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Abstract
The domestic yak (Bos grunniens) from the Qinghai–Tibet Plateau is an important animal model in high-altitude adapta-
tion studies. Here, we performed the genome-wide selective sweep analysis to identify the candidate copy number variation 
(CNV) for the high-altitude adaptation of yaks. A total of 531 autosomal CNVs were determined from 29 yak genome-wide 
resequencing data (15 high- and 14 low-altitude distributions) by using a CNV caller with a CNV identification inter-
val > 5 kb, CNV silhouette score > 0.7, and minimum allele frequency > 0.05. Most high-frequency CNVs were located at the 
exonic (44.63%) and intergenic (46.52%) regions. In accordance with the results of the selective sweep analysis, 7 candidate 
CNVs were identified from the interaction of the top 20 CNVs with highest divergence from the FST and VST between the 
low (LA) and high (HA) altitudes. Five genes (i.e., GRIK4, IFNLR1, LOC102275985, GRHL3, and LOC102275713) were 
also annotated from the seven candidate CNVs and their upstream and downstream ranges at 300 kb. GRIK4, IFNLR1, and 
LOC102275985 were enriched in five known signal pathways, namely, glutamatergic synapse, JAK–STAT signaling pathway, 
cytokine–cytokine receptor interaction, neuroactive ligand–receptor interaction, and olfactory transduction. These pathways 
are involved in the environmental adaptability and various physiological functions of animals, especially the physiologi-
cal regulation under a hypoxic environment. The results of this study advanced the understanding of CNV as an important 
genomic structure variant type that contributes to HA adaptation and helped further explain the molecular mechanisms 
underlying the altitude adaptability of yaks.
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Introduction

Yaks, which are important herbivores in the Qinghai–Tibet 
Plateau, provide protein food to local herders and are inte-
grated into the local culture as carriers of culture and reli-
gion (Ma et al. 2013; Yue et al. 2016). Numerous local 
domestic breeds with outstanding plateau adaptability and 
diverse human production expectations have been success-
fully bred due to the natural selection and the human domes-
tication of yaks (Zhang et al. 2016; Lan et al. 2018a, b). 
Numerous studies have used yak as an animal model to study 
the genetic mechanism of high-altitude (HA) adaptiveness 
(Qiu et al. 2012). Particularly, the widespread application 
of whole-genome next-generation sequencing technology 
has led to the identification of a series of related candidate 
genes (Guang-Xin et al. 2019; Lan et al. 2018a, b; Goshu 
et al. 2019).

As an important member of the genomic structure varia-
tion family, the copy number variation (CNV) has been paid 
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increasing attention in recent years. Numerous studies have 
confirmed that CNV participates in several human tissue 
development processes and diseases (Signore et al. 2019; 
Dasouki et al. 2019). Domestic animal studies have con-
firmed that abundant CNV mutations are involved in the eco-
nomic traits and development of many animals, such as litter 
size and egg production (Huang et al. 2018; Zhang et al. 
2019), milk production performance (Di Gerlando et al. 
2019), and growth traits (Wang et al. 2019a). An increasing 
number of studies have reported on the population phylog-
eny and special economic traits of yak by using CNVs (Jia 
et al. 2019; Goshu et al. 2019; Ge et al. 2019).

In the present study, the selective sweep analysis of CNVs 
was performed to further identify the genetic divergence 
between yaks habituated under extreme HA and low altitude 
(LA). Our findings may help in further understanding the 
molecular genetic mechanism of the HA adaptation of yaks.

Materials and methods

The unpublished CNV analytical results from 
our previously published sequencing data (SRA: 
SRX4605921–SRX4605949; Guang-Xin et al. 2019) were 
presented to survey the divergence in the CNV distribution 
among 15 yaks at extreme HA (4800–6100 m) in Tibet Naqu 
and 14 yaks at LA (2450–2966 m) regions in the Gansu 
Zhaxixiulong grassland.

The adapter and low-quality raw paired reads were filtered 
initially. Then, the adapter and read with N ratio greater than 
10% were removed. In addition, data with the number of 
bases with a quality value (Q) ≤ 20 exceeding 50% of the 
entire reading were deleted to obtain high-quality reads.

High-quality reads were mapped into the yak genome 
(BosGru_v2.0) through the BigBWA (Abuín et al. 2015) 
with ‘mem 4 -k 32 -M’, where -k is the minimum seed 
length. The -M option was used to mark shorter split align-
ment hits as auxiliary alignments. The SAM tools were used 
to convert the generated sequence alignment/graph format 
files into binary alignment/graph files. The Picard (V 1.129) 
(https ://broad insti tute.githu b.io/picar d/) was applied to sort, 
index, and delete duplicates.

The CNV was identified using the CNV caller (Wang et al. 
2017) in accordance with CNV identification interval > 5 kb, 
CNV silhouette score > 0.7, and minimum allele fre-
quency > 0.05. The selective sweep analysis was performed 
using the pairwise fixation indices, FST (Hudson et al. 1992) 
and VST (Sudmant et al. 2015). Here, VST was calculated 
using the equation: VST = (Vtotal–[Vpop1 × Npop1 + Vpop2 × N
pop2]/Ntotal)/Vtotal, where Vtotal is the total variance, Npop is the 
CN variance for each respective population, Npop is the sam-
ple size for each respective population, and Ntotal is the total 
sample size. Statistical analysis and plot visualizations were 

achieved using the Perl and the R scripts. The gene-enriched 
signaling pathway was estimated using the KEGG database 
(https ://www.genom e.jp/kegg/pathw ay.html).

Results and discussion

A total of 531 CNVs were identified from 430 scaffolds and 
classified into six types (Supporting Material I, Fig. 1a). The 
majority of the high-frequency CNVs belonged to the exonic 
(44.63%) and intergenic (46.52%) types. The lowest count 
of CNVs was found at the intron region of the noncoding 
RNA (ncRNA_intronic, 0.19%). The relative variant data 
were published and uploaded in the genome variation map 
(GVM000055, https ://bigd.big.ac.cn/gvm/getPr oject Detai 
l?proje ct=GVM00 0055).

The results of the selective sweep analysis (Fig. 1b, c) 
showed that the FST of each CNV ranged from -0.0331 
(CNV_492) to 0.2926 (CNV_199), whereas the VST of 
each CNV ranged from -0.0387 (CNV_353) to 0.3431 
(CNV_200). Seven CNVs (i.e., CNV_199, CNV_201, 
CNV_231, CNV_202, CNV_265, CNV_200, and 
CNV_430) were identified from the intersection of the 
top 20 CNVs from the FST and the VST (Supporting Mate-
rial I). The genes annotated with the location and their 
upstream–downstream 300 kb ranges in these seven CNVs 
were displayed, and five genes were found. These genes 
were glutamate ionotropic receptor kainate type subunit 4 
(GRIK4), interferon lambda receptor 1 (IFNLR1), olfactory 
receptor 1052 (LOC102275985), grainyhead-like transcrip-
tion factor 3 (GRHL3), and olfactory receptor 8H3-like 
(LOC102275713). GRIK4, IFNLR1, and LOC102275985 
were annotated in five known signaling pathways (i.e., 
glutamatergic synapse, JAK–STAT signaling pathway, 
cytokine–cytokine receptor interaction, neuroactive 
ligand–receptor interaction, and olfactory transduction; Sup-
porting Material II).

Several studies have shown that the GRIK4 gene, which 
is annotated in the glutamatergic synapse and neuroactive 
ligand–receptor interaction pathway, is involved in human 
autism, neurodepression, and nervous system development 
(Minelli et al. 2017; Ren et al. 2017; Arora et al. 2018; 
Sun et al. 2019). A large number of other genes from these 
two signaling pathways also participate in neural signal 
transmission and sensory learning (Rao et al. 2019; Quinn 
et al. 2019). Accumulating evidence confirms that the re-
establishment of the behavioral and the emotional neural 
responses of an animal under HA hypoxic environment is 
critical to improve the adaptive evolution of animals and 
humans (Ustinova et al. 1989; Livanova et al. 1993). Specifi-
cally, according to thr recently published proteomics stud-
ies, GRIK4 may be involved in the molecular mechanism 
of estrogen-mediated neuroprotection to reduce cerebral 
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Fig. 1  Copy number variation (CNV) type description and genome-
wide selection scan for CNV in high- and low-altitude yaks by using 
FST and VST. a CNV frequency and karyotypic location type. Manhat-

tan plots show the selection signal of the CNV of the high- and low-
altitude yaks by using b FST and c VST
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ischemic injury (He et al. 2018). Studies have confirmed 
that the cooperative expression pattern of genes directly or 
indirectly interacting with GRIK4 and NMDA receptors is 
involved in regulating the response of the retina to hypoxia 
(Crosson et al. 2009).

The present study suggested that the CNV_202 in the 
intron region of the GRIK4 gene may change the splicing 
and expression of the GRIK4 gene. This process assists the 
behavioral cognition and the nervous system of yak at dif-
ferent altitudes to adapt to the pressure of natural selection.

Furthermore, IFNLR1 belongs to the class II cytokine 
receptor family. IFNLR1 was annotated in the JAK–STAT 
signaling pathway and the cytokine–cytokine receptor inter-
action. An interferon lambda (IFN) is a cytokine induced 
by viral infection and has antiviral and antitumor effects 
(Peterson et al. 2019). IFN can activate the signal transduc-
tion pathway and exert antiviral and antitumor effects after 
binding to the receptor (Fragale et al. 2017; Hemann et al. 
2019). Studies have shown that mutations in IFNLR1 are 
associated with autosomal dominant nonsyndrome hearing 
loss (Gao et al. 2018).

The signal pathway of JAK–STAT is divided into three 
parts, namely, cell surface receptors, a kinase (Janus kinase, 
JAK), and a signal transduction and transcription activa-
tion factor (signal transducer and activator of transcription 
[STAT ]). This system transmits extracellular signals into the 
nucleus and activates the transcription of downstream target 
genes, including a series of genes related to immunity, pro-
liferation, differentiation, apoptosis, and oncogenes (Morris 
et al. 2018; Hashimoto et al. 2020). Thus, the JAK–STAT 
pathway may be involved in the multiple adaptive evolutions 
of yak caused by differences in the habitat altitude.

Another outstanding highly selective CNV (CNV_199) 
from NW_005393834.1 (126,001–144,000 bp) was observed 
and located downstream of LOC102275985 (olfactory recep-
tor [OR] 1052) at 10, 287 bp, which was enriched in the 
olfactory transduction signal pathway. The OR belongs to 
the G protein-coupled receptor family and identifies thou-
sands of odor molecules in the olfactory sensory system 
(Antunes and Simoes de Souza 2016; Zhang et al. 2020; 
Krolewski et al. 2020). To date, OR genes have been found 
to belong to a multi-gene family distributed in various spe-
cies, such as fish and mammals (Liu et al. 2019; Wakisaka 
et al. 2017). Several studies have reported the expression 
pattern and the genomic structure of OR genes under adap-
tive evolution with different ecological habitats (Madsen 
et al. 2019; C Silva et al. 2020). Thus, the OR genes of yak 
have evolved adaptively due to the diversity in the distribu-
tion of vegetation species at different altitudes. Specifically, 
yaks in LA habitats are more likely to benefit from the rich 
byproducts of agricultural areas than those in HA regions. 
As a result, the OR genes of local yaks have possibly adapted 
with the agricultural crops provided by humans.

The annual average temperature gradually decreases, 
whereas precipitation and wind speed increase with increas-
ing altitude in the Qinghai–Tibet Plateau. These harsh eco-
logical climatic conditions on the Tibetan Plateau limit the 
expansion of biological genetic diversity. However, animals 
that have undergone long-term natural selection and have 
adapted to HA climates have already exhibited a corre-
sponding adaptive phenotype physiologically. Several stud-
ies have suggested that certain OR genes are involved in 
the growth and development of animal hair. For example, 
the OR2AT4 stimulates the proliferation of skin keratino-
cytes, and its silencing can inhibit hair growth, indicating 
that OR-dependent chemosensation is involved in human 
hair follicle growth (Chéret et al. 2018; Busse et al. 2014). 
The JAK–STAT pathway is also widely recognized as an 
important signal regulating pathway for determining skin 
and hair follicle development (Wang et al. 2019b; Samadi 
et al. 2017; Kim et al. 2016). Thus, results indicated that 
yak populations under different altitude distributions can 
undergo natural selection from specific ecological condi-
tions in the neurosensing system and exhibit various types 
of growth.

Conclusion

HA adaptability is an important physiological charac-
teristic of Tibetan plateau animals, such as yaks. In this 
study, the genome-wide selection signature analysis of 
CNV among 15 yaks at extreme HA and 14 yaks at LA 
were compared. Candidate CNV and genes (i.e., GRIK4, 
IFNLR1, LOC102275985, GRHL3, and LOC102275713) 
were identified.

Therefore, this study may contribute to the in-depth 
understanding of the molecular regulation of the HA adapt-
ability of yaks. However, the authenticity and the positive 
rate of the identified CNVs confirmed by a large sample 
size and their molecular mechanism for HA adaptability still 
need further study.
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