the lowest accuracy. One possible reason 
is the sensitive nature of KNN to curse of dimensionality. 
The assumption of naive bays that features are independent 
which is often violates in EEG features.

5  Conclusion

In this paper, we investigated the multiclass classifica-
tion of EEG-based covert speech signals of complete 
words. Experimental results have shown that with the 
Daubechies-dwt based features kernel ELM outperforms 
the most common classifiers in BCI in terms of classifi-
cation accuracy and computational efficiency. It is evi-
dent from the results that the classification of EEG-based 
covert speech signals is possible using kernel ELM for 
the selected BCI users. Our findings suggested that data 
acquired from language processing regions are sufficient 
to discriminate covert speech signals. The future study 
includes the development of intelligent algorithms to clas-
sify a large number of words in real-time silent speech 
BCI research.
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