Skip to main content
. 2020 May 12;11:368. doi: 10.3389/fphys.2020.00368

TABLE 2.

DMD-cardiomyopathy studies based on hiPSC-CMs: individual mutations vs. functional parameter and therapeutic attempts in vitro.

Mutation/parameter Membrane Electrophysiology Calcium handling Sarcomere Metabolism and oxidative stress Therapeutic approach References
Δ Exon 50 Fragility/damage Slower calcium transients ↓ myofibril force, slower myofibril relaxation, ↑ myofibril calcium sensitivity ↑ mPTP opening; unaffected mitochondrial respiration Guan et al., 2014; Macadangdang et al., 2015; Pioner et al., 2019a
Δ Exons 49–50 Fragility/damage ↑Spontaneous electrical activity ↑Intracellular diastolic calcium level ↑cTnI release (marker of cell damage) ONX-0914 reduced ROS level Farini et al., 2019
DMD; nonspecified mut. Reduced Nup153 factor (regulates cardiac remodeling) Nanni et al., 2016
Δ Exons 45–52 Fragility/damage ↑Intracellular diastolic calcium level ↓Sarcomere transcriptome Mitochondrial damage, CASP3 activation, apoptosis Poloxamer 188, reduced resting cytosolic Ca2+ level, CASP3 activation and apoptosis Lin et al., 2015
c.263ΔG Fragility/damage Slower calcium transients ↓Alignment; ↓acto-myosin turnover; cellular hypertrophy Macadangdang et al., 2015; Pioner et al., 2019a
Δ Exons 52–54 NOS-induced ROS release Jelinkova et al., 2019
Δ Exons 43–45 ↑Stretch-induced intracellular calcium entry Tsurumi et al., 2019
Δ Exons 8–12 ↑ICa–L density; prolonged APD Eisen et al., 2019
c.5899C > T ↑ICa–L density; prolonged APD Eisen et al., 2019
Δ Exon 8-9 ↑Spontaneous electrical activity Slower calcium transients ↓Force production Rescue by CRISPR-Cas9-deletion of 3–9, 6–9, 7–11 Kyrychenko et al., 2017
Δ Exon 3–6 Mitochondrial damage; ↑ROS level ↑exosome protection Exosome protection Gartz et al., 2018
Δ Exons 45–50 ↑Spontaneous electrical activity Caluori et al., 2019
Δ Exons 48–50 CRISPR-Cas9 deletion of exons 45–55 restored DGC Young et al., 2016
Δ Exons 46–55 Fragility/damage Cellular arrhythmias Exon 45 skipping with PMO improved arrhythmias Sato et al., 2019
Δ Exon 44 CRISPR-Cas9 restoration Min et al., 2019
Exon 45, 51, 45, 53, 44, 46, 52, 50, 43, 6, 7, 8, 55 CRISPR-Cas9 restoration Long et al., 2018
Δ Exons 48–50 ↓Force production CRISPR-Cpf1 reframing of Exon 51 or exon skipping: restored dystrophin; enhanced contractile function. Zhang et al., 2017
Δ Exons 4–43 ↓Force production Restoration by HAC carrying the full-length genomic dystrophin sequence Zatti et al., 2014
Δ Exons 48–50, 47–50, Δ TG from exon 35, c.3217G > T Antisense oligonucleotide-mediated skipping of exon 51 and delivery of dystrophin minigene Dick et al., 2013
Δ Exon 52 Slower calcium transients; arrhythmic events AAV6-Cas9-g51-mediated excision of exon 51 restored dystrophin expression and ameliorate skeletal myotube formation as well as abnormal cardiomyocyte Ca2+ handling and arrhythmogenic susceptibility Moretti et al., 2020