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Denser Markers and Advanced 
Statistical Method Identified More 
Genetic Loci Associated with Husk 
Traits in Maize
Zhenhai Cui   1,2,5, Haixiao Dong2,3,5, Ao Zhang   1, Yanye Ruan1, Siqi Jiang1, Yan He4 ✉ & 
Zhiwu Zhang   2 ✉

The husk—the leaf-like outer covering of maize ear—has multiple functions, including protecting the 
ear from diseases infection and dehydration. In previous studies, we genotyped an association panel 
of 508 inbred lines genotyped with a total of ~550,000 SNPs (Illumina 50 K SNP Chip and RNA-seq). 
Genome-Wide Association Studies (GWAS) were conducted on four husk traits: husk length (HL), husk 
layer number (HN), husk thickness (HT), and husk width (HW). Minimal associations were identified 
and none of them passed the P-value threshold after a Bonferroni multiple-test correction using a 
single locus test in framework of mixed linear model. In this study, we doubled the number of SNPs 
(~1,250,000 in total) by adding GBS and 600 K SNP Chip. GWAS, performed with the recently developed 
multiple loci model (BLINK), revealed six genetic loci associated with HN and HT above the Bonferroni 
multiple-test threshold. Five candidate genes were identified based on the linkage disequilibrium with 
these loci, including GRMZM2G381691 and GRMZM2G012416. These two genes were up-regulation and 
down-regulation in all husk related tissues, respectively. GRMZM2G381691 associated with HT encoded 
a CCT domain protein, which expressed higher in tropical than temperate maize. GRMZM2G012416 
associated with HN encoded an Armadillo (ARM) repeat protein, which regulated GA signal pathway. 
These associated SNPs and candidate genes paved a path to understand the genetic architecture of 
husk in maize.

Husk is the outer membranous of fruits or seeds, carrying multiple functions such as protecting the ear from 
diseases infection and dehydration. Maize husk exists long before domestication ancestor teosinte in Mexico 
sometime between ten to five thousand years ago. Teosinte only has a handful kernels, while modern maize could 
have hundreds of kernels. Teosinte kernels are encased in a hard shell, which evolved to maize cob. The common 
feature is that kernels of both teosinte and maize are wrapped with husk. Although husk also produce carbohy-
drates through the process of photosynthesis1 similar to leaves, the primary function is to provide living condition 
for kernels to grow, such as maintaining appropriate moisture. The secondary function is to protect kernels from 
attacks, such as from birds and pests damage, and pathogen infection2–7.

Compared with the foliar leaves that initiate from the shoot apical meristem (SAM), husks generate from the 
lateral meristem8. The maize foliar leaves present a complete C4 photosynthetic pathway. In contrast, although 
husks operate biologically as a C4-like photosynthetic pathway, their CO2 assimilation rate is inefficient and they 
exhibit a non-Kranz anatomy1. Husk surface area is closely related to the amount of cell-wall components, such 
as hemicellulose and cellulose9. Husks consist of multiple layers, typically ranging from 6 to 19 in inbreds and 
single-cross hybrids10. Husk layer number was found to be highly related to tassel branch number11.
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Husks are commonly used as by-products in addition to kernels, including animal feed12, fiber for making 
papers13,14, and anthocyanins for food and cloth pigment15. With machine harvesting, the most economic impact 
of husk is the harvestability. In addition to the primary and the secondary function, husk must be dried fast 
enough so that grain kernels can be harvested at low cost. Thus, appropriate maize husk architecture is criti-
cally important. Measuring and breeding of this complex trait is challenge. Grain moisture content at harvesting 
time is determined by several husk traits, such as the husk thickness16, layer number17, tightness18, and husk 
moisture content19. Understanding the genetic architecture of these component traits is beneficial to understand 
harvestability.

The earliest effort of mapping quantitative trait loci (QTLs) underlying husk traits can be traced back to early 
2000s in research on resistance to ear feeding insect and invasion4. Husk coverage and tightness were identified to 
be related to ear aflatoxin contamination. F2–3 populations were used to map QTLs. Multiple markers were iden-
tified to be significantly associated with husk tightness. These markers located on chromosomes 1 S, 1 L, 3 L, and 
7 L. The marker on 3 L accounted for 12.7% of the variation and the rest were less than 10%. In 2010s, experiments 
have been conducted to map genes underlying husk traits. In 2018, linkage analysis was conducted for three husk 
traits20 using three maize recombinant inbred line (RIL) populations. The three traits are Husk Length (HL), Husk 
layer Number (HN), and Husk Width (HW), The study found 21 quantitative trait loci (QTL). Husk morphology 
varies widely among different maize inbred lines10,20–22. In 2016, the first GWAS was conducted with 253 inbred 
lines and 3 K markers22 and identified 24 markers associated with HN using the threshold of P < 0.001 without 
multiple test correction. At end of the same year the second GWAS was conducted with both number of lines and 
markers increased (508 lines with 0.5 M markers)21. The study identified 9 markers associated with HN, HW, and 
Husk Thickness (HT) at P  <  1.04 × 10−5 without multiple test correction. Both the GWAS studies did not find 
any significant markers using a threshold of α = 0.01 after Bonferroni multiple test correction23.

The objective of this study was to further increase number of markers and use recently developed GWAS 
method (BLINK) to identify associated markers for husk traits at a stringent threshold, such as α = 0.01 after 
Bonferroni multiple test correction. The number of markers was increased from 0.5 M to 1.25M25. Compared with 
the previous GWAS method (mixed linear model using a single loci test, the newly developed statistical method, 
BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway), has higher statistical 
power than MLM because it replaces the single loci test with a multiple loci test24. As a result, we identified a new 
series of candidate genes associated with husk traits. This new information provides a useful resource for further 
functional studies aimed at understanding the molecular pathways involved in husk growth and development.

Results
The dense maker of 1.25 M SNPs were compared with the 0.5 M SNPs used in previous study. The common SNPs 
(0.47 M) were named as sparse markers and used to evaluate the impact of marker density. Both the dense mark-
ers and the sparse makers were analyzed with MLM and BLINK to evaluate the impact of methods. The results 
from the optimum combination (dense marker and BLINK) were used for further analyses, including candidate 
genes.

Genetic loci associated with husk traits.  Based on RNA-seq and 50 K SNP Chip, Yang(2014)26 com-
bined an integrated map for this association panel. Recently, adding GBS and 600 K SNP array data, the genotype 
enlarged to 1.25M25. To intersect previous marker from dense markers, we match the previous markers with 
dense markers to obtain 0.47 M SNPs. The association tests on dense and sparse markers were performed on four 
husk morphogenesis related traits: HL, HN, HT, and HW using BLINK.

No SNP passed the default threshold after Bonferroni multiple test correction for HL and HW (Fig. S1). 
The GWAS results of HN and HT on dense and sparse marker with BLINK are displayed in Fig. 1 and Table 1. 
Although no significant SNP was found by MLM method, we demonstrated the Manhattan plot of HN and HT 
by MLM as comparison. In total, six significant SNPs were detected for HN and HT by BLINK. In dense markers, 
we detected two and three significant SNPs for HN and HT. Percentage of phenotypic variation explained by the 
identified SNPs for HN and HT were 20.85 and 57.33%. Only one significant SNP(SNP3) was derived from both 
newer and older sequencing platforms (GBS and RNA-seq). The other four significant SNPs were derived from 
new sequencing platforms (GBS or 600 K) that were unavailable at the time of our previous study22. In sparse 
markers, we only detected one significant SNP for HT, which was overlapped with dense markers for HT by 
BLINK.

Genotype effects of significant SNPs associated with husk traits.  The phenotypic distribution of 
genotypes of the twelve associated SNPs are displayed for HN and HT. The differences between the two homozy-
gous genotypes were examined by linear model (LM) with principal component analysis (PCA) (Fig. 2). Although 
the LM results could be different from GWAS results, there is substantial agreement. For example, the SNP on 
Chromosome 4 (SNP2) was the most significant SNP for HN from GWAS with P-value of 4.93E-10. The LM on 
the difference between the two genotypes of SNP2 was also the most significant for HN with P-value of 5.5E-4. 
The genotype of AA was 9.64% less than GG for HN. However, with incorporating other factors, GWAS consid-
ered the SNP on chromosome 2 (SNP3) as the most significant for HW. Genotype CC was 12.21% wider than 
genotype TT.

Candidate genes selection based on LD of significant SNPs
According to the B73 RefGen v2 (AGPv2), one significant SNPs for HT were located on the candidate genes, 
AC212835.3_FG007. For the other four significant SNPs, we perform the linkage disequilibrium (LD) decay 
within 1 Mb (Fig. 3). For SNP1, the nearest gene is GRMZM2G003984, which located downstream 30602 bp to 
SNP1(Table 2). In this location, the LD decay was less than 0.2. For SNP2, the nearest gene is GRMZM2G012416, 
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which located upstream 29974 bp to SNP2. In this location, the LD decay was less than 0.3. For SNP4 and SNP5, 
the nearest genes were GRMZM2G057159 and GRMZM2G381691, which located downstream 5120 bp to SNP4 
and upstream 52369 bp to SNP5 (Table 2). In these two locations, the LD decay were both larger than 0.8.

Variance of SNPs in five candidate genes
To detect the variance of SNPs in five candidate genes, we displayed the MAF and P-value of all SNPs for each 
candidate gene (Fig. 4). The number of SNPs were 22, 9, 45, 13 and 6 in five candidate genes. For MAF, the wid-
est distribution appeared in AC212835.3_FG007 from 0.062 to 0.0498. The narrowest distribution appeared in 
GRMZM2G381691 from 0.106 to 0.297. For P-value associated with husk traits, the widest distribution appeared 
in AC212835.3_FG007 from 0.018 to 11.270. The significant SNP located in this gene caused the pick. In other 
four candidate genes, the SNPs showed narrower distribution than the former. BLINK is different with MLM. 
If one significant SNP pass the threshold, other SNPs in same LD won’t pop up. So, if the significant SNP didn’t 
locate in the candidate gene, no point above the threshold could be found.

Figure 1.  Manhattan plots with dense and sparse markers by BLINK and MLM of husk layer number and 
husk thickness in maize. The Manhattan plots on the left panel display the P-values of the SNPs, categorized 
by chromosome and position along the chromosome, associated with Husk layer Number (HN) and Husk 
Thickness (HT). The P-values were calculated using BLINK and MLM software. The physical positions of all 
significant SNPs are displayed as the vertical dashed lines and the candidate genes for the husk traits are listed at 
the top of each line. The horizontal green line represents the Bonferroni multiple test threshold corresponding 
to a type I error of 1% with dense markers and sparse markers (p < 7.98 × 10−9 and p < 2.11 × 10−8). Six SNPs 
(purple circles) were identified as significantly associated with husk thickness and were located in or near the 
five candidate genes. (a) Mahattan plot of HN with dense markers by BLINK. (b) Mahattan plot of HN with 
dense markers by MLM. (c) Mahattan plot of HN with sparse markers by BLINK. (d) Mahattan plot of HN with 
sparse markers by MLM. (e) Mahattan plot of HT with dense markers by BLINK. (f) Mahattan plot of HT with 
dense markers by MLM. (g) Mahattan plot of HT with sparse markers by BLINK. (h) Mahattan plot of HT with 
sparse markers by MLM.
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Candidate gene expression profile.  To determine whether these genes exhibit tissue-specific expres-
sion patterns, we performed an in-silico expression pattern analysis using published RNA-seq datasets from 
14 different organs/tissues, including husk8,27–30. The dataset used in this analysis is listed in Table S1. Gene 
GRMZM2G012416 associated with HN, showed lower expression in husk tissue relative to all other tissues. Gene 
GRMZM2G057159 associated with HN, genes GRMZM2G003984 and AC212835.3_FG007 associated with HT, 
showed lower expression in husk tissue relative to partial other tissues. Gene GRMZM2G381691 associated with 
HT, showed little higher expression in husk tissue relative to all the other tissues. In addition, according to these 
husk candidate gene expression patterns, the 13 tissues can be categorized into 2 groups. The pollen tissues clus-
tered into the first group and other tissues clustered into the second group (Fig. 5).

We also conducted the distribution of correlation between gene expression and husk traits. Gene 
GRMZM2G012416 and AC212835.3_FG007 the highest negative and positive correlation for HN and HT com-
pared with all the other genes. But no candidate gene pass the significant level (p < 0.05) than other genes. The 
probable reason was RNA-seq had tissue-special feature. This RNA-seq data derived by kernel and not husk.

Discussion
Husk traits are controlled by multiple genes or QTL, plus they exhibit wide phenotypic variation with normal 
distributions within the studied association populations20–22. Herein, GWAS was chosen as a suitable method to 
detect the genomic basis of husk traits. However, previous GWAS studies found no significant SNPs using the 
stricter Bonferroni-corrected threshold of α = 0.01 (P < 7.98 × 10−9)21,22, indicating the complexity of molecular 
regulation and the limitations of the previous analysis methods for maize husk morphology.

Enhancing marker density benefited GWAS detection of significant SNPs for husk traits.  The 
genome is larger and the LD decay rate is faster in maize compared to a number of other plant species31,32. Thus, 
the minimum number of markers required for successful GWAS in maize is 0.5–1.0 million33. In the 508-line 
association panel, Yang et al. (2014) combined data from two genotyping platforms (RNA-seq and 50 K SNP 
array)26. Our previous study21 used these ~ 0.55 million markers to identify 9 significant SNPs by MLM with a 
corrected cutoff of P < 1.04 × 10−5 34. Liu et al. increased the marker density of this association panel to ~1.25 
million markers by combining GBS and 600 K SNP array into a whole genetic map25.

Using these combined ~1.25 million markers by MLM, we didn’t find significant SNPs associated with husk 
traits, using the most stringent Bonferroni-corrected threshold of α = 0.01. Compared to sparse markers by 
BLINK, we found five significant SNPs associated with two husk traits, using the former stringent threshold. That 
is, not one of these new SNPs overlapped the significant SNPs identified for HL, HN, HT, or HW in either of our 
previous GWAS21 or linkage mapping study20. One major reason is that most of these SNPs were detected from 
new genotype platforms, which were unavailable when the previous studies were performed.

Admittedly, Bonferroni-corrected thresholds have been criticized as overly conservative and have reduced 
statistical power for finding significant SNPs35. Specifically, these thresholds may preclude the identification of 
existing loci with smaller effects36. Nevertheless, the Bonferroni-corrected threshold remains an efficient standard 
for controlling Type I errors (detecting false positives when the null is true) and avoiding spurious conclusions 
in GWAS23.

BLINK improved GWAS of husk traits.  False positives can also be controlled by improving statistical 
methods. A MLM that incorporates population structure and kinship will control inflation well in GWAS37. 
However, for some complex traits associated with population structure, such as Arabidopsis flowering time, this 
method may also remove signals of known genes as background noise38. To solve this problem in GWAS, the 
new statistical method, BLINK, uses a multiple loci test method instead of a single loci test method for MLM, by 
combining a fixed effect model (FEM), Bayesian information criteria, and linkage disequilibrium information24. 
Compared to MLM, BLINK improves statistical power (defined as the proportion of QTN detected for a specific 
level of TYPE I error) in both real and simulated data24.

So far, only two GWAS results have been published for maize husk traits21,22. In this current study, our SNP 
marker density was two times more than Cui et al.21 and 400 times more than Zhou et al.22 (Table S2). By using 
BLINK instead of MLM in our GWAS, computing time per trait was only 50 seconds, which is 216 times faster 

SNP Traita Chr
Position 
(bp) Alleleb PVEc MAFd P-value

Sequencing 
platforme

SNP1 HN 1 48923085 C/G 6.14 0.06 3.63E-9 600 K

SNP2 HN 4 204094290 A/G 7.34 0.26 4.93E-10 600 K

Totalf 20.85

SNP3 HT 2 21007733 T/C 8.79 0.11 6.15E-11 GBS, RNA-seq

SNP4 HT 2 221361730 T/G 10.39 0.06 1.09E-11 GBS

SNP5 HT 10 94253633 C/T 13.17 0.18 1.19E-09 600 K

Totalf 57.33

Table 1.  Attributes of the five SNPs associated with husk layer number and husk thickness. aHusk layer Number 
(HN) and Husk Thickness (HT). bMajor/minor allele, underlined bases are the favorable alleles. cPercentage 
of phenotypic variation explained by the additive effect of the single significant SNP (PVE). dMinor Allele 
Frequency (MAF). eGBS = genotyping-by-sequencing; 600 K = SNP array with ~600 K markers; RNA-seq = 
RNA sequencing. fTotal percentage of phenotypic variation explained by all significant SNPs.
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than Cui et al.21 and 2 times faster than Zhou et al.22. Particularly, even with the most severe Bonferroni-corrected 
threshold of α = 0.01, BLINK with dense and sparse markers found five and one significant SNPs associated with 
husk traits, whereas no significant SNPs were found in the other two studies using the same threshold.

Novel candidate genes associated with husk traits.  In our previous GWAS study with the 508-line 
association panel, both MLM and GLM models detected 63 candidate genes associated with husk traits21. In our 
most recent study that combined association analysis and linkage mapping, we found four candidate genes for 
HL and one candidate gene for HN20. These candidate genes were clustered into multiple functional categories, 
including cellular trafficking, transcriptional regulation, signal transduction, and metabolism.

In this study, according to LD decay of each significant SNP, we identified five novel candidate genes corre-
sponding to the five associated SNPs (Table 2). For HN, we identified two candidate genes.GRMZM2G003984 
encoded a Lon protease, which can degrade misfolded proteins or some specific regulatory proteins involving in 
mitochondrial biogenesis during seedling establishment39 and cell death in plant40. GRMZM2G012416 encodes 
an Armadillo (ARM) repeat protein. ARM-repeat proteins are motifs that mediate protein-protein interac-
tions involving various animal proteins41. In Arabidopsis, a large amount of ARM-repeat proteins is reported 

Figure 2.  Violin plots of allelic effects of five SNPs associated with husk traits. In a violin plot, the inner red box 
represents the interquartile range. The central white dot represents the median value. The outer gray shape on 
each side represents all measured data points and the thickness represents the probability density of the data. 
The P-values of the two allelic effects of the four husk traits [Husk Length (HL), Husk layer Number (HN), Husk 
Thickness (HT), Husk Width (HW)] are exhibited above each small plot. *Significant at P ≤  0.05; **Significant 
at P  ≤ 0.01; ***Significant at P ≤  0.001.
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as members of the U-Box E3 ubiquitin ligase family and involved in GA signaling or regulating mRNA levels in 
pathogen responses. These candidate genes implied that speed of cell death and GA signal may play important 
role in husk layer number.

For HT, we identified three candidate genes. AC212835.3_FG007 encodes a Poly(U)-specific 
endoribonuclease-B. Poly(U)-specific endoribonuclease was first found from calf thymus but no reports in plant42. 
GRMZM2G057159 encodes a subtilase family protein, which also named subtilisin-like serine proteases family 
protein. Two subtilase genes, HvSBT3 and HvSBT6, were postulate as key components of senescence-associated 
proteolysis in barley43. GRMZM2G381691 encodes a CCT domain protein. ZmCCT played important role of 
affecting photoperiod response in maize44. The higher expression of ZmCCT alleles from tropical maize under 
long day lengths will show later flowering than temperate maize alleles. Congruously, our previous study reported 
that the HT in tropical subgroup is significantly thicker than other temperate subgroup21.

Materials and Methods
Plant materials and phenotyping.  The association panel was comprised of 508 maize inbred lines that 
were globally collected from tropical, subtropical, and temperate germplasms45,46. According to population struc-
ture, all 508 inbred lines were clustered into four subgroups: stiff stalk (SS), non-stiff stalk (NSS), tropical-sub-
tropical (TST), and mixed (MIX). About 10 lines were treated as missing data due to poor germination at each 
planting location. Four husk traits, HL, HN, HT, and HW, were measured at the same stage of maturity, at the 
same time, in two locations in China: Hainan (HN) in 2014 and Beijing (BJ) 2015. Detailed husk measurement 
information has been described in Cui et al.21.

In our previous husk GWAS study21, Best Linear Unbiased Predictions (BLUPs) were used as the response 
variable. The phenotypic distribution of all husk phenotypes was similar to our previous report (Fig. S4). In this 
study, we found that correlations (r2) between means and BLUPs were > 0.95 for each husk trait. This is consist-
ent to previous finding47 that mean values and BLUPs are similar with balanced data when individual lines were 
treated as unrelated. Therefore, we used the mean values instead of BLUPs.

Genotyping, integrated mapping, and imputation.  To obtain higher marker density, four genotyping 
platforms were used, the Illumina Maize SNP50 array, RNA sequencing, GBS, and the Affymetrix Axiom Maize 
600 K array. RNA sequencing was performed on developing kernels at 15 days after pollination for 368 out of 
the 508 maize inbreds48. To add missing genotypes into the additional 140 inbreds, which were only genotyped 
by a SNP-chip, Yang et al. expanded this association panel size using a two-step data-imputation method26. This 
method combines the identity by descent (IBD) based projection and k-nearest neighbor (KNN) algorithm.

Figure 3.  Linkage disequilibrium (LD) decay within one million bp surrounding the five candidate QTNs. 
The physical position of five significant SNPs (purple circles) associated with husk layer number and husk 
thickness were defined as zero in x axis. The physical position of five candidate genes were displayed with green 
arrows.

Candidate genes Traita Chr Gene interval(bp)

Distance from the 
related SNP to the 
edge of the gene 
(bp)b Annotation

GRMZM2G003984 HN 1 48953687–48999879 +30602 Lon protease

GRMZM2G012416 HN 4 204054112–204064316 −29974 ARM repeat superfamily protein

AC212835.3_FG007 HT 2 21007540–21010895 Located Poly(U)-specific endoribonuclease-B

GRMZM2G057159 HT 2 221366850–221371447 +5120 Subtilase family protein

GRMZM2G381691 HT 10 94248710–94251264 −52369 CCT domain protein

Table 2.  Annotation of the candidate genes related to the five SNPs associated with husk traits. aHusk layer 
Number (HN) and Husk Thickness (HT). bThe positive (+) and negative (−) values represent related SNPs 
location in the 5′ and 3′ direction, respectively, of their candidate gene.
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Ultimately, they obtained 0.55 million SNPs for all 508 lines. In two recent studies, 469 lines used GBS49 and 
153 lines used the 600 K SNP array for further genotyping50. In total, 670,411 and 502,824 SNPs were found by 
the GBS and 600 K genotyping platforms, respectively. After strict quality control procedures for each dataset, the 
genotypes from four different genotyping platforms were merged. Beagle v4.051 was then used to perform geno-
type imputation. Finally, the integrated map obtained 1.25 M SNPs with MAF ≥ 5%. The final, merged genotyping 
set can be downloaded from www.maizego.org/Resources. The 1.25 M SNPs were selected as dense markers. Then 
we intersected the 0.55 M and 1.25 M SNPs to obtain 0.47 M SNPs as sparse markers. Thus, all the sparse markers 
were included in dense markers.

Association analysis.  The 1,253,814 SNPs and 474,972 SNPs (MAF ≥ 0.05) were selected as dense and 
sparse markers for GWAS by combining the data from four genotyping platforms (RNA-seq, 50 K SNP array, 
600 K SNP array, and GBS) and two genotyping platforms (RNA-seq, 50 K SNP array)25,48. Association analysis 
for four husk traits was conducted with Bayesian information criterion and Linkage-disequilibrium Iteratively 
Nested Keyway (BLINK)24. The BLINK package can be downloaded from https://github.com/Menggg/BLINK. 
The first three PCs were treated as covariates to perform GWAS. We used the standard Bonferroni-corrected 
threshold of α = 0.01 as the significance cutoff. The suggested P-value was computed as 0.01/n (n = 1,253,814 or 

Figure 4.  Variances of SNPs for P-value associated with husk traits and MAF in five candidate genes. On the 
half above, the P-values were calculated using BLINK software. The horizontal black dashed line represents the 
Bonferroni multiple test threshold corresponding to a type I error of 1% (p < 7.98 × 10−9). On the half blow, 
the y axis represents the Minor Allele Frequency (MAF). The x axis represents the physical position of each 
candidate gene.

Figure 5.  Heat-map of tissue-specific expression patterns of the five candidate genes. The in-silico gene 
expression of the six candidate genes were extracted for husk and other 13 tissues. The gene expressions were 
represented by the normalized Reads Per Kilobase per Million (RPKM). The log2 transformation of the ratio 
of gene expression in husk against the gene expression in other 13 tissues were hierarchically clustered in two 
dimensions (gene and tissue) and displayed using heat map. The expression of GRMZM2G012416 in husk were 
lower than all other tissues.
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474,972), and we obtained the P-value of 7.98 × 10−9 and 2.11 × 10−8 as the final significance cutoff in the asso-
ciation analysis. GWAS by MLM with dense markers was performed in GAPIT 2.0 software52. The first three PCs 
and threshold were as same as previous data using by BLINK. The kinship was calculated with dense and sparse 
markers by GAPIT 2.0.

The contribution of identified SNPs to the phenotypic variance was estimated using anova() function in the 
R package. Taking the first three PCs into account, the R2 of each significant SNP, were calculated by the linear 
models:

α β ε= + ⋅ +Y X P (1)

The total variance of all significant SNPs was calculated by the linear models:

∑α β ε= + +
=

Xi PY
(2)i

m

1

where Y and X represent the phenotype and SNP genotype vectors, respectively; P is the matrix of the first three 
PCs; α is the SNP effect; β is the subpopulation effects; ε is the random effects.

LD decay surrounding the candidate QTNs
LD was calculated for each candidate QTN within its surrounding regions (1 Mb).

LD value equals the Pearson correlation of the genotype for one surrounding SNP and that for the candidate 
QTN.

Distribution of correlation between candidate genes and husk traits
RPKM of RNA-seq data was download from www.maizego.com. After the 15th days of pollination, the kernel of 
368 association panel (a part of 508 association panel) was sequenced by RNA-seq. Based on RPKM, RNA-seq 
reads was computed and scaled. After RPKM normalization by edgeR package, including all genes with a median 
expression level more than zero, the whole distribution of expression level for every gene in this panel was nor-
malized by a normal quantile transformation. We calculated the pearson correlations between each gene’s expres-
sion level and the husk traits of 368 individuals. For the gene expression level, the RPKM values were used.

Heat-map of candidate genes
All RNA-Seq datasets from 14 maize tissues (including anther, cob, ear, embryo, endosperm, husk, kernel, leaf, 
ovule, pollen, root, silk, shoot, and tassel) were downloaded from NCBI’s Sequence Read Archive (SRA) database. 
The SRA sample ID and related reference for all tissues are listed in Table S1. Performing the TopHat pipeline, 
RNA-Seq reads were mapped to the AGPv2 with the built-in Bowtie mapping program. Only the unique mapped 
reads were retained for counting Normalized Reads Per Kilobase Million (RPKM) by Cufflinks software. To 
categorize the pattern of gene expression amount tissues, we derived the log2 transformation on ratio of normal-
ized RPKM in husk against the normalized RPKM in other tissues. Values greater than +2 or less than −2 were 
adjusted to 2 or −2, respectively.
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