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Abstract

Segmentation of structural and diffusion MRI (sMRI/dMRI) is usually performed independently in 

neuroimaging pipelines. However, some brain structures (e.g., globus pallidus, thalamus and its 

nuclei) can be extracted more accurately by fusing the two modalities. Following the framework of 

Bayesian segmentation with probabilistic atlases and unsupervised appearance modeling, we 

present here a novel algorithm to jointly segment multi-modal sMRI/dMRI data. We propose a 

hierarchical likelihood term for the dMRI defined on the unit ball, which combines the Beta and 

Dimroth-Scheidegger-Watson distributions to model the data at each voxel. This term is integrated 

with a mixture of Gaussians for the sMRI data, such that the resulting joint unsupervised 

likelihood enables the analysis of multi-modal scans acquired with any type of MRI contrast, b-

values, or number of directions, which enables wide applicability. We also propose an inference 

algorithm to estimate the maximuma-posteriori model parameters from input images, and to 

compute the most likely segmentation. Using a recently published atlas derived from histology, we 

apply our method to thalamic nuclei segmentation on two datasets: HCP (state of the art) and 

ADNI (legacy) – producing lower sample sizes than Bayesian segmentation with sMRI alone.

1 Introduction

Automated segmentation of MRI scans is a prerequisite for most human neuroimaging 

studies. Most of the algorithms commonly used for this task rely solely on structural MRI 

(sMRI) scans, and belong to one of three categories: Bayesian segmentation with a 

probabilistic atlas (e.g., [1,2]); multi-atlas segmentation [3]; and, more recently, 

convolutional neural networks (e.g., [4]). Typically, these techniques segment the brain into 

tissue types (i.e., gray matter, white matter, and cerebrospinal fluid), or into finer anatomical 

structures (e.g., hippocampus, ventricle). Bayesian methods drive the primary segmentation 
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modules of the most widespread neuroimaging packages, like FreeSurfer [2], FSL [5], or 

SPM [1].

The aforementioned approaches rely mostly on T1 contrast to distinguish between gray and 

white matter. However, some boundaries between structures are nearly invisible in T1 (and 

other structural MR contrasts) due to insufficient difference in proton density and relaxation 

times. This is exacerbated by lower contrast-to-noise ratio in deep-brain structures, due to 

greater distance from the head coil. Two examples from the state-of-the-art Human 

Connectome Project (HCP) dataset [6] are shown in Fig. 1. In the first example, the lateral 

boundary of the thalamus appears very faint (Fig. 1a). In the second, the lateral boundary of 

the globus pallidus is visible thanks to the contrast with the neighboring putamen, but the 

medial boundary is not (Fig. 1c).

These issues create a need for fusing data from several MR modalities to better delineate 

structure boundaries. A natural complement to sMRI is diffusion MRI (dMRI), which may 

help discriminate between certain tissue types, despite its lower resolution. For example, in 

Fig. 1b, the lateral boundary of the thalamus is clearly discernible in the principal diffusion 

direction map obtained from dMRI. The diffusion data also complement the T1 scan in the 

pallidum, which can be delineated by combining contours obtained from the two modalities 

(medial from dMRI, lateral from sMRI, see Fig. 1d).

Most prior work on segmentation of dMRI focuses on delineating white matter structures, 

using tractography [7,8,9] or volumetric segmentation [10,11]. Tractography has also been 

used to subdivide subcortical structures (e.g., thalamus [12], amygdala [13]) based on long-

range connections. Surprisingly, the literature on joint modeling of multimodal sMRI/dMRI 

is sparse. When sMRI and dMRI are used by the same tool, this is most often done serially, 

e.g., a segmentation derived from sMRI is used to analyze the dMRI (e.g., to derive priors 

for Bayesian tractography [9]). To the best of our knowledge, the only works analyzing 

sMRI and dMRI simultaneously have been on thalamic nuclei segmentation with random 

forests [14,15]. The main concern with such discriminative techniques is their generalization 

ability to other datasets, which is limited by differences in MRI acquisition. For sMRI 

segmentation, this problem can be ameliorated with data augmentation and pretraining [4]. 

However, this is harder to do in dMRI, where acquisition protocols are much less 

standardized.

The ability to generalize across datasets is critical when software is released publicly and 

few assumptions can be made on the acquisition. In such scenarios, Bayesian segmentation 

methods that automatically estimate appearance models from input images remain very 

popular, as they are agnostic to the MRI contrast of the input scan, and thus robust to 

acquisition differences. These methods are used for tissue segmentation by major 

neuroimaging packages (e.g., Unified Segmentation [1] in SPM, and FAST [16] in FSL). 

However, they can be inaccurate when segmenting structures with poor sMRI contrast (see 

Fig. 1).

Here we propose a sequence-adaptive Bayesian algorithm that uses a probabilistic atlas to 

segment sMRI and dMRI data simultaneously5. This is achieved via a novel dMRI 
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likelihood term, which relies on a hierarchical model for the fractional anisogropy (FA) and 

principal diffusion orientation. Combined with a Gaussian likelihood for sMRI, this model 

of image intensities is flexible enough to produce accurate segmentations, while keeping 

dimensionality low. We also propose a novel inference algorithm to automatically segment 

scans by fitting the model to multi-modal sMRI/dMRI data. Thanks to unsupervised 

intensity modeling, applicability across a wide range of acquisition protocols is achieved, 

which is demonstrated experimentally on two considerably different datasets.

2 Methods

2.1 Forward probabilistic model

The graphical model of our framework is shown in Fig. 2a. The observed variables are a bias 

field corrected (possibly multispectral) sMRI scan S = [s1, . . . , sV ] defined on V voxels, a 

dMRI scan D = [d1, . . . , dV ] defined at the same voxel coordinates (which might require 

resampling), and a probabilistic atlas A, which provides the probabilities of observing one of 

C neuroanatomical classes at every location across a reference spatial coordinate system. 

The model is governed by three sets of deterministic hyperparameters specified by the user: 

γa, γs and γd.

At the top of the generative model we find the atlas A, along with a set of related parameters 

θa that deform this atlas into the space of the MRI data. These parameters are a sample of a 

distribution that regularizes the deformation field by penalizing, e.g., its bending energy. The 

strength of the regularization is controlled by the set of hyperparameterst γa.

Given the deformed atlas, a labeling (segmentation) L = [l1, . . . , lV], with lυ ∈ {1, . . . , C}, 

is obtained by independently sampling the categorical distribution defined by the deformed 

atlas at each voxel location. Given L, the observed sMRI and dMRI data are assumed to be 

conditionally independent from each other and across voxels. The sMRI data sυ at υ follows 

a distribution (typically a Gaussian) whose parameters θc
s depend on the corresponding label 

c = lυ. Any prior knowledge on these parameters is encoded in their priors, which are 

governed by hyperparameter vectors γcs . Similarly, dυ is also assumed to be a mixture 

conditioned on the segmentation, described by parameters θc
d  and hyperparameters γcd , 

which yields a symmetric likelihood model (Fig. 2a). The joint probability density function 

(PDF) of the model is therefore:

p S, D, L, θa, θs, θd A, γa, γs, γd

= p S L, θs p D L, θd p L A, θa p θs γs p θd γd p θa γa

= ∏
v = 1

V
p(sv |θlv

s )p(dv |θlv
d )pv(lv |A, θa) ∏

c = 1

C
p θc

s γcs p θc
d γcd p θa γa ,

(1)

where θs = θc
s

c = 1, …, C, γs = γcs c = 1, …, C, θd = θc
d

c = 1, …, C, γd = γcd c = 1, …, C.

5Henceforth, we use “Bayesian segmentation” to refer to this specific family of Bayesian methods, using probabilistic atlases and 
unsupervised appearance modeling.
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2.2 Model instantiation

Probabilistic atlas—We follow the framework of the thalamic atlas [17] that we use in 

the experiments in Section 3, in which the atlas is encoded as a tetrahedral mesh. Deforming 

the mesh is penalized by a regularizer R, weighted by the mesh stiffness λ. The prior is 

given by (see further details in [18]):

p θa γa ∝ exp −λR θa , and lv ∼ Cat Av θa , (2)

where Aυ(θa) = [Aυ1, . . . , Aυc]t is simply the vector of C label probabilities provided by the 

atlas at voxel υ when deformed with parameters θa; Cat[·] is the categorical distribution; and 

hyperparameters γa comprise just λ, i.e., γa = {λ}.

Likelihood of sMRI—In order to model the sMRI intensities given the segmentation L, we 

follow the Bayesian brain MR segmentation literature (e.g., [1,16,17]) and use Gaussian 

intensity distributions, such that θc
s = μc, Σc , i.e., the mean and covariance of the intensities 

of class c. We place a Normal Inverse Wishart (NIW) distribution on these parameters (i.e., 

the conjugate prior), with zero degrees of freedom for the covariance, as we found it difficult 

in practice to inform such parameter a priori. Therefore, we have: γcs = Mc, nc , where Mc is 

the hypermean and nc is the scale. The sMRI likelihood is thus:

μc, Σc Mc, nc ∼ NIW Mc, nc, 0, 0I ,
sv lv, μc , Σc ∼ N μlv, Σlv , (3)

where N( ⋅ , ⋅ ) is the Gaussian distribution and I is the identity matrix.

Likelihood of dMRI—We have two requirements for the likelihood function of the dMRI: 

low demands on gradient directions and b-values to accommodate legacy data; and low 

number of parameters to facilitate unsupervised clustering (yet sufficient to separate the 

classes). To satisfy the first requirement, we adopt the diffusion tensor imaging (DTI) model, 

which can be fit from virtually all available dMRI data. Rather than modeling the tensors 

directly (e.g., with a Wishart distribution, which we found in pilot experiments to fade too 

quickly from its mode), we use a hierarchical model (Fig. 2b) that only considers the FA fυ 
and the principal eigenvector ϕυ at each voxel, i.e., dυ = {fυ, ϕυ}.

At the first level, we model the FA conditioned on the class, with Beta distributions 

parameterized by {αc, βc}. We chose the Beta because it can model location and dispersion 

of signals defined on the [0,1] interval with two parameters. At the second level, we model 

the principal eigenvector with the Dimroth-Scheidegger-Watson (DSW) distribution, which 

is axial (i.e., antipodally symmetric), accommodating the directional invariance of dMRI 

[19]. This distribution is also rotationally symmetric around a mean direction ψ and its 

opposite −ψ (∥ψ∥ = 1), with a dispersion around the mean parameterized by a concentration 

κ. It has fewer parameters than other axial distributions, such as the (non rotationally 

symmetric) Bingham. Its PDF is given by [20]:
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f(ϕ; ψ, κ) = [Z(κ)]−1exp κ ψtϕ 2 , (4)

with domain ∥ϕ∥ = 1, and where the partition function is the Kummer function in 3D [20]: 

Zκ = ∫0
1exp κt2 dt. We further assume that the concentration is modulated (multiplied) by 

the FA. This is a simple yet effective way of modeling the higher directional dispersion in 

voxels with low FA (e.g., in areas of unrestricted diffusion or fiber crossings), without 

having to resort to mixtures or additional parameters. The overall model for the dMRI 

likelihood is thus:

fv lv, αc , βc ∼ Beta αlv, βlv ,
ϕv lv, fv, ψc , κc ∼ DSW ψlv, fvκlv , (5)

and the set of parameters is thus: θc
d = αc, βc, ψc, κc , with ∥ψc∥ = 1,∀c. We decided not to 

inform these parameters, such that p θc
d ∝ 1, and γcd = ∅. We note that this likelihood model 

defines a PDF on the unit ball for vector fυϕυ.

2.3 Segmentation as Bayesian inference

Within our joint generative model of sMRI and dMRI, we pose segmentation as an 

optimization problem, seeking to maximize the posterior probability of the labeling, given 

the known hyperparameters and observed input data:

argmax
L ∫ ∫ ∫ p L|θa, θs, θd, S, D, A p θa, θs, θd S, D, A, γa, γs dθadθsdθd,

≈ argmax
L

p L|θa, θs, θd, S, D, A ,
(6)

where we have made the standard approximation that the posterior distribution of the 

parameters is heavily peaked around point estimates θa
, θs

, θd
 given by:

{θa, θs, θd} = argmax
{θa, θs, θd}

p θa, θs, θd S, D, A, γa, γs . (7)

Therefore, we segment a scan by first estimating the parameters with Eq. 7, and then 

obtaining the (approximate) most likely labeling with Eq. 6.

Applying Bayes rule to Eq. 7, marginalizing over the hidden segmentation L, and 

considering the structure of the model and our design choices, we obtain:

{θa, θs, θd} = argmax
{θa, θs, θd}

p θa γa p θs γs ∑
L

p S L, θs p D L, θd p L θa, A .

Expanding and taking logarithm, we obtain the following objective function:
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O θa, μc, Σc, αc, βc, ψc, κc = logp θa γa + ∑
c = 1

C
logp μc, Σc Mc, nc

+ ∑
v = 1

V
log ∑

c = 1

C
p sv μc, Σc p fv αc, βc p ϕv fv, ψc, κc p lv = c A, θa .

(8)

We maximize Eq. 8 with a Generalized Expectation Maximization (GEM) algorithm [21], 

iterating between expectation (E) and maximization (M) steps:

E step: In the E step, we use Jensen’s inequality to build a lower bound for the objective 

function, which touches it at the current value of the parameters:

O ≥ Q = ∑
v = 1

V
∑

c = 1

C
wvclog p sv μc, Σc p fv αc, βc p ϕv fv, ψc, κc p lv = c A, θa

+ logp θa γa + ∑
c = 1

C
logp μc, Σc Mc, nc

− ∑
v = 1

V
∑

c = 1

C
wvclogwvc,

(9)

where {ωυc} a soft segmentation according to the current parameter estimates:

wvc′ = p sv μc, Σc p fv αc, βc p ϕv fv, ψc, κc p lv = c A, θa

= Σc
−1/2exp − 1

2 sv − μc
tΣc

−1 sv − μc fv
αc − 1 1 − fv

βc − 1 B αc, βc
−1

× Z fvκc
−1exp fvκc ψctϕv

2 Avc θa , and wvc = wvc′ / ∑
c′ = 1

C
wvc′′ ,

(10)

where B is the Beta function.

M step: In the generalized M step, we seek to improve the lower bound Q in Eq. 9. While 

optimizing the bound with respect to all parameters simultaneously is difficult, optimizing 

different subsets each time (coordinate ascent) is feasible.

Optimizing θa: Fixing all other parameters and switching signs, we obtain:

argmin
θa

∑
v = 1

V
∑

c = 1

C
wvclog wvc/Avc θa + λR θa . (11)

This is a registration problem combining the regularizer R with a data term: the Kullback–

Leibler (KL) divergence between the deformed atlas and the current soft segmentation. We 

solve it numerically with the conjugate gradient method.

Optimizing {μc, Σc}: Setting derivatives to zero yields a closed-form solution:
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μc =
ncMc + ∑v = 1

V wvcsv

nc + ∑v = 1
V wvc

, (12)

Σc =
nc μc − Mc μc − Mc

t + ∑v = 1
V wvc sv − μc sv − μc

t

1 + ∑v = 1
V wvc

. (13)

Optimizing {αc, βc}: Substituting the expression of the Beta distribution into Eq. 9, the 

problem decouples across classes:

argmax
αc, βc

αc − 1 ∑
v = 1

V
wvclogfv + βc − 1 ∑

v = 1

V
wvclog 1 − fv

− logB αc, βc ∑
v = 1

V
wvc .

(14)

This is a simple 2D optimization problem, which we solve with conjugate gradient. In the 

first iteration, we use the method of moments for initialization.

Optimizing {ψc}: This optimization can also be carried out one c at the time:

argmax
ψc:‖ψc‖ = 1

∑
v

wvcfv ψctϕv
2 = argmax

ψc:‖ψc‖ = 1
ψct ∑vwvcfvϕvϕvt ψc,

with closed-form solution given by the leading eigenvector of: ∑vwvcfvϕvϕv
t .

Optimizing {κc}: This optimization problem also decouples across classes:

argmax
κc

κc ∑
v = 1

V
wvcfv ψctϕv

2 − ∑
v = 1

V
wvclogZ fvκc , (15)

which we solve with conjugate gradient, initializing κc = 10 in the first iteration.

Final Segmentation—It is straightforward to show that the approximate posterior 

probability of the segmentation from Eq. 6 factorizes across voxels and is given by 

p(L|θa, θs, θd, S, D, A, γa, γs) = ∏v = 1
V wv, lj, where wv, lj is obtained by evaluating Eq. 10 at 

the optimal parameter values θa
, θs

, θd
. Therefore, the optimal segmentation can be 

computed independently at each location υ as:

l v = argmax
c

wvc, (16)

and the expected value of the volume of class c is given by: ∑v = 1
V wvc (in voxels).
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Algorithm 1

Bayesian segmentation with sMRI and dMRI

Require: A, S, D, γa, γs, {Mc, nc}

Ensure: θa
, {μc, Σc, αc, βc, ψc, κc}

 Initialize θa, with affine registration and mutual information

 Initialize ωυc ← p(lυ = c|A, θa), ∀υ, c

 Initialize κc = 10,∀c

 Initialize αc, βc with method of moments, ∀c

 it ← 0

 while θa, {μc, Σc, αc, βc, ψc, κc} change AND it ≤ itmax do

  it ← it + 1

  for c = 1, . . . , C do

   Update μc, Σc with Eqns. 12 and 13

   Update αc, βc by numerically optimizing Eq. 14 with conjugate gradient

   Update ψc ← leading eigenvector of: ∑vwvcfvϕvϕv
t

   Update κc by numerically optimizing Eq. 15 with conjugate gradient

  end for

  if mod(its,5)=0 then

   Update θa by numerically optimizing Eq. 11 with conjugate gradient

  end if

   Update ωυc with Eq. 10, ∀υ, c

  end while

 Compute final segmentation with Eq. 16.

Implementation details—Since GEM only requires improving the bound at each 

iteration, we follow a schedule in which all the model parameters except for θa are updated 

once in the M step. Since updating θa requires solving a more computationally expensive 

registration problem, we only update θa in the M step every five GEM iterations. The 

method is summarized in Algorithm 1.

In practice, we also force some parameters θc
s  and θc

d  to be shared across classes, for 

increased robustness of the algorithm. For the sMRI parameters μc, σc2 , we follow [17] 

and force parameter sharing across: cortex, hippocampus and amygdala; reticular nucleus 

and white matter; mediodorsal and pulvinar nuclei; rest of thalamic nuclei; and contralateral 

structures. For the FA, parameters {αc, βc} are shared across each of the six groups of 

thalamic nuclei in Table 2 of [17], and across contralateral structures. The same grouping – 

but without contralateral constraints – is used for the directional parameters {ψc, κc}.
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3 Experiments and results

3.1 Data

We evaluate our method with a recent probabilistic atlas of 25 thalamic nuclei and 

surrounding regions derived from histology [17]. The thalamus is an excellent target region, 

due to its faint lateral boundaries in sMRI (as explained in Section 1), and its set of nuclei 

with different connectivity. We use two considerably different datasets in evaluation: HCP 

(state of the art) and ADNI (legacy).

HCP: Isotropic T1 and dMRI scans from 100 healthy subjects (age 29.1±3.3, 44 males), at 

0.7 mm (T1) and 1.25 mm resolution (dMRI). We fit the DTI model to the b=1000 s/mm2 

shell (180 directions) and 12 scans with b=0 (details in [22]).

ADNI: T1 and dMRI scans from 77 subjects from ADNI2: 39 Alzheimer’s disease (AD) and 

38 age-matched controls (74.1±8.1 years; 40 females total). T1 resolution: 1.2×1×1 mm 

(sagittal); dMRI resolution:1.35×1.35×2.7 mm (axial); 5 volumes with b=0, 41 directions 

(b=1000 s/mm2; details at adni-info.org).

3.2 Experimental setup

We evaluate three competing methods: (i) Segmentation of the whole thalamus with 

FreeSurfer [2]; (ii) Segmentation of thalamic nuclei using Bayesian segmentation on T1 only 

[17]; and (iii) Segmentation of thalamic nuclei with the full model, including dMRI. We 

compare these approaches in three experiments: (i) Qualitative assessment of segmentation 

and tractography in HCP; (ii) Correlation between thalamic and total intracranial volume 

(ICV) in HCP; and (iii) Ability to discriminate AD and control subjects based on volumes in 

ADNI. The sMRI and dMRI data are resampled to 0.5 mm isotropic in a bounding box 

around the thalami (DTI is interpolated in a log-euclidean framework [23]). We set λ = 0.05 

as in [17], Mc to the median T1 intensity in class c according to the main FreeSurfer 

segmentation, and nc to the volume of the class in mm3.

3.3 Results

Figure 3 shows qualitative results on an HCP subject. FreeSurfer almost completely misses 

the left pallidum (yellow arrow in the figure) and oversegments the thalami. We test the 

effects of the latter on tractography by reconstructing the full dMRI data with generalized q-

sampling [24], performing whole-brain tractography, and isolating the tracts that intersect 

the whole thalami, as automatically segmented by the three competing methods. The 

FreeSurfer thalamus yields many false positive tracts, mostly due to overlap with the internal 

capsule (red arrow). Aggregating the nuclei produced by Bayesian segmentation on the T1 

produces a more accurate boundary, but still oversegments the anterior thalamus (white 

arrow), and undersegments the pulvinar nucleus (black arrow). Our multi-modal method 

yields less false positive tracts, and segments thalamic nuclei that are more homogeneous in 

terms of diffusion orientation and FA.

We also evaluate segmentation performance quantitatively on HCP, in an indirect fashion, by 

computing the correlation of total thalamic volume obtained by each method (left-right 
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averaged) with the ICV estimated by FreeSurfer; noisy thalamic segmentations are expected 

to degrade this correlation. Scatter plots and regression lines are shown in Fig. 4. The 

FreeSurfer volumes are quite large on average, and their correlation with ICV is ρ=0.71. 

Bayesian segmentation with T1 yields ρ=0.68 (not significantly different, with p=0.37 on a 

two-tailed Steiger test). The proposed algorithm produces fewer outliers than the other two, 

and yields the highest correlation (ρ=0.81), significantly higher than those of FreeSurfer 

(p=0.006) and T1-only segmentation (p=0.001).

Finally, we evaluate the ability of the segmented volumes to classify the ADNI subjects into 

AD and controls. We use a simple linear discriminant analysis, whose performance is mostly 

determined by the quality of the volumes. We project the volumes (left-right averaged, 

corrected for ICV and age) onto the normal to the discriminant hyperplane in a leave-one-

out fashion. We use the projections to compute the area under the ROC curve (AUC), 

accuracy at its elbow, and sample sizes (α = 0.05, β = 0.2). Results are shown in Table 1. 

Our method yields a fair improvement compared with T1-only Bayesian segmentation 

(increase of 7 points in accuracy and AUC, and reduction of 6 samples). Compared with 

FreeSurfer, our algorithm reduces the sample size by 60%.

4 Conclusion

We have presented a Bayesian method for joint segmentation of sMRI and dMRI, which is 

robust to changes in acquisition platform and protocol – as shown with two substantially 

different datasets. Compared with Bayesian segmentation using sMRI alone, our method 

produces more accurate boundaries for subcortical structures, and yields smaller sample 

sizes in an AD classification task.

Future work at the methodological level will follow five main directions: (i) Modeling 

partial voluming in the dMRI, which may be important for smaller structures; (ii) Exploring 

other axial PDFs, as well as mixtures; (iii) Placing a prior on the dMRI likelihood 

parameters, e.g., to utilize prior knowledge on the FA; (iv) Modeling the bias field in the 

sMRI data, e.g., as in [1]; and (v) Adding connectivity derived from tractography to the 

dMRI likelihood, which may be challenging because tractography results depend largely on 

the MR acquisition.

We also plan to manually trace structures some of the HCP and AD data, with three 

purposes. First, to include white matter bundles in the atlas, as modeling the whole cerebral 

white matter with a single Beta-DSW is not realistic (not even within a bounding box). 

Second, to enable direct evaluation of our segmentations. And third, to help us explain 

discrepancies in AD classification accuracy between our results and those presented in [17], 

which may be due to the their larger dataset, their different ADNI sample, or some other 

factor.

As high-resolution dMRI becomes more common in neuroimaging, we believe that 

segmentation techniques that jointly model gray and white matter with sMRI and dMRI – 

like the one in this paper – will become increasingly important.
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Fig. 1. 
(a) Coronal plane across the thalami of a T1 scan from the HCP. (b) Corresponding map of 

principal diffusion directions, and manual delineation of the left thalamus. (c) Axial plane of 

the T1 scan across the basal ganglia, and manual delineation of the boundary between the 

putamen and globus pallidus. (d) Corresponding principal diffusion directions (weighted by 

FA), with the joint boundary of the putamen and pallidum (in yellow, visible in this map) 

and the contour from the T1 (in red).
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Fig. 2. 
(a) Graphical model of proposed framework. (b) Hierarchical model of dMRI likelihood. 

Circles represent random variables (open if hidden, shaded if observed). Smaller solid 

circles are deterministic parameters. Plates indicate replication.
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Fig. 3. 
Top two rows: axial slice of a T1 scan and principal diffusion directions of an HCP subject, 

with segmentations from FreeSurfer, Bayesian segmentation (T1 only), and the proposed 

method (T1+dMRI). Bottom row (left to right): Whole-brain tractography (25,000 tracts); 

subset of tracts going through the thalami (in yellow) as segmented by: FreeSurfer (2,602 

tracts); Bayesian segmentation of T1 (2,193 tracts); and proposed method (1,676 tracts). See 

Section 3.3 for a description of the arrows.
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Fig. 4. 
Scatter plot for intracranial vs. whole thalamic volumes (left-right averaged), and regression 

lines (black) with 95% confidence intervals (in red).
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