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Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive subtype of non-alcoholic
fatty liver disease and potentiates risks for both hepatic and metabolic diseases.
Although the pathophysiology of NASH is not completely understood, recent
studies have revealed that macrophage activation is a major contributing factor
for the disease progression. Macrophages integrate the immune response and
metabolic process and have become promising targets for NASH therapy.
Natural products are potential candidates for NASH treatment and have
multifactorial underlying mechanisms. Macrophage involvement in the
development of steatosis and inflammation in NASH has been widely
investigated. In this review, we assess the evidence for natural products or their
active ingredients in the modulation of macrophage activation, recruitment, and
polarization, as well as the metabolic status of macrophages. Our work may
highlight the possible natural products that target macrophages as potential
treatment options for NASH.
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Core tip: Macrophages play a pivotal role in the pathogenesis of nonalcoholic
steatohepatitis. Here we discuss the evidence for natural products or their active
ingredients in the modulation of macrophage activation, recruitment, and polarization, as
well as the metabolic status of macrophages. Our work may highlight the possible
natural products that target macrophages as potential treatment options for nonalcoholic
steatohepatitis.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease worldwide[1].
Approximately  one-quarter  of  the  population  suffer  from  NAFLD [ 1 ],  and
approximately 30% of patients with NAFLD progress to the inflammatory subtype-
nonalcoholic  steatohepatitis  (NASH) [2].  NASH  is  characterized  by  steatosis,
inflammation, and fibrosis, and serves as a potential risk factor for hepatocellular
carcinoma[3].  Lifestyle interventions, such as dieting and exercise, are the general
recommendation for NAFLD[4]. Weight control is of great importance, and a weight
loss of 7% to 10% can histologically attenuate NASH in patients[5].  Even without
weight  loss,  patients  with  NAFLD  benefit  from  exercise  by  improving  insulin
sensitivity  and reducing hepatic  lipid content[3,6,7].  However,  not  all  patients  are
willing  or  suitable  for  such  interventions,  thus  making  pharmacological  agents
urgently needed. Although the pathophysiology and treatment of NASH have been
extensively investigated,  authorized pharmacological  agents that are specific  for
NASH are not yet available.

Macrophages are versatile innate immune cells. As scavengers, they engulf worn-
out  cells  and debris.  As  secretory  cells,  they  produce  a  wide  array  of  powerful
chemical  substances,  such  as  enzymes  and  complement  proteins.  In  addition,
macrophages can present antigens and, along with dendritic cells, initiate adaptive
immune  response.  Tissue  macrophages  are  mainly  derived  from  embryonic
progenitors and blood monocytes[8].  Since macrophages obtain phagocytosis and
immunoregulating  properties,  they  are  involved  in  tissue  development  and
homeostasis with high plasticity[9].  According to their functions, macrophages are
generally divided into two subpopulations, namely, classically activated (M1-type)
macrophages  and  alternatively  activated  (M2-type)  macrophages.  The
microenvironment determines the phenotype, and the dynamic self-metabolism state
inversely regulates its response to the microenvironment. For instance, high levels of
lipopolysaccharide (LPS) and interferon γ (IFN-γ) promote M1-type macrophage
polarization,  whereas  interleukin  (IL)-4,  IL-10,  and  IL-13  promote  M2-type
macrophage polarization[9-11]. The predominant phenotype may change at different
periods of disease. M1-type macrophages become dominant during inflammation and
injury, whereas M2-type macrophages are abundant in the tissue repair and recovery
periods.

Macrophages are the main source of inflammatory mediators in the liver, and the
activation of macrophages also induces insulin resistance and metabolic dysfunctions.
In addition, high titers of immunoglobulin G exist in 40% of adult NAFLD/NASH
patients,  60%  of  pediatric  NASH  patients,  and  diet-induced  NASH  animals,
suggesting  that  adaptive  immune  responses  also  take  an  active  part  in  NASH
development[12-14]. The versatile macrophages integrate metabolic and inflammatory
responses,  as  well  as  adaptive  immunity,  thus  serving as  critical  targets  for  the
treatment of NASH[15]. Natural products are potential candidates in NASH therapy
owing to their safety and multitarget properties, and a series of natural products are
reported  to  modulate  macrophages,  which  may  contribute  to  their  effects  in
preventing or treating NASH.

ROLE OF LIVER MACROPHAGES IN NASH
NASH is characterized by infiltration of inflammatory cells in the liver, and liver
macrophages  play a  central  part  in  the  process[16].  Liver  macrophages  consist  of
resident Kupffer cells (KCs) and recruited macrophages derived from circulating
monocytes. KCs and recruited macrophages have different features in the progression
of  NASH[17].  KCs  are  the  first  line  of  defense  in  the  liver,  and  endogenous  and
exogenous  pathogens  induce  KC activation.  The  activated  KCs  clear  pathogens
depending  on  their  phagocytic  activity.  Simultaneously,  KCs  secrete  pro-
inflammatory cytokines and chemokines, promote the inflammatory response, and
recruit  peripheral  blood monocytes to the liver.  With the progression of disease,
monocyte-derived macrophages become the dominant macrophages in the liver[17].
Generally, macrophage activation serves as a protector by engulfing pathogens and
secreting cytokines or mediators in the early stage of host immunity[18].  However,
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continuous stimulation induces cell death, liver injury, and related diseases[19].

NATURAL PRODUCTS THAT TARGET MACROPHAGES IN
NASH TREATMENT

Natural products regulating macrophage activation
In NASH, pathogen-associated molecular patterns or damage associated molecular
models  such as  gut-derived endotoxins,  adipose  tissue-derived adipokines,  and
debris from injured or dead hepatocytes induce KC activation, activated KCs secrete
chemokines to recruit monocytes to the liver, and the expanding liver macrophage
pool may further promote liver injury[20,21]. KC depletion has been reported to protect
mice from hepatic steatosis and insulin resistance upon high fat diet (HFD) feeding,
suggesting  that  KCs  play  an  important  role  in  NAFLD development[22].  Several
natural products are reported to inhibit KC activation. Sparstolonin B is an ingredient
of Sparganium stoloniferum, and administration of Sparstolonin B to HFD-fed mice
decreases the expression of cluster of differentiation 68 (CD68) and chemokine 2
(CCL2) in KCs and reverses NASH features accordingly[23]. Curcuminoids, extracted
from the plant Curcuma domestica Val.,  are found to inhibit KC activation in LPS-
treated BALB/C mice[24]. In carbon tetrachloride-induced acute liver injury rats, S.
miltiorrhiza extract administration obviously suppresses p38 and nuclear factor-kappa
B (NF-κB) signaling in KCs[25]. A six-week supplementation of methanolic extract of
Graptopetalum paraguayense was reported to reduce nitric oxide, tumor necrosis factor
(TNF)-α,  and  IL-6  generation  and  improve  liver  inflammation  and  fibrosis  in
dimethylnitrosamine- or carbon tetrachloride-induced NASH rats[26].

Excess lipids in the liver may cause lipotoxicity, and lipid intermediate metabolites
such  as  palmitate,  ceramides,  and  free  cholesterol  are  crucial  contributors  to
macrophage activation, oxidative stress, and apoptosis[27-29]. Natural products with the
function of reducing lipotoxicity are candidates for NASH treatment. The tuber of
Alisma orientalis (Sam.) Juzep.  is  a commonly used herbal medicinal material,  and
administration of its extract prevents endoplasmic reticulum stress and lipogenic gene
expression in palmitate-stimulated HepG2 cells as well as in diet-induced NAFLD
mice[30,31]. Serine palmitoyltransferase is a key enzyme in ceramide metabolism, and
the fungal compound myriocin inactivates serine palmitoyltransferase by forming a
C18 aldehyde and prevents sphingolipid biosynthesis in hepatocytes[32].

In addition to endogenous liver stress, liver macrophage activation can also be
mediated  by  extrahepatic  stimuli,  such  as  gut-derived  endotoxins,  translocated
bacteria and microbiota metabolites,  and adipose-derived cytokines.  Blocking or
alleviating these stimuli is expected to suppress macrophage activation and improve
the NASH phenotype[27,33-36]. Certain natural products may affect the structure of the
gut microbiome, and the related metabolites are reported in NASH treatment. Gallic
acid is a naturally abundant plant phenolic compound in vegetables and fruits; it
partially reshapes gut dysbiosis, reduces the choline metabolites dimethylamine and
trimethylamine, and prevents NAFLD development in HFD-fed mice[37]. The natural
plant alkaloid berberine can be found in plants, such as Coptis chinensis Franch. and
Phellodendron chinense Schneid. Short-term berberine exposure in mice reshapes gut
microbiota by reducing Clostridium clusters XIVa and IV, and shows beneficial effects
on NASH mice[38]. In db/db mice, administration of dendrobium extract increases the
Bacteroidetes  to  Firmicutes  ratio  and  the  relative  abundance  of  Prevotella  and
Akkermansia, and reduces the relative abundance of S24-7, Rikenella, and Escherichia
coli., thus alleviating hepatic steatosis in mice[39]. Certain natural products are found to
improve NAFLD/NASH through modulation of adipokines. Dihydromyricetin is the
main ingredient of the edible medicinal plant Ampelopsis grossedentata. In a double-
blind clinical trial, dihydromyricetin treatment reduces resistin levels and improves
insulin  intolerance  in  patients  with  NAFLD[40].  Korean Red Ginseng is  found to
increase adiponectin and reduce pro-inflammatory TNF-α levels in patients with
NAFLD[41]. Total alkaloids of Rubus alceaefolius Poir have beneficial effects on NAFLD
by reducing serum leptin and resistin and increasing adiponectin levels in HFD-
induced  rats [42].  Additionally,  the  edible  plants  Opuntia  ficus  indica  (nopal),
umbelliferone, and piperine have been reported to improve insulin resistance and
oxidative stress by upregulating serum adiponectin and downregulating leptin levels
in obese animals[43-45].

Natural products regulating liver macrophage recruitment
In NASH, classical LY6Chigh (mice) and CD14+ (human) monocytes are recruited to the
inflamed area in the liver through chemokines[46]. CCL2 is present at a very low level
in the physiological state but is significantly increased in NASH. The interaction of
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CCL2  with  its  receptor  C-C  motif  receptor  2  (CCR2)  is  required  for  monocyte
migration  to  the  liver,  and  knockout  of  CCL2  or  CCR2  significantly  reduces
macrophage  accumulation  and  mitigates  NASH  severity  in  mice[21].  Therefore,
inhibiting macrophage recruitment to the liver is considered an effective strategy for
NASH treatment.  Chemokine  antagonists  have  been  found in  natural  products,
suggesting that natural products play a positive role in this process[47]. Flavonoids
derived from modified apple reduce the transcription of CCR2, chemokine ligand 10,
and CCR10 in mice[48]. Dietary broccoli can reverse dextran sulfate sodium-evoked
CCR2  upregulation  in  mice [49].  Berberine  reduces  CCL2  levels  and  inhibits
macrophage recruitment in HFD-fed rats[50]. In high refined carbohydrate-containing
diet-fed BALB/c mice,  supplementation with crude extract  of  Rudgea viburnoides
(Cham.)  benth.  (Rubiaceae)  leaves  lowers  hepatic  CCL2,  reduces  macrophage
recruitment, and improves the inflammatory response in NASH animals[51]. In HFD-
induced NASH mice and ApoE-/- mice, administration of Long ya Aralia chinensis L-
derived total saponins of Aralia elata (Miq) Seem for 12 wk decreases CCL2, blocks the
inosital-requiring enzyme-1α (IRE1α)-mediated c-Jun N-terminal kinase pathway and
significantly improves hepatic steatosis[52].

Natural products regulating macrophage polarization
Polarization  of  macrophages  is  determined  by  the  local  environment[53].  The
inflammatory  microenvironment  with  LPS  and  IFN-γ  induces  macrophage
polarization  to  the  pro-inflammatory  M1-type,  characterized  by  increased  pro-
inflammatory  cytokines,  chemokines,  and  reactive  nitrogen  and  oxygen
intermediates[54].  IL-4,  IL-10,  and  IL-13  induce  polarization  towards  the  anti-
inflammatory  M2-type  (e.g.,  M2a,  M2b,  and  M2c)  characterized  by  increased
scavenger receptors and enhanced phagocytosis activity[11,55].  In addition, PPAR-γ
regulates M2-type polarization, and low levels of IFN-γ or high levels of CSF-1 induce
recruited monocytes to differentiate into M2-type macrophages[56,57]. Certain stimuli
may switch macrophages from M1-type to M2-type, or vice versa[53,58-60].  Failure to
appropriately control this switch may cause progression of the disease[61]. In NASH,
rapid and abundant pro-inflammatory macrophages are required and of benefit in the
early stage; however, the constant existence of pro-inflammatory macrophages results
in aggravated inflammation and fibrogenesis[62,63]. A series of natural products have
been proven to  regulate  macrophage polarization and thus alleviate  NASH and
related complications. Celastrol is found to attenuate lipid accumulation and improve
insulin sensitivity in NAFLD mice and regulate macrophage polarization through
mitogen-activated  protein  kinase-NF-κB pathways  in  mice[64].  Smiglaside  A is  a
phenylpropanoid glycoside isolated from Smilax riparia,  and it has been found to
upregulate M2-type and downregulate M1-type macrophage biomarkers in LPS-
stimulated RAW264.7 cells and mouse peritoneal macrophages[65]. Asperlin isolated
from  marine  Aspergillus  versicolor  LZD4403  fungus  significantly  reduces  the
expression of pro-inflammatory mediators such as inducible nitric oxide synthase, IL-
1β,  and  TNF-α,  and  increases  expression  of  IL-4  and  IL-10  in  LPS-stimulated
RAW264.7  cells [66].  The  pentacyclic  triterpene  lupeol  regulates  macrophage
polarization  by  reducing  pro-inflammatory  and  increasing  anti-inflammatory
cytokines in intestinal epithelial cells[67]. Baicalin upregulates IL-10, arginase 1, and
IFN regulatory factor 4 (IRF4), downregulates TNF-α, IFN regulatory factor 5, IL-6,
and IL-23, and enhances the phagocytosis and efferocytosis of macrophages, thus
promoting macrophage polarization to the M2-type in mice with inflammatory bowel
disease[68,69]. The Salvia miltiorrhiza ingredient tanshinone IIA and Tabebuia avellanedae
Lorentz ex Griseb extract were found to promote M2-type macrophage polarization in
colitis mice[70,71]. Emodin can be found in Chinese herbs such as Rheum palmatum and
Polygonum multiflorum; it bidirectionally modulates the polarization of primary mouse
macrophages, inhibits pro-inflammatory genes when challenged with LPS/IFN-γ, but
increases  pro-inflammatory  genes  under  IL-4  stimulation  in  macrophages[10].
Inactivation of the Notch signaling pathway contributes to M2-type polarization[72].
Natural products such as Trichosanthes kirilowii lectin and oridonin are reported to
deactivate Notch signaling, induce M2-type macrophage polarization, and inhibit the
inflammatory response in rodents[73,74].

NATURAL PRODUCTS THAT MODULATE METABOLIC
STATUS OF MACROPHAGES
The liver is an important metabolic organ and provides a favorable environment for
macrophages[19,75,76].  As  immune  cells  have  high  plastic  functions,  macrophages
autonomously  change  their  self-metabolism  state  to  adapt  to  the  micro-
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environment[77-79]. Alterations in the metabolic state influence the energy supply as
well  as  the  function  and  phenotype  of  macrophages[80].  Metabolic  pathways  in
macrophages include amino acid metabolism, glycolysis, mitochondrial oxidative
phosphorylation (OXPHOS), pentose phosphate pathway, fatty acid synthesis, and
fatty acid oxidation[81]. Activated macrophages are characterized by abnormal amino
acid metabolism, upregulated glycolytic metabolism, and damaged OXPHOS[80,82-84].
M1-type macrophages display activated pentose phosphate pathway and a broken
tricarboxylic acid (TCA) cycle[85]. M2-type macrophages show enhanced OXPHOS and
normal TCA cycle function[86-88]. The damaged TCA cycle promotes the accumulation
of succinate and citrate, followed by the generation of IL-1β, and thus contributes to
the M1-type macrophage response[89].

Macrophages acquire energy to support their functions; M2-type macrophages
obtain energy mainly from OXPHOS, whereas M1-type macrophages obtain energy
through glycolysis.  Glycolysis  is  inefficient  at  ATP generation,  so  the process  is
enhanced, and substrate production is accelerated to guarantee the functions of M1
macrophages in the inflammatory state[90]. Accumulated substrates act as stimulants
that strengthen the macrophage response and activate other signaling pathways.
Pyruvate  is  one  of  the  end  products  of  glycolysis,  and  an  increase  in  pyruvate
dehydrogenase  kinase-2  (PDK2)  and  pyruvate  dehydrogenase  phosphorylation
decreases pyruvate/acetyl-CoA conversion, reactive oxygen species secretion, and IL-
1β production[91-93]. Several natural products are reported to affect the metabolic status
of macrophages in NASH treatment. Ampelopsis brevipedunculata (Vitaceae) berries are
a medicinal plant for treating liver disease, and its ethanol extract decreases pyruvate,
superoxide dismutase, and dimethyl sulfoxide levels in ferrous iron-stimulated liver
injury rats[94].  Aim Scutellariae Radix  and Coptidis Rhizoma  are found to upregulate
pyruvate  kinase  activity  in  the  liver,  and  thus  improve  the  dysfunctional  lipid
metabolism in diabetic rats[95]. Hyacinth bean (Dolichos lablab L) ameliorates pyruvate-
derived amino acid metabolism and prevents obesity in HFD-fed mice[96]. PDK1 is
associated with the M1-type response and aerobic glycolysis, and inhibition of PDK1
promotes M2-type polarization[97].  It  has been reported that methanol extracts of
Mycetia  cauliflora  Reinw.  (Rubiaceae)  and  Dipterocarpus  tuberculatus  Roxb.
(Dipterocarpaceae) target PDK1 and suppress the NF-κB signaling pathway in LPS-
stimulated RAW264.7 cells[98,99]. Pyruvate kinase M2 inhibits LPS-induced M1-type
polarization while evoking M2-type polarization by inhibiting IL-1β and increasing
IL-10 generation. Natural products that regulate pyruvate kinase M2 may also benefit
NASH therapy, and further studies are needed to explore such agents[100].

SUMMARY AND PERSPECTIVES
Macrophages play a pivotal role in NASH development. Macrophages in the liver
integrally regulate immune and metabolic responses and have become attractive
targets for NASH treatment. Natural products are important candidates for NASH
and are involved in regulating macrophage activation, recruitment, and polarization.
Inversely, metabolic status affects the function of macrophages, and enzymes that
modulate metabolic processes can also be regulated by natural products (Figure 1,
Table 1).

There  are  plenty  of  reports  about  natural  products  for  treating  liver-related
diseases, and on the basis of the available experimental results, curcumin, berberine,
flavonoids,  sparstolonin B,  baicalin,  and emodin are among the most  promising
agents in NASH treatment.  Actually,  several natural products are already under
clinical investigation. Curcumin is currently in phase II/III clinical trials, expecting to
improve  liver  steatosis,  fibrosis,  and  liver  inflammatory  mediators  in  NAFLD
patients[101,102]. Administration of berberine plus lifestyle intervention has been proven
to reduce body weight, hepatic fat content, and serum lipid profiles, improve insulin
sensitivity, and increase brown adipose tissue mass in NAFLD patients[103,104].

Although the effects of natural products on NASH are confirmed, available studies
lack consensus standards and specifications, leading to the evaluation system being in
an immature state and the potential mechanisms remaining unclear. The variance of
patient  choice  and  adherence,  dosing  methods,  as  well  as  test  cycle  may  cause
inconclusive results, and large-scale, multicenter random control trials are needed. In
addition,  many  natural  products  show  low  bioavailability,  thus  strategies  in
promoting drug utilization or improving dosage form (nanoparticle and biological
vector)  need to  develop.  Considering  the  complex  pathology  of  NASH,  natural
products are quite feasible to solve the problems. However, more work should be
done to connect and integrate the two complex systems.
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Table 1  Natural products that target macrophage for nonalcoholic steatohepatitis therapy

Section Drugs Model Functions Ref.

Macrophage activation Sparstolonin B HFD-fed mice ↓CD68, MCP-1
[23]

Curcuminoids LPS-treated BALB/C mice ↓Phagocytic activity of KCs
[24]

S. miltiorrhiza extract CCl4-induced liver injury rats ↓p38, NF-κB signaling
[25]

Extract of Graptopetalum
paraguayense

Liver fibrosis rats, primary
HSCs and KCs

↓KC activation, nitric oxide,
TNF-α, IL-6

[26]

Alisma orientale extract PA-stimulated HepG2 cells,
NAFLD mice

↓ER stress, lipogenic gene
expression

[30,31]

Myriocin Co-culture SPT with myriocin ↓SPT activation
[32]

Gallic acid HFD-induced NAFLD mice ↓TMA, DMA
[37]

Berberine NAFLD mice ↓Clostridium cluster XIVa and
IV;

[38]

Dendrobium extract db/db mice ↑The bacteroidetes to firmicutes
ratio, Prevotella, Akkermansia;
↓S24-7, Rikenella, Escherichia
coli.

[39]

Dihydromyricetin Adult NAFLD patients ↓Resistin, IR
[40]

Korean Red Ginseng NAFLD patients ↑Adiponectin, ↓TNF-α
[41]

Total alkaloids of Rubus
alceaefolius Poir

HFD-fed NAFLD rats ↑Adiponectin; ↓Leptin,
resistin

[42]

Opuntia ficus indica Obese Zucker (fa/fa) rats ↑Adiponectin; ↓leptin, IR
[43]

Umbelliferone HFD- and STZ-induced type
2 diabetic rats

↑Adiponectin; ↓leptin, IR
[44]

Piperine HFD-induced obese rats ↑Adiponectin; ↓leptin, IR
[45]

Macrophage recruitment Flavonoids Mice ↓CCR2, CXCL10, CCR10
[48]

Broccoli DSS-induced colitis mice ↓CCR2
[49]

Berberine HFD-fed rats ↓CCL2
[50]

Rudgea viburnoides (Cham.)
Benth. (Rubiaceae) leaves

HC-diet fed BALB/c mice ↓CCL2
[51]

Total aralosides of Aralia elata
(Miq) seem

HFD-induced NASH mice,
ApoE-/- mice

↓CCL2, JNK signaling
pathway

[52]

Macrophage polarization Celastrol RAW264.7 cells and diet-
induced obese mice

↓TNF-α, IL-6, IL-1β, iNOS,
MAPK activation, NF-κB
nuclear translocation; ↑Nrf2
and HO-1

[64]

Smiglaside A LPS-stimulated RAW264.7
cells, mouse peritoneal
macrophages

↑AMPK-PPARγ, M2-type
macrophages; ↓M1-type
macrophages

[65]

Asperlin LPS-stimulated RAW264.7
cells

↓TNF-α, IL-1β, iNOS; ↑IL-4,
IL-10

[66]

The pentacyclic triterpene
lupeol

DSS-induced colitis mice ↓TNF-α, IL-6, IL-1β, IL-12,
p38, MAPK, CD86, IRF5; ↑IL-
10, CD206

[67]

Baicalin BMDMs, PMs, colitis mice ↓TNF-α, IL-6, IL-23, IRF5;
↑IL-10, Arg-1, IRF4

[68,69]

Tanshinone IIA HFD fed ApoE-/- mice ↑M2-type macrophage, ↓miR-
375

[70]

Tabebuia avellanedae Lorentz ex
Griseb extract

Mesenteric lymph nodes of
DSS-induced colitis mice

↑M2-type macrophage
[71]

Emodin Primary mouse macrophages ↓NF-κB/IRF5/STAT1 and
IRF4/STAT6 signaling,
H3K27 acetylation; ↑H3K27
trimethylation

[10]

Trichosanthes kirilowii lectin STZ-induced diabetic DN rats ↓Notch signaling
[73]

Oridonin LPS-stimulated RAW264.7
cells

↓Notch signaling
[74]

Macrophage metabolism Ampelopsis brevipedunculata
(Vitaceae) berries

Ferrous iron-stimulated rat
hepatocyte

↓Pyruvate, superoxide
dismutase, dimethyl
sulfoxide

[94]

Aim Scutellariae Radix and
Coptidis Rhizoma

HFD-induced diabetic rats ↑Pyruvate kinase activities
[95]
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Hyacinth bean HFD-fed mice ↓Pyruvate-derived amino
acids metabolism

[96]

Mycetia cauliflora Reinw. LPS-activated RAW264.7 cells ↓PDK1, NF-κB signaling
pathway

[98]

Dipterocarpus tuberculatus
Roxb.

LPS-activated RAW264.7 cells ↓PDK1, NF-κB signaling
pathway

[99]

HFD: High fat diet; LPS: lipopolysaccharide; KCs: Kupffer cells; CCl4: Carbon tetrachloride; HSCs: Hepatic stellate cells; NAFLD: Non-alcoholic fatty liver
disease; SPT: Serine palmitoyltransferase; DMA: Dimethylamine; TMA: Trimethylamine; CCR2: C-C motif receptor; CXCL10: Chemokine ligand 10; DSS:
Dextran sulfate sodium; HC: High refined carbohydrate; JNK: c-Jun N-terminal kinase; MAPK: Mitogen-activated protein kinase; iNOS: Inducible nitric
oxide synthase; IRF: Interferon regulatory factor; PDK: Pyruvate dehydrogenase kinase; IL: Interleukin; TNF: Tumor necrosis factor; CCR2: C-C motif
receptor 2; MCP: Monocyte chemotactic protein; NF-κB: Nuclear factor-kappa B.

Figure 1

Figure 1  Natural products that target macrophages for nonalcoholic steatohepatitis treatment. Both resident Kupffer cells and recruited macrophages are
involved in the pathogenesis of nonalcoholic steatohepatitis. Modulation of macrophage activation, polarization, and recruitment by natural products contributes to
nonalcoholic steatohepatitis improvement. Metabolic status affects the function of macrophages, and natural products also regulate macrophage metabolism. KC:
Kupffer cell; MΦ: Macrophage; OXPHOS: Mitochondrial oxidative phosphorylation; IL: Interleukin; TNF: Tumor necrosis factor; CCR2: C-C motif receptor 2; MCP:
Monocyte chemotactic protein.
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