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Abstract
A detailed assessment of smoking behavior under free-living conditions is a key challenge for health behavior research. A 
number of methods using wearable sensors and puff topography devices have been developed for smoking and individual 
puff detection. In this paper, we propose a novel algorithm for automatic detection of puffs in smoking episodes by using a 
combination of Respiratory Inductance Plethysmography and Inertial Measurement Unit sensors. The detection of puffs was 
performed by using a deep network containing convolutional and recurrent neural networks. Convolutional neural networks 
(CNN) were utilized to automate feature learning from raw sensor streams. Long Short Term Memory (LSTM) network layers 
were utilized to obtain the temporal dynamics of sensor signals and classify sequence of time segmented sensor streams. An 
evaluation was performed by using a large, challenging dataset containing 467 smoking events from 40 participants under 
free-living conditions. The proposed approach achieved an F1-score of 78% in leave-one-subject-out cross-validation. The 
results suggest that CNN-LSTM based neural network architecture sufficiently detect puffing episodes in free-living condi-
tion. The proposed model be used as a detection tool for smoking cessation programs and scientific research.
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1 Introduction

Smoking is the world’s leading cause of preventable illness 
and death [1]. Each year, nearly 7 million people die from 
smoking-related diseases [2]. The worldwide economic cost 
of smoking was US$1436 billion in 2012 including direct 
medical care and lost productivity [3]. If the current trend 
continues, 8.3 million people per year by 2030 will die from 
diseases attributable to tobacco smoking [4]. Despite the 
efforts of anti-tobacco campaigns, tax increases, and com-
prehensive smoking cessation programs, the prevalence 
rate of smoking has not fallen intensely. The long-term suc-
cess rate of most smoking cessation programs is still quite 
low (i.e., less than 10%) [5]. To improve the outcomes of 
smoking cessation programs, researchers need to under-
stand not only the diverse factors (i.e., social, economic, 

environmental) contributing to smoking but also require a 
more detailed characterization of individual smoking pat-
terns. A detailed assessment of smoking behavior may be 
possible by detecting each puffing episode and obtaining 
smoking metrics accurately in an unobstructed way under 
real-world conditions.

Although a variety of technologies [6–11] have been pro-
posed for monitoring smoking behavior, researchers have 
more recently focused on wearable sensor systems, as they 
are lightweight, mobile, and unobtrusive. Wearable sensors 
and technologies can be grouped as smart cigarette lighters, 
proximity sensors, Inertial Measurement Units (IMUs), and 
respiration sensors.

A smart cigarette lighter can detect the lighter press and 
release events as a measure of frequency and total cigarette 
consumption [12]. However, no details such as smoking 
duration, or puff numbers can be extracted from this infor-
mation [13].

Hand-to-mouth gestures (HMGs) of the arm during 
smoking have been detected using RF (Radio Frequency) 
proximity sensors as presented in [14]. This sensor used two 
battery-powered circuits. A receiver was placed on the domi-
nant wrist, and a transmitter circuit was placed on the chest 
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(or vice versa). However, the power of the signal depends 
on the orientation of the antenna and may not sense all hand 
gestures.

IMUs have been broadly used in wearable technologies 
for assessing hand/arm movements. IMU-based studies have 
mostly focused on the hand-to-mouth gestures associated 
with puffs within smoking events. Although the number of 
HMGs and number of puffs are not matched perfectly since 
of possible multiple puffs within one HMG, studies have 
shown that HMGs can be used as a representation for the 
number of puffs [14, 15].

Table 1 summarizes some of the prior studies on smok-
ing detection using wearable sensors. In [16], the authors 
obtained the relative position of the arm as an estimator of 
smoking activity by using two IMUs that includes acceler-
ometer, gyroscope, and magnetometer. The dataset, from 
15 smokers, contains different types of activities, such as 
eating, drinking, and smoking. The proposed random forest 
model was trained with the features (speed, duration, dis-
tance, pitch, and roll) that were extracted from trajectory and 
position information. In 10-fold cross-validation, the HMGs 
were detected with an F1-score of 0.85. The model was also 
tested with 48 h of a free-living dataset and achieved an 
F1-score of 0.83.

In [17], four 3-axis accelerometers (at the dominant upper 
arm, dominant wrist, ankle, and non-dominant wrist) and a 
random model classifier were used to detected smoking ses-
sions and puffs. 11,8 h of data were collected from six par-
ticipants performing different activities, including drinking, 

reading, eating, using a computer, and a phone. A number 
of features (Mean, standard deviation, max, min, median, 
kurtosis, skewness, percentile, SNR, RMS, correlation coef-
ficients, slope, MSE, and R-squared) were extracted from 
the segmented (25 s, 50% overlap) raw signal. The authors 
reported an F1-score of 0.7 for puff detection and F1-score 
of 0.79 for smoking detection in 5-fold cross-validation.

In [18], a smoking detection system using a smartwatch 
was presented. The evaluation involved 45 h of data from 
11 smokers performing different activities such as smoking, 
drinking, standing, eating, walking, and talking. As features, 
maximum, minimum, kurtosis, and skewness were extracted 
from segmented accelerometer and gyroscope signals. The 
proposed method achieved an F1-score in the range of 0.83 
to 0.94 in leave-one-subject-out (LOSO) cross-validation.

In [15], the authors utilized four 6D IMUs on the domi-
nant arm for cigarette smoking detection. From six partici-
pants, 21 h of data were collected in a controlled laboratory 
setting. Standard deviation, mean, minimum, maximum, 
peak-to-peak, RMS, and correlations between axes were 
extracted over a window of 30 s. A support vector machine 
model reached a false positive rate between 0.07 and 0.2 for 
different participants.

In a recent study [19], we proposed a smoking-related 
HMG detection algorithm using singe IMU and an instru-
mented lighter. The performance of the method was evalu-
ated on 55 h from a controlled environment and 816 h 
from a free-living dataset. A total of 12 features were used, 
including standard deviation, mean, maximum, kurtosis and 

Table 1  Related works on smoking monitoring employing wearable sensors

NP not provided

Study Sensors Classifier Validation Detection Performance 
(F1-score)

Feature extrac-
tion

Participants Study type

[16] 2×9D IMU Random forest 10-fold HMG, smoking 0.85 for HMG Handcrafted 15 lab
4 free-living

Lab. free-living

[17] 4×3D IMU Random forest 5-fold HMG, smoking 0.70 for HMG
0.79 for smok-

ing

Handcrafted 6 Lab.

[18] 6D IMU Hierarchical LOSO Smoking 0.83-0.94 Handcrafted 11 Lab.
[15] 4×6D IMU SVM edge 

detector
NP HMG, smoking 0.08–0.86 for 

HMG
Handcrafted 6 Lab.

[19] 6D IMU lighter SVM LOSO HMG, smoking 0.86 for HMG
0.98 for smok-

ing
0.83 for smok-

ing (in free-
living)

Handcrafted 35 Lab. free-living

[22] RIP SVM 10-fold Puff 0.84 Handcrafted 10 Lab.
[23] 2×RIP HMMs LOSO Smoking 0.53 Handcrafted 20 Lab.
[24] 2×6D IMU RIP SVM 10-fold HMG 0.91 Handcrafted 6 Lab.
This study 6D IMU

RIP
CNN-LSTM LOSO HMG 0.78 Deep learning 40 Free-living
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correlation coefficient. The method trained a support vec-
tor machine (SVM) and achieved an F1-score of 86% for 
puff detection in a controlled environment and an F1-score 
of 85% for smoking events detection under free-living 
conditions.

In [20], we investigated HMG regularity as a feature for 
smoking event detection. The proposed method achieved 
F1-scores of 81% and 49% in a controlled environment and 
free-living conditions, respectively.

By using IMUs, some smoking metrics such as the num-
ber of cigarettes consumed over a period, the number of 
puffs per cigarette, and interpuff interval can be obtained. 
However, IMU sensors are unable to provide other potential 
critical metrics such as depth of inhalation, smoke holding 
duration, and inhalation/exhalation duration.

As wearable technology, RIP [21] measures respiration 
patterns from chest contractions-expansions. This measure-
ment helps to identify characteristic breathing patterns asso-
ciated with smoking in the real-life. More detailed smoking 
metrics can contribute to the theoretical literature on smok-
ing behavior. However, the measurement of breathing pat-
terns is highly sensitive to hand and body motion. Without 
the input of other sensor modalities, respiration signal may 
not provide accurate detection of puff events.

A single RIP band over the thoracic area was used in [22] 
to capture breathing patterns. The authors first ran a peak-
valley detection algorithm to segment each respiration cycle. 
Then 17 distinct hand-crafted features were extracted from 
segmented cycles. The smoke inhalation detection model 
was evaluated with limited data from 10 participants over 13 
individual smoking events. The proposed model reached an 
accuracy of 84% with SVM in a tenfold validation.

In [23], two RIP sensors (one placed on the thorax and 
the other on the abdomen) were utilized to capture changes 
in volume from the subject’s lungs. In this study, 16 features 
extracted from the fragmented frames (0.5-s window with 
50% overlap) of the tidal volume and airflow signals (the first 
derivate of tidal volume) were used to train hidden Markov 
models (HMMs). The model was then tested with data from 
20 participants, and the model reached an F1-score of 53% 
in LOSO validation for detection of smoking activity.

Multi-sensor approaches have been studied in an attempt 
to increase smoking detection accuracy. In [24], a model that 
used one RIP sensor (detecting deep inhalation and exha-
lation patterns) and two IMUs (detecting hand-to-mouth 
gestures) was proposed. A total of 291 puffs were collected 
from six daily smokers. Nineteen features from respiration 
signals and 12 features from IMU signals were extracted for 
the training of SVM. This research achieved an F1-score 
of 91% in tenfold cross-validation. In [25], cigarette smoke 
inhalations were recognized by using respiratory signals 
and the signal from a hand-to-mouth proximity sensor. Sev-
enteen hand-crafted features (16 from RIP, one from the 

proximity sensor) were extracted to train HMMs. Using a 
dataset of 20 participants, the proposed method reached an 
F1-score of 56% in LOSO cross-validation.

In summary, all previous studies used hand-crafted fea-
tures extracted from wearable sensors (IMU, RIP, and prox-
imity) for the detection of smoking activities. However, the 
commonly used features such as statistics of raw signals are 
empirical and not smoking activity-dependent. The identifi-
cation of relevant features is also time-consuming.

Recently, deep learning procedures have gained popu-
larity in many areas [26]. Convolutional neural networks 
(CNNs) are a kind of deep neural network with the capability 
to act as feature extractors. This kind of networks can learn 
multiple layers of feature automatically. However, CNNs are 
not able to learn sequential correlations. On the other hand, 
Long Short Term Memory (LSTM) [27] recurrent neural 
networks are well suited to model temporal dynamics. The 
combination of CNNs and LSTMs provides a state-of-art 
solution for time series problems such as speech recognition 
and human activity detection [28, 29].

In light of the success of CNN and LSTM networks in 
human activity recognition, we present an algorithm for the 
recognition of cigarette smoking inhalations to obtain smok-
ing behavior metrics collected under free-living conditions. 
To the best of our knowledge, deep learning approaches have 
not been used for wearable sensor-based smoking inhala-
tion cycle detection. The proposed algorithm was evaluated 
with a large and challenging dataset containing 467 smok-
ing events from 45 participants. LOSO cross-validation 
was performed to demonstrate the robustness of the pro-
posed algorithm. We also investigated the impact of some 
hyperparameters.

2  Wearable system and dataset

2.1  Wearable sensors

In the study, wrist and chest modules of the Personal Auto-
matic Cigarette Tracker v2 (PACT2.0) [30] were used. 
The wrist module contained a six-axial IMU interfaced 
with an STM32L151RD processor. The chest module con-
tained a Respiratory Inductance Plethysmography (RIP) 
belt (SleepSense Inductive Plethysmography, S.L.P. Inc., 
St Charles, IL, USA), and an ADS1292R chip to acquire 
respiration signal. All sensor signals were sampled at a fre-
quency of 100 Hz.

2.2  Portable clinical research support system 
(CReSSmicro™ v.2.0)

In the study, CReSSmicro™ v.2.0 smoking topography 
measurement device was used to obtain ground truth 
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information. CReSSmicro™ is the portable version of 
the Clinical Research Support System manufactured by 
Plowshare Technologies, Inc. (Baltimore, MD, USA). 
This battery-operated hand-held device measures smok-
ing topography metrics including puff volume, puff dura-
tion, interpuff interval, time, and date. In the study, four 
CReSSmicro™ devices were used with the manufacturer’s 
recommended default settings.

2.3  Dataset

The dataset was collected by the research group of Smok-
ing Research Lab., at Buffalo University under free-living 
conditions. A total of forty smokers were recruited to the 
study. Participants visited the laboratory on four separate 
occasions, 24 h apart. At the initial visit, participants 
completed a series of self-reported baseline question-
naires. Participants were told the purpose of the study and 
instructed in the usage of the PACT2.0 and CReSSmicro™ 
equipment. Participants were outfitted with PACT2.0 
sensor system and asked to continue smoking as usual 
between visits. For the two days of the experiment, par-
ticipants smoked without using CReSSmicro™ device. For 
the other two days, they were asked to smoke through the 
CReSSmicro™ devices. The data from the days which the 
participants smoked through CReSSmicro™ device were 
used in the present study. This free-living dataset con-
tained a total of 42.7 h. cigarette smoking, 497 smoking 
events, and 5968 smoking inhalation cycles. The dataset 
used in this study can be accessed at [31].

3  Smoking inhalation cycle detection 
algorithm

3.1  Network architecture

In this paper, we aimed to detect smoking inhalation cycles 
in a smoking event, defined as the period from lighting up a 
cigarette to the last smoke inhalation/exhalation cycle. Each 
smoking cycle can be modeled as a sequence of specific 
hand micro-movement and breathing pattern [15, 32]. Typi-
cally a cigarette smoking cycle starts with the raising of the 
hand to the mouth. It continues with holding the cigarette 
at the mouth, puffing, inhalation, and smoke holding. This 
cycle finishes with the exhalation of smoke. A downward 
motion of the hand from the mouth can happen before or 
after exhalation. In some cases, smokers hold their hand 
at the upper position for multiple puffs. The basic smoking 
cycle routine may include other dynamics such as rolling of 
the wrist, not holding smoke in the lungs, and multiple exha-
lations. The work in this study used the temporal-sequential 
dependency of the abstracted features micro-dynamics for 
smoking cycle detection, instead of hand-crafted features 
extracted from a specific time segment.

The method presented in this study has two main neural 
network stages. In the first stage, a CNN acted as a feature 
extractor. The abstracted features of the micro-dynamics that 
take place during fixed-size overlapping windows of raw 
sensor streams could be estimated by CNN layers. The sec-
ond step dealt with the classification of temporal sequences 
as smoking inhalation cycle or not, via the LSTM network. 
Figure 1 shows the overall architecture of the proposed 
method.

Fig. 1  Overall architecture used for smoking inhalation detection. 
From left to right, the windowed sensor streams of length 256 sam-
ples were processed by four convolutional layers to obtain 32 abstract 
features. Two LSTM layers with 64 cells and a fully connected layer 

yielded the probability of smoking inhalation. The number of feature 
maps of convolutional layers was set to 128, 64, 32 and 16, respec-
tively. Max pooling reduced the size of input for the next layer
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3.1.1  Preprocessing

Let, ai
x
, ai

y
, ai

z
, gi

x
, gi

y
, gi

z
 and ri with i = 1, …, N be the 6D 

IMU and respiration streams recorded during a smoking 
event, respectively. N is the length of streams defined as 
N = T·fs, T is duration of a smoking event in seconds, and fs 
is the sampling frequency of the sensors signal. A smoking 
event was represented by the N × 7 data matrix S which was 
defined as S = [ax, ay, ay, gx, gy, gz, r]. Let Z = {S1, S2, S3,…, 
SB} be a set of smoking events with B the number of smok-
ing events in the dataset.

The raw IMU data were filtered by a low-pass Butter-
worth filter (2nd order) with the cutoff frequency of 2 Hz 
(empirically selected) to remove high-frequency noise. To 
remove the baseline component on RIP signal, wavelet-
based decomposition was provided with db4 wavelet and 11 
levels of decomposition. After decomposition, the approxi-
mation signal was subtracted from raw RIP signal. Finally, 
each column of S was normalized by subtracting the mean 
and dividing with its standard deviation. Figure 2 shows the 
characteristic sensor signals during the smoking session.

3.1.2  Learning of abstracted features

In this step, the abstracted features of the micro-dynamics 
of each window of the raw data stream were estimated by a 
CNN. This part of the proposed model consisted of four one-
dimensional convolutional layers and a fully connected layer 
with 32 units. Each of the convolutional layers was followed 

by a batch normalization layer, rectified linear units, and 
max-pooling operation layer with a decimation factor of two. 
To prevent overfitting during training, a dropout layer was 
used after fully connected layer with 50% dropout change. 
We used 128, 64, 32 and 16 filters in convolutional layers. 
The choice of the number of feature maps has motivated the 
results presented in [33]. The filter size of all convolutional 
layers was half of their input data size which corresponded 
to 1.28 s at a sampling rate of 100 Hz.

A fully connected layer was used to reduce feature dimen-
sions before passing to the LSTM layer. At the output of 
the fully connected layer, a N × 7 data matrix S was trans-
formed into a M × 32 matrix D, with M the number of over-
lapping signal windows. Each row of D represented the 32 
abstracted features of the signal window of S. Figure 3 shows 
a graphical example of abstracted features for a fragment of 
the dataset.

3.1.3  Modeling of temporal dynamics

An LSTM network was utilized to classify a sequence 
of windows as a smoking inhalation cycle. LSTM is an 
extended Recurrent Neural Network (RNN) with the mem-
ory cell, which can learn long-term temporal relations. The 
proposed recurrent network consisted of two consecutive 
LSTM layers with 64 hidden cells and one fully connected 
layer with a single neuron. The number of LSTM layers was 
chosen following the results in [34].

Fig. 2  Characteristic sensor signals during a smoking session. The yellow area shows the puffing cycles. a RIP, b accelerometer, c gyroscope
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The network took as input rows of matrix D, with a 
sequence length of five samples and one sample step. Five 
samples windows length corresponded to 7.6 s. Moreover, 
this length approximated the average smoking inhalation 
cycle duration in the dataset, which was 7.2 s.

The output of the network was obtained from the fully 
connected layer. The output gave a probability of the input 
sequence as a smoking inhalation cycle. Using the LSTM 
network, each M × 32 distribution matrix D was transformed 
into the Mʹ × 1 prediction probability vector p, with M’ the 
number of overlapping sequences.

The network was trained from the smoking event data 
vector Z using a sliding window approach. The length of 
the window was 256 samples, with 50% overlap. Using this 

approach, the network was trained by segmented parts of 
Z, each with a size of 256 × 7, belong to smoking or non-
smoking classes. In the training process, stochastic gradient 
descent with momentum (SGDM) optimizer was used with 
a learning rate of  10−3, three epochs, and a mini-batch size 
of 128. We investigated the impact of some hyperparam-
eters (dropout value, learning rate, number of CNN filters, 
and number of abstracted features) on the model’s overall 
performance.

3.1.4  Post processing

To enhance prediction performance, a moving average fil-
ter method was applied to the smoking probability vector 
p. The length of the filter was selected to be the same as 
the sequence length (five samples). Finally, a local maxima 
search was performed on the smoothed probability vector 
p’ to detect smoking inhalation cycles. The level of local 
maximums higher than smoking probability threshold pt 
was marked as smoking inhalation cycle, and moment times-
tamp was recorded. Figure 4 shows the sensor signals and 
smoothed smoking probability for a 60 s-long fragment of 
the dataset A. The threshold level of pt was chosen by using 
a Receiver Operating Curve (ROC) (Fig. 5). The optimal 
operating point on the ROC was selected as the threshold 
level (0.51).

3.1.5  Experiment and performance measures

To perform the labeling process, as a first step, breathing 
segmentation was performed by using the respiration sig-
nal and running a peak-valley detection procedure to find 
the start and end of each respiration cycle. We used the 

Fig. 3  Example of abstracted features’ value for a fragment of the 
dataset

Fig. 4  Smoking probabilities 
for a 60 s-long fragment of 
sensor signals in the dataset. 
pt is threshold level. Black 
points show the detected puffing 
moments
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peak-valley detection method proposed in [35, 36]. Then 
each breathing cycle was labeled as smoking inhalation 
cycle or not if it matched the puff time information obtained 
from CReSSmicro™ device. Finally, class labeling of each 
sliding windows was performed. A sliding window corre-
sponding to any smoking inhalation cycle was labeled as a 
positive class.

To guarantee the person-independence of the model, 
LOSO cross-validation fashion was applied. In LOSO fash-
ion, data belonging to one subject were left out from train-
ing dataset iteratively. At each iteration, the evaluation was 
performed on the data of the left-out subject.

The performance of the proposed method was measured 
by calculating the true positive (TP), false positive (FP) and 
false negative (FN). Sm =

[

td
i
,… , td

n

]

 represented timestamps 
of the n detected moments in a smoking event. 
G =

[

ts
j
, te
j
;… ;ts

k
, te
k

]

 was the k ground truth representing 
smoking inhalation cycles described by their start and end 
timestamps. The following technique was performed for per-
formance metrics. If a td

i
∈

[

ts
j
, te
j

]

 existed for any j, then the 
i-th detection was associated as a TP. If there was more than 
one detection for any j-th ground truth smoking inhalation 
cycle, they were counted as a single TP. If a td

i
∉

[

ts
j
, te
j

]

 for 
all j, this detection was associated as FP. Finally, a ground 
truth smoking inhalation cycle not associated with any 
detection td

i
 was marked as FN. Figure 6 illustrates the metric 

calculation scheme.

4  Results

Table  2 shows the smoking inhalation cycle detection 
results of the proposed algorithm as an accumulated confu-
sion matrix over all participants and averaged performance 
metrics of 45 participants. Although the accuracy metric of 
the algorithm was presented in Table 2, it is not a suitable 

performance validation metric because of the true negatives 
were not tracked as the proposed algorithm aimed to detect 
smoking inhalation cycles.

The impact of network hyperparameters (dropout 
value, learning rate, number of CNN filters, and number 
of abstracted features) on recognition performance was 
evaluated using a hold-out (25%) cross-validation method. 
The other hyperparameters were fixed (as Sect. 3.1) while 
a single hyperparameter was varied. Figure  7 shows 
the performance of the proposed network for different 
hyperparameters.

5  Discussion

The dataset analyzed in this study represented realistic 
smoking behaviors of the participants collected over mul-
tiple days. The participants reported that wearing the wrist 
and chest devices of PACT2.0 was not obtrusive or con-
cerning. The results indicated that CNN-LSTM based neu-
ral network architecture was an effective tool for smoking 
inhalation cycle detection. The proposed approach was vali-
dated by using a large and challenging dataset to assess the 
performance of the method. The proposed model achieved 
F1-score of 78% in LOSO cross-validation.

The limitations of the current study include non-dominant 
hand usage, instances of multiple puffing within a single 
hand gesture, and use of a mouthpiece topography device 
to obtain ground-truth information. Non-dominant hand 
usage or the absence of HMGs during smoking was a pos-
sible source of false negatives. In future studies, the addi-
tion of a second wrist device would allow for the detection 
of smoking with the non-dominant hand. Also in the study, 
participants were allowed to take off the PACT wrist and 
chest devices when showering or bathing. Some participants 
may have used the system with the wrong orientation when 
reapplying the device or may have reattached the device too 
loosely. These issues would degrade the accuracy of smok-
ing cycle detection.

Other issues need to be considered when interpreting 
the study. To obtain ground truth information of the data-
set, participants were asked to smoke through CReSSmi-
cro™ device. The Cress device might change the natural 
hand gestures or smoking-related breathing pattern of the 

Fig. 5  Receiver operating curve of the proposed detection method 
and optimal operating point

Fig. 6  An example of the evaluation procedure performed in the 
study
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participants, although some studies [11, 37] reported that the 
CReSSmicro™ did not alter the manner in which cigarettes 
were smoked. Other studies [38, 39], however, showed the 
use of this device altered the smoking behavior. The effect of 
using a mouthpiece topography device on smoking-related 
hand gestures has not been investigated. Given the possibil-
ity of behavior changes as a consequence of the portable 
puff device, the performance of the proposed model may be 
different under natural smoking conditions.

In the free-living environment, the detection of smoking 
episodes is still an open issue. Once the smoking episodes 
are detected, the proposed model could effectively identify 
puff cycles during a smoking event. However, this study 
did not offer any solution to the detection of boundaries of 
the smoking event. One solution might be the use of kernel 
smoothing methods for the predicted smoking inhalation 
cycles. After the prediction of smoking inhalation cycles, the 
kernel smoothing could be utilized to detect smoking events 
and their boundaries. The detail of this approach can be 
found in our previous work [19]. The use of a smart lighter 
to detect the start of smoking events might be another solu-
tion. The proposed network might also be trained for smok-
ing event detection instead of smoking inhalation cycles. 
Instead of training the whole framework, only LSTM and 
fully connected layers could be retrained for the detection 
of smoking events.

The hyperparameter analysis showed that an increas-
ing number of CNN filters slightly increased classification 
performance. A small increase in F1-score was observed 
with an increasing number of abstracted features. How-
ever, both parameters increased the model complexity and 

computational load. The model showed relatively stable per-
formance for learning rate changes when the learning rate 
was between  10−4 and  10−2. On the other hand, there was 
a slight decrement in performance for a high dropout rate. 
Nevertheless, a low dropout rate increases overfitting risk. 
A limitation of the study is a fixed-size of sliding windows 
(256 samples). Future studies could investigate various sizes 
of the window for optimized performance.

6  Conclusions

We have described an algorithm for detecting the smoking 
inhalation cycles from IMU and RIP signals. To the best of 
our knowledge, this is the first attempt to use a CNN-LSTM 
network for recognition of puffing episodes. We evaluated 
the performance of the proposed method on a challenging 
dataset collected under real-world conditions. The valida-
tion process was performed with person-independent cross-
validation methods. The results indicate that the proposed 
algorithm yielded F1-score of 78%.
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four hyperparameters: number 
of CNN filters (top-left), 
number of abstracted features 
(top-right), learning rate 
(bottom-left) and dropout rate 
(bottom-right)
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