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A B S T R A C T

Recent advances in understanding of biological mechanisms and adverse outcome pathways for many exposure-
related diseases show that certain common mechanisms involve thresholds and nonlinearities in biological ex-
posure concentration-response (C-R) functions. These range from ultrasensitive molecular switches in signaling
pathways, to assembly and activation of inflammasomes, to rupture of lysosomes and pyroptosis of
cells. Realistic dose-response modeling and risk analysis must confront the reality of nonlinear C-R functions.
This paper reviews several challenges for traditional statistical regression modeling of C-R functions with
thresholds and nonlinearities, together with methods for overcoming them. Statistically significantly positive
exposure-response regression coefficients can arise from many non-causal sources such as model specification
errors, incompletely controlled confounding, exposure estimation errors, attribution of interactions to factors,
associations among explanatory variables, or coincident historical trends. If so, the unadjusted regression
coefficients do not necessarily predict how or whether reducing exposure would reduce risk. We discuss sta-
tistical options for controlling for such threats, and advocate causal Bayesian networks and dynamic simulation
models as potentially valuable complements to nonparametric regression modeling for assessing causally in-
terpretable nonlinear C-R functions and understanding how time patterns of exposures affect risk. We conclude
that these approaches are promising for extending the great advances made in statistical C-R modeling methods
in recent decades to clarify how to design regulations that are more causally effective in protecting human
health.

1. Introduction

Nonlinearities in exposure concentration-response (C-R) functions
can wreak havoc on traditional statistical risk modeling developed for
linear no-threshold (LNT) modeling assumptions. Nonlinearity in an
agent's causation of a health endpoint implies that no single slope
coefficient necessarily characterizes the change in risk from a given
change in exposure. Nonlinearities in interactions of the agent with
other factors (such as co-exposures, co-morbidities, or covariates that
modify the agent's effect) and dependencies among these factors,
complicate the interpretation and estimation of slope factors or of entire
concentration-response (C-R) curves that seek to quantify how a health
endpoint depends on exposure. At a minimum, it becomes necessary to
specify what is assumed about the levels of other factors, and about how
(if at all) they change when exposure is changed – for example, how
changing one component of a mix of pollutants changes other compo-
nents that affect the same health endpoint. More generally, in both
linear and nonlinear models, failing to characterize causal pathways
other than those leading directly from the agent to the effect, such as

indirect (mediated) pathways, or exposure-response associations due to
common causes (e.g., confounders) or to common effects (e.g., sample
selection criteria), can make it difficult or impossible to determine how
changing exposure would change response probabilities. The possibility
of nonlinearity exacerbates C-R estimation problems if high-order in-
teractions among factors must be considered, and no small number of
parameters in a simple model form can be assumed to adequately re-
present the data-generating process.

Yet, nonlinear C-R functions are prevalent in practice. They require
new ways to carry out each of the health risk assessment steps of hazard
identification, dose-response modeling, exposure assessment, risk
characterization, and uncertainty characterization. They also have
strong implications for how to communicate risk accurately, and for
how to manage risk effectively. This paper reviews challenges for risk
analysis posed by nonlinearity, and discusses constructive methods to
meet these challenges using current techniques of data science and
causal analytics. It focuses on techniques for using epidemiological data
– typically, exposure, response, and covariate variables measured in a
population over time – to identify and quantify health risks caused by
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exposures when underlying individual-level causal biological C-R
functions are nonlinear. As an organizing framework, we take the
practice of regulatory occupational risk assessment recently described
by the National Institute for Occupational Safety and Health (NIOSH,
2020), which we consider a clear, thoughtful exposition of key princi-
ples and practices of current regulatory risk assessment. The following
sections consider how to extend and apply these principles to nonlinear
C-R functions with possible interactions and confounding, using simple
examples to illustrate and clarify the main technical issues.

1.1. Why does nonlinearity matter?

Advances in biological understanding of adverse outcome pathways
and mechanisms have identified many sources of strong nonlinearities
and thresholds in C-R functions. Examples include ultrasensitive mo-
lecular switches in key signaling pathways (Bogen, 2019); positive
feedback, cooperativity and bistability in regulatory networks and in
dynamic processes such as assembly and activation of inflammasomes;
discontinuous changes (e.g., rupture of lysosomes, ion fluxes, loss of
organelle or cell membrane integrity, onset of pyroptosis); and satura-
tion or depletion of protective (homeostasis-preserving) resources such
as antioxidant pools in target cells and tissues (Cox, 2018). The point of
departure for the following sections is the need for realistic risk ana-
lyses to use data analysis methods that are appropriate for such non-
linearities. Traditional regression modeling relating exposures to risks
may give misleading results when the underlying C-R functions are
nonlinear. Each of the following sections describes challenges posed by
nonlinearity and then discusses data analysis techniques for over-
coming these challenges.

1.2. Hazard identification

The central question of hazard identification is whether exposure to a
substance causes increased risk of adverse health effects in at least some
members of the exposed population. “Risk” for an individual is the
probability that an adverse effect occurs in a given time interval.
(Equivalently, it can be expressed as an age-specific hazard function,
giving the expected rate of occurrence per unit time, given that it has
not already occurred. Formulas from survival data analysis allow
probabilities of occurrence by a given time or age, or within a specified
interval, to be calculated from the age-specific hazard function, and vice
versa.) NIOSH, 2020 describes hazard identification as “the systematic
process for assessing the weight of evidence on whether an agent of
interest causes an adverse effect in exposed workers. The findings from
hazard identification are characteristic descriptions and information on
the exposures of interest, any important cofactors (e.g., other risk fac-
tors, moderating factors, mediating factors, or confounders); modes and
mechanisms of action; and conditions (e.g., pre-existing diseases) under
which changes in exposures change the probabilities or timing of ad-
verse effects.” Thus, we will consider that hazard identification ad-
dresses the following questions:

• “Risk of what?” – the adverse effect(s) of interest;
• “Risk from what?” – the source of risk, i.e., the hazard, of interest;
• “Risk to whom?” – the exposed population of interest;
• “Risk under what conditions?” – the context of conditions, such as co-
exposures, co-morbidities, and sociodemographic covariates, under
which risk is assessed; and
• “Risk via what mechanisms? – the causal mechanisms or pathways by
which effects of changes in exposure to the hazard are transmitted to
changes in risks of adverse health effects.

Hazard identification should clarify these defining elements of a risk
– its source, target, effects, and mechanisms – in enough detail to un-
iquely specify the risk being assessed and to support quantitative as-
sessment of how the conditional probability (or hazard rate) for

occurrence of the effect in a stated interval changes in response to
changes in exposure, given the values of other causally relevant vari-
ables.

Challenges for Regression-Based Hazard Identification.
A common approach to hazard identification based on epidemio-

logical data is to fit a regression model to data on estimated exposure
levels and response rates (e.g., average numbers of mortalities or
morbidities per person-year) and to test the null hypothesis that the
regression coefficient relating exposure to response rate is 0. Rejection
of this null hypothesis supports weight-of-evidence (WoE) determina-
tions of a causal relationship between exposure and response, especially
if plausible confounders have been controlled for by including them as
predictor in the regression model. (Similarly for risk ratios, confident
rejection of the null hypothesis that a risk ratio is 1 (no difference) in
risk between more-exposed and less-exposed people in statistical ana-
lyses of relative risks, standardized mortality ratios, odds ratios in lo-
gistic regression models, or hazard ratios in Cox proportional hazards
regression models, is usually interpreted as evidence supporting a
causal relationship in weight-of-evidence (WoE) determinations, espe-
cially if chance, confounding, and biases have been ruled out as plau-
sible explanations.) Against this practice is a fundamental objection
that regression models quantify associations rather than causal impacts.
Specifically, they quantify the conditional expected (average) value of
the dependent variable, given the observed values of predictors, but this
is different from answering the causal question of how or whether
changing one or more of the predictors, such as exposure concentration,
would change the dependent variable (Pearl, 2009; Pearl and
Mackenzie, 2018).

In practice, as discussed in NIOSH, 2020, many statistical issues also
complicate the interpretation of regression models and of non-zero re-
gression coefficients. These challenges include model misspecification
errors, exposure estimation errors, omitted (unobserved, latent) vari-
ables, missing data, inter-individual heterogeneity and variability in
causal dose-response functions, correlations and statistical de-
pendencies among predictors, attribution of interactions, internal va-
lidity of study designs and conclusions (i.e., do the causal conclusions or
interpretations follow from the data collected), and generalization and
external validity of conclusions (i.e., their applicability in contexts
other than those of the original studies). Large technical literatures in
statistics and data science have developed to address these issues.
Constructive approaches have matured enough to create practical al-
gorithms and software.

Table 1 summarizes some key approaches and provides links, which
may be of interest for practitioners to, R packages (vetted, documented,
and maintained via the CRAN repository, https://cran.r-project.org/),
where more technical details and documentation can be found. Despite
this progress, most of these methods are not yet widely used in reg-
ulatory risk assessment, which often relies instead on the judgments of
analysts to try to deal with limitations in study designs and data
(NIOSH, 2020). These difficulties can be exacerbated by nonlinearities,
as illustrated in the following paragraphs.

1.3. Significant regression coefficients arising from trends and from omitted
confounders

Statistically significant C-R associations and non-zero regression
coefficients linking exposure to response probability can arise from
many sources, even in the absence of a causal relationship between
them. For example, if two variables, such as exposure and risk, follow
statistically independent random walks, then regressing one against the
other will usually produce a statistically significant regression coeffi-
cient between them, even though neither causes the other (Yule, 1926).
Likewise, coincidental historical trends can induce C-R associations
without causation.

In ordinary least-squares (OLS) regression, a regression coefficient
for exposure will differ significantly from zero if conditioning on
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exposure significantly reduces the mean squared error (MSE) of the
values predicted by the regression model. This can happen for many
reasons, even if the predicted variable does not depend on exposure.
Perhaps the best known reason is that a confounder – a variable that
makes both exposure and the response more likely when it is present
(or, more generally, that shifts both their cumulative distribution
functions rightward) – can induce a positive regression coefficient for
exposure in a regression model that includes exposure but not the
confounder. For example, suppose that cigarette smoking, exposure
indicators such as blood concentrations of heavy metals (e.g., lead or
cadmium), and response indicators such as age-specific mortality or
morbidity are all mutually positively correlated in a data set. Then a
regression model that omitted smoking could show positive regression
coefficients for the exposure indicators, whether or not response risk
depends directly on them, if they also act as surrogates for smoking,
which directly affects risk. In this case, smoking would be a confounder
for the estimated exposure-response association. In current practice, it
is perhaps unlikely that such an obvious confounder would be omitted,
unless the data were unavailable. However, fully controlling for effects
of confounders can be surprisingly difficult, especially when linear
models cannot be assumed.

The standard way to deal with a measured confounder is to include
it as a predictor in the regression model. The estimate of the coefficient
for exposure is then said to have been “controlled” or “adjusted” for the
confounder. However, this tactic often fails to fully control for effects of
confounding, for reasons discussed in the following sections on mea-
surement errors, model specification errors, residual confounding,
surrogate variables, variable selection, competing explanations, and
attribution of joint effects. For example, indicators of smoking such as
self-reported pack years and cotinine levels, are often imperfectly ac-
curate (Hsieh et al., 2011). Residual effect of confounding might then
still contribute to a positive regression coefficient for exposure. Even
more challenging is the problem of omitted confounders (also called
latent confounders or unobserved confounders) – that is, confounders
that are not included in a regression model, perhaps because they were
not measured. A useful current practice is to quantify how strong the
effects of omitted confounders on exposure and risk would have to be to
explain away the estimated effect of exposure on response. If the re-
quired effect sizes are much larger than those for measured con-
founders, then this suggests that any omitted confounder(s) would have
to be stronger than the measured ones to provide a plausible alternative

explanation for the estimated exposure-response association.

1.4. Significant regression coefficients arising from measurement errors in
confounders

If a confounder is measured or estimated with some error, then
including it on the right side of a regression model will typically not
fully control for it, and exposure will still have a significant positive
regression coefficient in large data sets. As a simple hypothetical il-
lustrative example to clarify concepts, suppose that, unbeknownst to
the risk modeler, the true relationship between a measure of health risk,
R, and past pack-years of smoking, S, is the LNT structural equation
R = 0.01*S; and that an exposure variable X (such as concentration of a
metal in blood or urine) is also related to S by the equation
X = 0.02*S1/2; thus, S confounds the association between X and R.
Consider the effect on multiple linear regression if the estimated values
of S and X values are unbiased but have uniformly distributed estima-
tion errors. Specifically, suppose that estimated values are uniformly
distributed between zero and twice their corresponding true values.
Fitting the regression model E (R |S, X) = b0 + bSS + bXX to a simu-
lated data set with 1000 cases having S values independently uniformly
distributed between 0 and 1 yields the estimated regression model E(R
|S, X) = 0.002 + 0.0035*S + 0.094*X. The intercept and both re-
gression coefficents are significantly greater than 0 (p < 0.00001). By
contrast, the correct causal relationship with accurately measured
variables would be E(R |S, X) = 0.01*S (or, 0.01*S + 0*X). Thus,
measurement error has induced a significant positive exposure coeffi-
cient (bX = 0.094) for X, even though the regression model included the
confounder S on its right side. Intuitively, the reason is that measure-
ments of X provide useful information for reducing the mean squared
prediction error when R is predicted from S alone, because of the
measurement error in S. However, the positive regression coefficient
does not represent a dependence of risk on exposure.

As another example, if two variables exposure and risk have a
common cause such as income, but neither exposure nor risk causes the
other (so that the relevant probabilistic graph model is risk ← income →
exposure), and if variables are measured or estimated with error, then
the multiple linear regression model

= +E risk osure income a osure b income( exp , ) exp

may still show a significant regression coefficient, a, for exposure.

Table 1
Statistical techniques for commonly encountered data imperfections.

Data/Study Imperfection Examples of appropriate techniques and software

Model misspecification errors; unknown shapes of exposure-
response dependencies

Flexible nonparametric models (e.g., MARS, https://cran.r-project.org/web/packages/earth/earth.pdf) and
deep learning; non-parametric model ensembles (e.g., random forest, https://cran.r-project.org/web/
packages/randomForest/randomForest.pdf) and superlearning (https://rdrr.io/cran/SuperLearner/f/
vignettes/Guide-to-SuperLearner.Rmd) for model combination

Exposure estimation errors and errors in estimated or measured
covariates (explanatory variables)

Errors-in-variables methods (e.g., the MMC package in R, https://cran.r-project.org/web/packages/mmc/
mmc.pdf; see also https://www.jstatsoft.org/article/view/v048i02, https://cran.r-project.org/web/
packages/GLSME/GLSME.pdf, https://arxiv.org/pdf/1510.07123.pdf)

Omitted variables; unobserved or unmeasured risk factors,
confounders, and modifiers

latent variable techniques and finite mixture distribution modeling methods (e.g., www.jstatsoft.org/article/
view/v011i08; https://www.jstatsoft.org/article/view/v048i02; PROC CALIS in SAS)

Missing data values Multiple imputation algorithms (e.g., MICE, https://cran.r-project.org/web/packages/mice/mice.pdf); data
augmentation and EM (expectation-maximization) algorithms

Inter-individual heterogeneity and variability in causal exposure-
response curves

Finite mixture distribution modeling, clustering, individual conditional expectation methods (e.g., https://
cran.r-project.org/web/packages/ICEbox/ICEbox.pdf)

Correlated or interdependent explanatory variables Probabilistic graphical methods, e.g., Bayesian networks (https://cran.r-project.org/web/packages/
bnlearn/bnlearn.pdf; https://cran.r-project.org/web/packages/CompareCausalNetworks/index.html)

Interactions among risk factors or other explanatory variables Nonparametric detection, estimation, and visualization of interactions (https://rdrr.io/cran/npIntFactRep/;
https://rdrr.io/cran/npregfast/)

Uncertain internal validity (soundness of causal inferences) Use quasi-experiment designs (or randomization and design of experiments where possible) to control for
standard threats to internal validity, e.g., using PlanOut and PlanAlyzer software (https://hci.stanford.edu/
publications/2014/planout/planout-www2014.pdf; https://dl.acm.org/doi/pdf/10.1145/3360608)

Uncertain external validity (generalizability of findings) Multisite causal mediation analysis (https://cran.r-project.org/web/packages/MultisiteMediation/index.
html); Bayesian evidence synthesis and hierarchical meta-analysis (https://cran.r-project.org/web/
packages/jarbes/index.html)
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Indeed, if the measurement error for income is large and that for ex-
posure is small, regression modeling will conclude that b is not sig-
nificantly different from 0 but that a is. Attempting to control for the
confounder income by including it in the regression model fails if con-
ditioning on the measured values of exposure helps to reduce prediction
error for risk by reducing the effects of measurement error (essentially
because measuring exposure reduces uncertainty about the true value of
income).

More generally, ordinary least squares regression selects values of
regression coefficients to reduce the mean squared error of predicted
values. Thus, it can give a significant coefficient to exposure if doing so
reduces the contribution of measurement error to prediction error,
whether or not exposure makes a causal contribution to risk. This is true
for both linear and nonlinear models. A somewhat analogous phe-
nomenon, examined next, arises specifically from unmodeled non-
linearity in exposure-response relationships.

1.5. Significant regression coefficients arising from model specification
errors

Regression models can fail to fully control for confounding, even if
explanatory variables, including potential confounders, are measured
without errors, if the models assume a shape (e.g., linear) for the re-
lationship between explanatory and dependent variables that differs
from their empirical relationship. This is the problem of model specifi-
cation error or model misspecification: the specified model form does
not perfectly describe the data. As a simple hypothetical example, if
R = S3 and X = S2, where S is uniformly distributed between 0 and 1,
then fitting the (incorrectly specified) multiple linear model E(R |S,
X) = b0 + bSS + bXX to a simulated data set of size N = 1000 cases
produces a least-squares fit of E(R |S, X) = 0.05 + 1.5*X - 0.60*S, with
an R2 value of 0.99 and all coefficients and the intercept significantly
different from zero (p < 0.00001). Although R depends only on the
confounder S and not on exposure X, controlling for S by including it on
the right side of the regression model does not fully control for its
confounding effects, or preclude a statistically significant positive re-
gression coefficient for X. Intuitively, the reason is that the shape of the
assumed model (in this case, linear) is not correct, and including X and
well as S helps to reduce prediction errors due to model specification
error. However, although conditioning on X as well as S leads to an
excellent fit as assessed by the R2 value of 0.99, neither this high R2 nor
the small p value of the regression coefficient for X indicates that risk
depends on X as well as on S. Analogous examples arise for

dichotomous outcomes such as mortality. If R = 1 whenever S > 0.5,
with S uniformly distributed between 0 and 1, and R is otherwise 0; and
if X is uniformly distributed between 0 and 1 if S > 0.5, and is
otherwise 0 (e.g., if X is an exposure marker that is only formed when
S > 0.5), then the regression coefficient for X will be significantly
positive (and larger than that for S) in a logistic regression model for R
with X and S as predictors, even though R does not depend on X.

Model misspecification is often present even when goodness-of-fit
tests do not reject the specified model form in favor of specified alter-
natives. A practical illustration concerns hazard identification of the
metal molybdenum (Mo) as a hazard that might cause decreased tes-
tosterone (T) in men. For example, Lewis and Meeker (2015) presented
a multiple linear regression of the dependent variable log(T) against the
predictors log(Mo), BMI (body mass index), and others, in order to es-
timate the statistical effect of log(Mo) on log(T) while controlling for
potential confounding by BMI. (For simplicity, we focus on these three
variables; the full model also included age and other potential con-
founders.) The multiple linear regression model showed statistically
significant negative regression coefficients for both log(Mo) and BMI,
i.e., greater values of each are associated with smaller values of T (and
log(T)), given the value of the other. This led to the tentative identifi-
cation of Mo as a reproductive hazard. As the authors state, “In adjusted
analyses where metals were modeled as a continuous variable, we
found significant inverse associations between urinary molybdenum
and serum copper and serum testosterone. … These findings add to the
limited human evidence that exposure to molybdenum and other metals
is associated with altered testosterone in men, which may have im-
portant implications for male health.”

Accounting for nonlinearity changes this conclusion. Fig. 1 shows
scatter plots of log(T) (upper, blue scatter plot) and log(Mo) (lower, red
scatter plot) against BMI in kg/m2 with linear regression lines and
nonparametric (smoothing) regression curves superimposed on the data
so that departures from linearity can be seen easily. (The data are for
men aged 18–55 from the National Health and Nutrition Examination
Survey (NHANES) for 2011–2016.) Although the nonparametric re-
gression curves are close to the linear regression lines for BMI between
25 and 35, deviations from linearity occur at relatively high and low
values of BMI. These nonlinearities allow the mean squared error (MSE)
of log(T) values predicted from BMI using the regression line to be re-
duced by including log(Mo) as an additional predictor. (Subtracting a
multiple of log(Mo) from the linearly predicted value of log(T) reduces
the MSE caused by the departures from linearity.) A significant re-
gression coefficient for log(Mo) arises because including log(Mo) as a
predictor of log(T) reduces the prediction error due to model mis-
specification. It does not provide evidence about whether reducing Mo
would increase T. (Analogously, if Y = Z2 and X = Z0.5, where Z is
uniformly distributed between 0 and 2, then a multiple linear regres-
sion model for predicting Y from both X and Z has a lower prediction
error (MSE) than one for predicting Y from Z alone, even though only Z
and not X determines the value of Y.) Restricting the range of BMI
values considered to the interval from 25 to 35, where the linear and
nonparametric regression models nearly coincide, makes log(Mo) no
longer a significant predictor of log(T) in the linear multiple regression
model, suggesting that fully controlling for confounding by BMI elim-
inates the association between log(Mo) and log(T). A significant re-
gression coefficient that does not reflect a causal relationship, or that is
eliminated by fully controlling for confounding, does not provide a
sound basis for causal inference for hazard identification.

In summary, analyzing data with regression models that do not
perfectly describe the data-generating process can lead to statistically
significant regression coefficients even in the absence of any causal
relationship. Much as a significant regression coefficient for exposure
can simply indicate that including exposure reduces prediction errors
due to measurement errors, it may also indicate that including exposure
reduces prediction errors due to model misspecification. Neither has
any necessary implications for hazard identification.

Fig. 1. Linear and nonlinear (smoothing) regressions for log(T) and log(Mo) as
functions of BMI. The nonlinear curves are fit to the data using locally weighted
scatterplot smoothing (LOWESS).
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1.6. Significant regression coefficients arising from residual confounding

It is common to refer to a confounder as having been controlled, or
adjusted for, when a variable representing it has been included on the
right side of a regression model, even if not all relevant information
about it has been captured. For example, a variable such as “smoking
status” with possible values of current, former, or never (or, even more
simply, a binary value such as 1 for “has smoked at least 100 cigarettes
in life” and 0 otherwise) might be used to “adjust” for smoking. Yet,
such a summary variable leaves much quantitative information about
smoking intensity and duration unaccounted for. Likewise, a regression
model which adjusts for age by including a binary indicator such as 1
for over 65 years old, else 0; or by including 5-year or 10-year age
categories, leaves more detailed information about age unrepresented.
Such omitted information about a confounder may induce a positive
regression coefficient for exposure, even if risk does not depend on
exposure; this is the problem of residual confounding. For example, if
Risk = (Age/100)2 for 0 < Age < 100 years; Exposure = Age; and the
correctly specified regression model E(Risk | Exposure,
Age) = b0 + bX*Exposure + bA*Age2 is fit to 1000 randomly generated
cases with age uniformly distributed between 0 and 100, then, in the
absence of measurement error and sampling error, the result is as ex-
pected: E(Risk | Exposure, Age) = (age/100)2. However, if age is
rounded to the nearest decade, then fitting the same model yields E(Risk
| Exposure, Age) = −0.03 + 0.002*Exposure + 0.00008*Age2. The
intercept and both regression coefficients are statistically significantly
different from 0 (p < 0.000001), even though risk depends only on Age
and not on Exposure. Intuitively, the reason is that conditioning on
Exposure reduces the mean squared prediction error for Risk due to the
limited accuracy of measurement of Age, by providing information
about the precise value of Age within each age category formed by
rounding age to the nearest decade. This additional information reduces
prediction error.

Use of a few wide categories to code continuous variables is still
fairly common in practice, despite decades of admonishment from
methodologists (e.g., Streiner, 2002; Naggara et al., 2011); hence the
threat of residual confounding often has practical importance
(Groenwold et al., 2013). For example, a recent study of the association
between blood lead level (BLL) and age-specific mortality rate
(Lanphear et al., 2018 used 3 categories for body mass index (BMI); 3
for self-reported smoking status (never, former, current); 2 for cotinine
in blood serum (above or below 10 ng/mL); 2 for alcohol consumption;
3 for physical activity; 3 for cadmium; 2 for household income; 2 for
hypertension; and 3 for a healthy eating index that runs from 1 to 100.
Similarly, a regression analysis of the negative association between
molybdenum (Mo) and testosterone (T) (Lewis and Meeker, 2015) used
2 categories for BMI (below 25 kg/m2 or not); 3 for income; and 2 for
smoking. In such studies, the use of only a few categories for each of
many potential confounders leaves unclear the extent to which reported
exposure-response associations reflect residual confounding. For ex-
ample, Fig. 1 shows that BMI is associated with Mo and T both above
and below 25 kg/m2, so use of a dichotomous BMI variable leaves this
remaining (residual) confounding unaccounted for. The possibility of
residual confounding does not necessarily imply that qualitative con-
clusions about exposure-response associations would change if residual
confounding were better controlled, but it leaves open the question of
how much they would change. To avoid this unnecessary uncertainty, it
suffices to treat continuous variables as continuous, rather than artifi-
cially dichotomizing or categorizing them (Streiner, 2002; Naggara
et al., 2011).

1.7. Surrogate variables

Similar to residual confounding, controlling for a confounder by
including in the regression model a surrogate variable that is correlated
with it does not fully eliminate its confounding effects. For example,

including self-reported pack-years of smoking and/or measured blood
levels of cotinine in a regression model as surrogates for smoking does
not fully control for the confounding effects of smoking if exposure
provides additional information about smoking (and hence helps to
reduce mean squared prediction error for a health effect caused by
smoking) even after other indicators of smoking have been included as
predictors (Hsieh et al., 2011). Similarly, including county population
density (average people per square mile) in a regression model for ef-
fects of PM2.5 on COVID-19 mortality risk to control for the possibility
that more densely populated areas might have both higher PM2.5
pollution levels and higher COVID-19 mortality risk does not fully
eliminate this source of potential confounding if local population den-
sities differ from the county average.

1.8. Variable selection

When predictors are correlated, including some on the right side of
a regression model may prevent others from having a coefficient sig-
nificantly different from zero. By choosing different subsets of other
variables to include on the right side, modelers may affect the size of
the regression coefficient for exposure, and, in some cases, even whe-
ther it is positive or negative (with each being significantly different
from zero) (Dominici et al., 2014). In such cases, the results of the re-
gression modeling are model-dependent: they reflect particular modeling
choices rather than facts about the world. As a trivial example, suppose
that the causal relationships among Age, Exposure, and Risk are de-
scribed by the structural equations E(Risk | Age, Exposure) = Age -
Exposure and Exposure = 0.5*Age. Then the regression coefficient for
Exposure is −1 if both Age and Exposure are included as predictors, but
is +1 if only Exposure is included as a predictor. Including only Ex-
posure is more parsimonious, and, once it has been selected, including
Age does not improve predictive accuracy; thus E(Risk | Age, Ex-
posure) = Exposure would be the preferred model by these criteria, even
though the regression coefficient of +1 for Exposure reveals nothing
about how Risk would change if Exposure were changed.

1.9. Significant regression coefficients arising from competing explanations

If healthy workers are more likely to move away from a factory
town each year than unhealthy workers, then workers in a birth cohort
who have stayed the longest and gained the most cumulative exposure
to the factory town environment will be disproportionately unhealthy
compared to workers in the same birth cohort who have moved away.
This creates a positive association (reflected in a positive regression
coefficient) between cumulative exposure and risk of poor health, even
if exposure per se does not affect health. If poor health is a predictor of
increased risk for some diseases (e.g., cancers or heart diseases) in old
age, then retired workers with high cumulative exposures will be more
likely to develop such diseases because of underlying poor health, even
if exposure has no causal impact on health. Another example of a non-
causal explanation that does not involve underlying health status would
be if workers stay in a certain occupation only if they are poor or have
low exposures (or both). If poverty causes increased health risks but
exposure has no direct causal effect on health risks, then a study of
workers who have stayed in the occupation may find that those with
low exposures are less likely to be poor (since low exposures provide an
alternative explanation for the choice to stay) and hence have lower
average health risks. If poverty is not measured, but exposure and
health effects are, there will be a positive association between exposure
and risk (mediated by the unmeasured variable poverty), even if ex-
posure does not affect risk. These examples illustrate the fact that sta-
tistically significant positive regression coefficients between observed
levels of exposure and risk need not imply that changing exposure
would change risk, or that exposure is a contributing cause of risk.

L.A. Cox Environmental Research 187 (2020) 109638

5



1.10. Significant regression coefficients arising from attribution of joint
effects

Suppose that a disease occurs in a worker if and only if the sum of
three exposures A, B, and C exceeds 15, where the three exposures,
perhaps corresponding to concentrations of three pollutants, are in-
dependent random variables uniformly distributed between 0 and 2,
between 4 and 8, and between 5 and 9, respectively. Then a generalized
linear regression model, such as logistic regression, will assign sig-
nificantly positive regression coefficients to each of the three exposures
if there are a large enough number of observations (each consisting of
values of A, B, and C for an individual). This remains true even if the
data are modified to set A = 0 whenever B + C < 15 (e.g., if pollutant
A is formed only by sufficiently high levels of pollutants B and C). Yet,
in this case, A makes no contribution to risk. Whether a disease occurs
depends only on the values of B and C. Thus, regression can create a
significant positive regression coefficients for an exposure as a predictor
of risk by (mis)attributing part of the joint effect of multiple variables to
it, even if has no causal impact on risk. (Special techniques that deal
more consistently with attribution of risk in the presence of joint causes,
such as Shapley regression, avoid this problem, but are seldom used in
regulatory risk assessment.) Finally, if the distribution of either B or C
(or both) is changed to a bimodal distribution that is equally likely to be
0 or 20, then the regression coefficient for A becomes zero (or, rather, is
not significantly different from 0 in large data sets). Thus, whether
regression analysis provides evidence that A has a significant positive
regression coefficient depends on the distributions of other variables,
rather than only on the causal biological effect (if any) of A itself.
Hazard identification based on whether a regression coefficient is sig-
nificantly different from zero may therefore be misleading when mul-
tiple risk factors interact in contributing to disease causation.

1.11. Some alternatives to regression for hazard identification

Although thoughtless interpretation of regression coefficients can be
misleading, numerous regression diagnostic plots and tests (e.g., Q-Q
plots, homoscedasticity tests, all-subsets regression plots) have been
developed to help assess how well a regression model describes the data
to which is being applied. Flexible nonparametric regression models
(using techniques such as locally estimated scatterplot smoothing
(LOESS), locally weighted scatterplot smoothing (LOWESS), or splines)
can also show where empirical relationships depart from parametric
(e.g., linear or generalized linear) modeling assumptions, as in Fig. 1.
Such techniques avoid the risk of overfitting inherent in many para-
metric models (e.g., high-order polynomial regression models) by fit-
ting simple low-order models to data in the neighborhood of each point
of estimation (NIST, 2013). For large data sets with many potential
predictors, there are many alternatives to regression modeling; here we
mention some of them, deferring to a large technical literature and
recent surveys (Cox, 2018b and references therein) for details. Non-
parametric alternatives to regression for predicting risk from exposure
and other variables include classification and regression tree (CART)
analysis, which seeks to partition records into subsets with significantly
different values of the dependent variable by conditioning on values (or
ranges of values) of predictors; and random forest model ensembles that
estimate partial dependence plots (PDPs). A PDP shows how the average
predicted value of the dependent variable (e.g., risk) changes as an
explanatory variable of interest (e.g., exposure) is varied over its range,
holding the values all other variables fixed at their observed levels in
the data set. (This corresponds roughly to what epidemiologists term
the natural direct effect of exposure on risk. Each predicted value is
averaged over many CART trees fit to different subsets of the data.)

In reality, however, changing a single explanatory variable, such as
the exposure concentration of a pollutant in ambient air, might cause
the values of multiple other variables to change, making it unrealistic to
hold their values fixed in assessing total effects on the dependent

variable. To deal with this situation, causal Bayesian network (BN)
propagate changes in the values of input variables (such as exposure) to
changes in the conditional probability distributions of variables that
depend on them. The full methodology for BN learning and inference
from data is quite detailed; we refer the reader to Nagarajan et al.
(2013) and Cox (2018b) for details. An arrow joins two variables in a
BN if they are found to be dependent (i.e., mutually informative about
each other, so that the null hypothesis of conditional independence –
that the conditional probability distribution for one is the same for all
values of the other – can be confidently rejected, e.g., using nonpara-
metric tests for independence; see Nagarajan et al., 2013). If effects
depend on their direct causes, then a BN provides evidence that Xmight
be a direct cause of Y if and only if they are linked by an arrow (Fig. 2,
discussed in the next section, is an example of a BN.). If Y is con-
ditionally independent of X given the values of other variables (such as
common causes), so that there is no arrow between them, then the BN
provides no evidence that X might be a direct cause of Y.

A BN that includes exposure and risk variables, as well as other
variables such as potential confounders and modifiers, can be used for
hazard identification. Such a BN shows that exposure is a hazard, i.e., a
potential direct cause of risk, if and only if exposure and risk are joined
by an arrow. (The specific set of other variables that should be condi-
tioned on – including confounders or common causes, but not common
effects, of exposure and risk – to obtain an unbiased estimate of the
effect of exposure on risk constitutes what is called an adjustment set.
Adjustment sets can be calculated from BNs by modern causal analysis
algorithms (Cox, 2018b). This solves the problem of variable selection
that often bedevils regression modeling. It does so by identifying
minimal sufficient subsets of variables – the “adjustment sets” – to
condition on, i.e., to include in a (perhaps nonparametric) regression
model, to estimate direct and total effects of one variable on another
while avoiding biases created by failure to condition on common an-
cestors, or by conditioning on common descendants (Textor et al.,
2016).) Some causal analysis algorithms attempt to orient the arrows
between variables in a BN to reflect the flow of causality (and in-
formation) between variables, but even without such orientation of
arrows, the structure of a BN is useful for hazard identification insofar
as it shows whether risk is found to depend on exposure after adjusting
for other variables.

BN analysis generalizes regression analysis in the following ways:
(a) it models dependences among all variables in a data set, instead of
only for a single dependent variable; (b) it quantifies dependences using
nonparametric methods such as conditional probability tables or trees,
which easily accommodate nonlinearities and complex interactions if
all variables are discrete (although regression models are sometimes
used for continuous variables); and (c) it quantifies the full conditional
probability distribution of each variable, for any set of observed values
for any subset of other variables, rather than only quantifying the
conditional expected value of a single dependent variable given ob-
served values for all other variables. BNs are therefore well suited for
hazard identification in complex causal networks of many interacting
variables, using the criterion that health effects should depend on ex-
posures to hazards that directly cause them. Recent developments also
address the challenge of synthesizing evidence across multiple studies –
the important problem of external validity (or “transportability” or
generalizability) of causal conclusions drawn from specific studies to
other settings and conditions (Cox, 2018b). BNs have also been used as
an alternative to regression for quantitative risk assessment and dose-
response modeling, as discussed next.

2. Dose-response modeling

2.1. Challenges for Regression-based dose-response modeling

While hazard identification provides a qualitative determination
about whether there is evidence that exposure to a substance causes
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increased risk of an adverse health response, dose-response modeling
quantifies how risk varies with exposure, typically using regression
models. As stated by NIOSH, 2020, “NIOSH generally obtains dose-re-
sponse estimates via statistical models constructed to provide the con-
ditional expectation of the dependent variable (the adverse effect)
given one or more explanatory variables, but at least including the
variable describing the agent exposure of interest. Model input data
stem from toxicologic and/or epidemiologic investigations identified
and assessed in hazard identification.” A regression coefficient for es-
timated exposure is interpreted as providing information about how
risk of an adverse effect depends on the observed value of exposure,
conditioning on the observed values of other explanatory variables.

The limitations of regression modeling discussed in the previous
section also apply to dose-response modeling (also called exposure-re-
sponse modeling and exposure concentration-response (C-R) modeling)
using epidemiological data. Regression describes associations among
observed values of variables. These may not reveal how or whether risk
would change if exposure were changed (with or without holding values
of other variables fixed) (Pearl, 2009). As already discussed, a sig-
nificantly positive regression coefficient for exposure may arise simply
because conditioning on measured values of exposure reduces the
prediction error (MSE) from model specification errors or from mea-
surement errors in other predictors. It may arise from attribution of
joint effects, or from competing explanations, or from coincident his-
torical trends. Dose-response models derived by regression modeling of
epidemiological data reflect these non-causal sources of association, as
well as any causal contributions. Hence, they cannot necessarily be used
to predict by how much (or whether) a reduction in exposure would
reduce risk. Although they are commonly used for this purpose in
current regulatory risk assessments (NIOSH, 2020), such use is not
necessarily sound unless these various non-causal contributions to re-
gression relationships are identified and corrected for.

The next two sections describe two alternatives to regression ana-
lysis that focus more explicitly on causality: causal Bayesian networks
and dynamic simulation modeling. A causal BN provides a high-level
description of how the conditional probability distribution of response
varies with exposure and other variables, allowing Bayesian inference
from observations on biomarkers or other variables in the network
(Hack et al., 2010). Dynamic simulation models use systems of differ-
ential equations and algebraic formulas to model (a) flows of chemicals
and metabolites among tissues; (b) internal doses (concentrations of
toxic metabolites in target organs and tissues) over time; and (c) re-
sulting rates of cell death and proliferation and transitions of cells
among various states (e.g., normal, pre-malignant, and malignant) over
time (Cox, 2020). The following two sections highlight the main ideas
of these methods as they apply to dose-response modeling, relegating
their (extensive) mathematical details to the references.

2.2. Bayesian networks for dose-response modeling

The left side of Fig. 2, from Hack et al., (2010), shows the structure
of a Bayesian network (BN) model for quantifying conditional prob-
abilities of some variables (e.g., various metabolites, markers and acute
myeloid leukemia (AML) (the Leukemia node at the lower right)), given
observed or assumed values of other variables, including concentration
of benzene in air (averaged over a worker's years of exposure). The
conditional probability distribution of each variable (node in the net-
work) depends on the values of the variables that point into it. This BN
was constructed manually based on a detailed literature review of
candidate markers and outcomes and predictive relationships among
them, given limitations in measurement techniques (Hack et al., 2010).
The right side of Fig. 2 shows random samples drawn (via Monte Carlo
uncertainty analysis) from the BN-predicted dose-response function
describing the conditional probability for AML given air benzene ex-
posure concentrations. These curves are constructed from the condi-
tional probability tables of the BN, as follows. Each value for benzene

concentration (ppm) in inhaled air determines a conditional probability
distribution for the benzene metabolite urinary tt-MA (trans-trans
muconic acid). The value of tt-MA, in turn, determines a conditional
probability distribution for 8-hydroxyguanosine (8-OHdG), a marker of
oxidative stress in lymphocytes. Finally, the value of 8-OHdG de-
termines a conditional probability for AML. For each benzene con-
centration, a value of tt-MA is sampled from the conditional distribu-
tion of tt-MA, given the ppm of benzene; then a value for 8-OHdG is
drawn from its conditional distribution given the sampled value of tt-
MA; and finally this value is used to determine the conditional prob-
ability for AML given the sampled value of 8-OHdG. The needed con-
ditional probabilities constitute the quantitative part of the BN model;
they are estimated from data collected in multiple studies. Repeating
this Monte Carlo sampling many times and averaging the results yields
an estimate of the dose-response curve giving the conditional prob-
ability of AML for each value of air benzene concentration. Other po-
tentially causally relevant variables (e.g., p-benzoquinone, NLRP3 in-
flammasome activation, age of patient, co-exposures and co-
morbidities, and so forth) are “marginalized out” of the BN model in
Fig. 2, meaning that they can still implicitly affect the probability of
leukemia, but are not explicitly shown or conditioned on in calculating
the sample dose-response curves for conditional probability of AML
given ppm of benzene, shown on the right side of the diagram.

The uncertainty reflected in the band of dose-response functions
(blue curves) on the right of Fig. 2 might in principle be reduced by
conditioning on additional causally relevant variables, data permitting.
Other investigators (or automated machine-learning programs for
learning BNs directly from data) might select additional markers and
perhaps get narrower uncertainty bands. In addition, durations of ex-
posure and uncertainty in exposure concentrations could be included in
refined models. However, the BN analysis in Fig. 2 already suffices to
indicate both that benzene is a hazard for increased risk of AML (hazard
identification) and also that predicted AML risk is not clearly increased
above background at low exposure concentrations (e.g.,< 0.1 ppm)
and reaches a prevalence of almost 0.02 at a concentration of 10 ppm
for the exposure conditions and durations in the studies used to build
the BN model. This quantitative dose-response information can help
inform risk management decisions. In addition, the structure of the BN
on the left side of Fig. 2 shows that measuring hematological para-
meters such as WBC and RBC, in addition to air benzene concentrations,
can help to infer AML risks when the marker 8-OHdG is not directly
measured.

Promising as BNs appear to be, there are several reservations and
questions about them that should be addressed, and some important
recent progress in addressing them. Key developments are as follows
(Cox, 2018b):

• How are connections among variables to be determined? Allowing
complex networks of relationships raises the threat of “model
shopping” – that is, of investigators searching among complex
models to find those that support prior beliefs or desired conclu-
sions. To help guard against this, software packages that learn
Bayesian network structures from data using several different al-
gorithms (e.g., R packages such as bnlearn and
CompareCausalNetworks) are becoming increasingly popular (Cox,
2018b). The main idea of these algorithms is to use tests for statis-
tical properties (such as conditional independence tests) to de-
termine which variables each variable is found to depend on, even
after conditioning on other variables. Direct and indirect effects of
one variable on another (e.g., of exposure on risk of adverse re-
sponse) are identified by conditioning on appropriate adjustment
sets calculated from the BN structure. This approach avoids the
asymmetry inherent in regression models that specify one variable
as the “dependent” variable and other variables as “independent”
variables to explain it. Rather, it seeks to discover what each vari-
able depends on (among the variables in a data set; extensions to
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latent variables are at the frontiers of current research). This sym-
metric approach (sometimes called “causal discovery,” in contrast to
testing pre-specified causal hypotheses about what might cause a
dependent variable), together with algorithms for specifying ad-
justment sets to condition on in estimating direct and indirect effects
(thereby addressing the problem of variable selection in a principled
way) help to reduce the potential for model shopping and con-
firmation bias in modeling.
• What functional forms should be assumed for dependence relation-
ships among variables, and how should interactions among variables be
modeled? A common approach to addressing both questions is to use
a nonparametric conditional probability table (CPT) or CART tree at
each node of a BN, i.e., for each variable, to describe how its con-
ditional probability distribution depends on the values of the vari-
ables that point into it (its direct “parents”), if any. This nonpara-
metric approach allows arbitrary nonlinear interactions among
variables to be estimated and described in a uniform framework
while avoiding the necessity of assuming any particular parametric
model form.

At its best, BN technology may help investigators avoid using data
and modeling choices to support or refute particular hypotheses (e.g.,
searching for a statistical model to show that exposure to an agent is
significantly associated with a health effect, or for an alternative model
in which it is not) and to instead support more dispassionate discovery
of stable dependencies among variables, with clearer distinctions drawn
between direct and indirect (mediated) causal effects. But much re-
mains to be done to achieve this goal. Despite impressive recent tech-
nical progress, current BN-learning algorithms remain limited by their
lack of common sense. (They are typically better at determining whe-
ther variables are conditionally independent than at identifying the
directions of dependences between them, and may require human users
to specify constraints such as that death is a possible effect but not a

possible cause of other variables, or that sex, age, and ethnicity are
possible causes but not possible effects of other variables.) They are
prone to identify false-positive links between variables if confounders
are omitted, or if discretization of continuous variables to form CPTs
(e.g., using deciles of continuous variables as levels, or using CART
trees) leaves substantial residual confounding. Validation that CPTs
express stable causal relationships that hold across situations typically
requires collecting data from multiple studies. Recent advances in
theory and software for causal analysis and interpretation (e.g., the
InvariantCausalPrediction and CompareCausalNetworks R packages)
have started to address these and other challenges, including detecting
and modeling hidden (latent, unobserved) variables based on otherwise
unexplained correlations between observed variables), but these de-
velopments have as yet had little impact on regulatory risk assessment.

2.3. Dynamic simulation for dose-response modeling

An alternative to regression or BN modeling of epidemiological data
for dose-response modeling is to seek to understand biological causal
mechanisms and to model them well enough to simulate the effects of
exposures on risk. This typically involves integrating pharmacokinetics,
which convert administered to internal doses; pharmacodynamics,
which model effects of internal doses (e.g., changes in cell behaviors
and transition rates) in target organs, tissues, and cell populations; and
disease models, such as multistage clonal expansion (MSCE) models of
carcinogenesis, which model the development of diseases over time.
Causal dynamic processes leading from exposure to health effects can
be simulated by linking pharmacokinetic, pharmacodynamic, and dis-
ease process simulation submodels, provided that sufficient knowledge
is available to create them and sufficient data are available to populate
them with realistic values for their parameters and functions, such as
flow rate and stochastic transition rate coefficients; we defer to the
technical literature for details (e.g., Cox, 2020 and references therein).

Fig. 2. Bayesian network (BN) model structure (left) and predictions (right) (Source: Hack et al., 2010). Abbreviations: 8-OHdG = 8-hydroxyguanosine (a biomarker
of oxidative stress); CFU-GEMM= colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte (a precursor to RBCs and WBCs); BFU-E = burst-forming
unit-erythroid (a RBC precursor cell type); CFU-GM= colony forming unit – granulocyte-macrophage (a WBC precursor); RBC = red blood cell count; ttMA= trans,
trans muconic acid; WBC = white blood cell count. Diamonds on right indicate observed data. Blue curves are random samples from the uncertain dose-response
relationship. . (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Dynamic simulation models enrich dose-response modeling by
showing how time patterns of exposure concentrations affect risk over
time. For example, which exposure pattern in each of the following
pairs poses a higher risk (as measured, for example, by lifetime prob-
ability of a disease, or age-specific hazard function)?

• 1 ppm for 8 h per day vs. 8 ppm for 1 h per day
• Exposures on Monday and Friday each week (with none on other
days) vs. the same exposures on Monday and Tuesday each week
(with none on other days)
• Weekly exposures for 52 weeks per year, or twice those exposures
for the first 26 weeks of each year only, or twice those exposures
administered on alternating weeks throughout the year.
• Occupational exposures from ages 20–35 years or the same ex-
posures from ages 35–50 years.

Many regression models applied in regulatory risk analyses use
exposure metrics, such as cumulative ppm-years of exposure, that do
not distinguish among time patterns of exposure, but both experimental
evidence (e.g., from stop-exposure experiments) and dynamic simula-
tion models show that they can have very different effects on risk.

Fig. 3 is a notional diagram, without specific units on its axes,
showing typical time patterns for how the internal dose (e.g., con-
centration of a toxic metabolite in a target organ or tissue) on the
vertical axis varies over time (on the horizontal axis) for three different
time patterns of dose administration (curves 1, 2, and 3). For an in-
halation hazard, the administered dose rate corresponds to concentra-
tion of a substance in air. Curve 1 administers a certain concentration
for a certain duration in each cycle of a repeated exposure pattern;
curve 2 administers twice the concentration for half the duration; and
curve 3 administers 3 times the concentration for 1/3 the duration, in
each consecutive cycle. The vertical axis shows how concentration in a
typical compartment varies with these time patterns of exposure. Spe-
cific versions of such model-predicted curves have been developed and
validated for many chemicals using physiologically-based pharmaco-
kinetic (PBPK) models. For purposes of dose-response modeling, an
important feature is that administering higher concentrations for
shorter durations produces higher peak internal concentrations than
lower concentrations for longer durations, for the same total amount
delivered (e.g., for the same ppm-hours per week). This implies that
curve 3 can activate responses that curve 1 would not. If a response has
an internal dose concentration threshold (denoted by T in Fig. 3), as in
the examples mentioned in the Introduction (e.g., for activation of the
NLRP3 inflammasome), then repeated high-concentration, short-dura-
tion exposures are more dangerous than administering the same
average amounts per unit time more gradually.

The disproportionate risk from shorter, more concentrated dose
administration in each cycle in Fig. 3 holds even if pharmacokinetics

are linear, so that concentrations in internal compartments are pro-
portional to administered concentrations. But pharmacokinetics are
often nonlinear at relevant exposure concentrations. For example,
doubling the administered concentration of a substance in air can more
than double its internal concentrations in tissues over time if clearance
mechanisms are saturable, following Michaelis-Menten kinetics. Fig. 4
illustrates the effects of such nonlinearity, motivated by a model for
accumulation of asbestos fibers in lung and mesothelial tissue (Cox,
2020). The vertical axis represents the amount of internal dose (e.g.,
fibers) added to a target tissue per unit time for different administered
concentrations in air (horizontal axis), assuming sustained exposure to
a constant concentration. The axes are scaled so that 1 on the horizontal
axis represents the base case exposure scenario, e.g., what a typical
worker might receive. The vertical axis shows the increase in cumula-
tive internal dose (e.g., fibers lodged in target tissues) per unit time, and
the curve plots this for different levels of administered concentration on
the horizontal axis. Doubling exposure concentration from 1 to 2 in-
creases the rate at which cumulative internal dose increases from about
1 to about 14, reflecting slower clearance from the lungs (e.g., via
macrophages and the mucociliary escalator) and hence a higher frac-
tion of inhaled dose (fibers) translocating to target tissues. By contrast,
doubling exposure concentration from 0.1 to 0.2 makes relatively little
difference, as most of the administered dose is cleared at such low
concentrations.

Similar reasoning sheds light on the question of whether a worker
suffers greater risk if exposed to a hazardous substance on two con-
secutive days each week (e.g., Monday and Tuesday) or on two days
separated by a longer recovery interval (e.g., Monday and Friday). If the
first day's exposure reduces clearance (or depletes protective resources
such as antioxidant pools), then another exposure on the next day may
create a greater internal dose than it would if it instead occurred a few
days later, when clearance capacity has recovered. If so, then exposures
on consecutive days in each cycle (e.g., in a work week) will produce
more internal dose than the same exposures administered with longer
recovery periods in between. The timing of internal doses can also in-
teract with response dynamics, e.g., by delaying cell division during
and following a first exposure until internal doses decline enough for
mitosis to proceed safely; if the cells thus synchronized and undergoing
mitosis at approximately the same time, receive a second dose part way
through it, the cytotoxic effect may be far larger than if the second dose
had occurred earlier or later. These examples reinforce the key point
that timing matters: for many substances, the same average cumulative
exposure per unit time can have very different effects on risk of adverse
response, depending on how it is distributed over time.

In Fig. 3, whether internal doses in a target tissue become high

Fig. 3. Administering the same total amount of exposure (e.g., 100 ppm-hours
per week) in different time patterns changes the maximum internal dose re-
ceived.

Fig. 4. Higher administered concentrations that reduce clearance rates are
disproportionately efficient in producing internal concentrations.

L.A. Cox Environmental Research 187 (2020) 109638

9



enough to trigger an adverse response depends on details of timing that
are lost when exposure metrics such as ppm-years or ppm-hours/day,
averaged over some interval, from a week to a working lifetime, are
used to summarize individual exposure histories. When response
thresholds or other nonlinearities in dose-response functions are im-
portant, accurate risk prediction may require more detailed descrip-
tions of exposure histories than are captured in the exposure metrics
used in regression-based risk modeling. Conversely, when only these
exposure metrics are available, it may be impossible to predict risk from
them with useful accuracy. Dynamic simulation models provide rich
opportunities to study how collecting and analyzing data on time pat-
terns of exposure, and regulating the timing of exposures as well as
permitted levels of exposures, can protect worker health in ways that
regulating summary measures of exposure alone does not.

2.4. Exposure assessment

NIOSH (2020) notes that, “In environmental risk assessments, ex-
posure assessment is considered a separate step for assessing the like-
lihood of exposure for estimating population risks and/or disease
burden. In contrast, NIOSH risk assessments … estimate the risks to a
hypothetical working population from a known exposure. Although
exposure probabilities are not typically calculated, dose-response ana-
lyses include exposure information; therefore, NIOSH systematically
assesses the availability, magnitude, and validity of exposure data used
in relevant studies as a part of hazard identification and applies this
information, as applicable, in the dose-response assessment.” The dose-
response modeling considerations in the previous section imply that
unmodeled uncertainty and variability in exposures may greatly affect
risk estimates. It may do so in the following ways:

• If higher concentrations are disproportionately dangerous, as in
Figs. 3 and 4, then an estimated exposure concentration with sym-
metrically distributed (e.g., normally distributed) estimation error
will appear to be more dangerous (i.e., to cause higher risk) than the
same concentration measured without error.
• Similarly, if exposure concentrations have some variance around
their TWA means, then the risk caused by a given mean con-
centration may be much greater than it would be if the variance
were zero. Indeed, risk may depend as much or more on the variance
(and also on the autocorrelation structure, if consecutive high con-
centrations are disproportionately dangerous) than they depend on
the mean concentration. Therefore, regulatory standards that ad-
dress the mean (and possibly occasional excursions above it) but
that do not consider variance and autocorrelation may neglect key
drivers of risk.
• Ignoring uncertainty and variability in exposures in regression
modeling can make nonlinear dose-response relationships, including
ones with sharp thresholds where risk jumps from a low level below
a critical exposure concentration threshold to a high level above it,
appear to be smooth, S-shaped, curves that are approximately linear
at low doses (Rhomberg et al., 2011a,b; Cox, 2018c). The reason is
that exposure concentrations closer to the threshold are more likely
to be mis-estimated as being on the wrong side of it than are con-
centrations further from it.

The apparent smoothness of an estimated exposure-response func-
tion when the underlying biological dose-response function has a dis-
continuous jump stems from the smoothness of the error distribution of
estimated exposure values around true exposure values: at estimated
exposure concentrations further below the threshold, the probability is
less that a response will occur (because the probability is less that the
true exposure is above the threshold). A practical consequence is that
estimated exposure-response functions that appear to be smooth and
approximately linear at low concentrations, with no evidence of a
threshold, should not necessarily be interpreted as evidence that there

is not a threshold. If errors in exposure estimates create this appearance
whether or not there is a threshold, then the appearance does not
provide evidence for or against a threshold. Similar caveats hold for
other nonlinearities less extreme than thresholds: exposure estimation
errors distort (and typically flatten and linearize) estimated exposure-
response relationships (Rhomberg et al., 2011a,b). In simple linear re-
gression models with exposure as the only predictor, ignoring mea-
surement error biases the estimated slope (or potency) of the exposure-
response line toward zero. By contrast, in nonlinear and multiple-pre-
dictor regression models, the bias can go in either direction. If higher
exposures are disproportionately dangerous, as in Fig. 4, then ne-
glecting errors in estimated exposures leads to over-estimates of risks at
low exposures (since some high-exposure risks are misattributed to
lower estimated exposures) and to under-estimates of risks at high ex-
posures (since some low-exposure risks are misattributed to higher
exposure levels). Thus, nonlinearity implies that measurement error
need not attenuate estimated effects of exposure on risk, as in simple
linear regression models, but rather exaggerates it at low concentra-
tions and attenuates it at high concentrations.

Current practice in regulatory risk assessment often uses best esti-
mates of exposures, e.g., estimates reconstructed from job exposure
matrices for occupational risks, or from microsimulation models of in-
dividual movements and exposures for public health risks. Using best
estimates of exposure without quantifying or correcting for effects of
exposure estimation errors can lead to substantial biases in estimated
exposure-response functions, as just discussed. Fortunately, as men-
tioned in Table 1, a variety of “errors-in-variables” statistical methods
have been developed to correct for the distorting effects of measure-
ment or estimation errors in exposure and other predictors. Computa-
tional Bayesian methods infer the shape of the exposure-response
function by treating the true exposure as an unobserved quantity on
which the estimated exposure depends. Other techniques (such as in-
strumental variables and repeated measurement methods) use ob-
servations on other variables, or repeated observations of the same
variables, to help estimate the true shape of the exposure-response
function when exposures are estimated with errors. Thus, the distor-
tions in estimated exposure-response functions described in this section
can often be avoided by careful design of data collection and analysis of
data.

2.5. Risk characterization, uncertainty characterization, and risk
communication

NIOSH (2020) explains its approach to risk characterization as fol-
lows.

“The final step in NIOSH risk assessment is risk characterization. It
is the translation of information from hazard identification and dose-
response assessment into a basis, completely or in part, for re-
commendations on limiting workplace exposure. The framework of
NIOSH risk characterization centers on a choice between two distinct
approaches, based primarily on the evidence supporting the absence or
presence of an impairment threshold. For effects with a response
threshold, NIOSH typically [develops] an estimate of a safe dose. Here
the term safe implies that excess risk at this exposure level is absent or
negligible. … When effects appear to be without a response threshold,
NIOSH obtains quantitative estimates of low-dose risk by model-based
extrapolation of the risk at doses below the observed data.”

Nonlinear dose-response relationships raise the possibility that
neither of these two options – a threshold model, or model-based ex-
trapolation of risk below the observed data range – describes the true
dose-response relationship. Fig. 4 illustrates the problem. There is no
threshold in this curve, but neither can risk at low concentrations be
confidently extrapolated from observations at higher concentrations
(e.g., the nearly linear segment of the curve to the right). When line-
arity cannot be assumed, extrapolation is an unreliable guide because of
the variety of possible shapes for nonlinear functions below the

L.A. Cox Environmental Research 187 (2020) 109638

10



observed data range.
The admirable goal of using risk characterization to translate hazard

identification and dose-response assessment into a basis for re-
commendations to limit workplace exposures to protect worker health
is also threatened if any or all of the following previously discussed
conditions hold:

• Model form misspecified. The assessed dose-response function
describes statistical effects on risk attributed to exposure in multi-
variate modeling of nonlinear interactions; but not causal relation-
ships revealing how reducing exposure (with or without holding
other factors fixed) would affect risk (Pearl, 2009). Statistical effects
may arise from non-causal sources such as departure of nonlinear
dose-response functions from assumed linearity (Fig. 1). Using
flexible nonparametric regression methods can reduce the threat of
model specification errors and incomplete control of confounding,
as illustrated in Fig. 1.
• Ignored exposure dynamics. The assessed dose-response function
predicts conditional expected values of risk indicators from ex-
posure metrics that ignore essential details of the time pattern
(Fig. 3), variability, and autocorrelation of exposure time series.
Dynamic simulation risk models can clarify how changes in ex-
posure affect changes in risk over time (Fig. 3).
• Ignored exposure estimation errors. The assessed dose-response
function estimates probabilities of adverse effects at different esti-
mated dose (or exposure) levels, but errors in exposure estimates
distort the shape of this function, e.g., making a nonlinear or
threshold dose-response function appear to be approximately linear
no-threshold, exaggerating risks at exposures below the observed
data range. Errors-in-variables methods can help to avoid such dis-
tortions due to measurement and estimation errors.
• Non-causal explanations. More generally, the assessed dose-re-
sponse functions describes association but not causation, whether
due to nonlinearity or other explanations. For example, if higher
exposure concentrations are significantly positively associated with
higher risks, but this is explained by the fact that both are declining
over time, or that poorer areas tend to have higher values of both
variables, or because lower-risk people are more likely to move
away before they are sampled, then the assessed dose-response as-
sociation does not necessarily predict whether, or to what extent,
reducing workplace exposure would change risk. Bayesian network
models (Fig. 2) can help to clarify causal pathways and competing
explanations for observed exposure-response associations.

In all these cases, dose-response functions estimated by regression
without making the suggested corrections cannot necessarily be used to
predict whether or to what extent a change in exposure would change
risk. This undermines attempts to use them to provide a rational, cau-
sally effective basis for recommendations to limit workplace exposures
to protect worker health. Failures of workplace exposure standards to
reduce some exposure-associated risks may reflect this lack of causally
effective regulations (Cox, 2020).

To inform more effective regulation and policy-making, uncertainty
characterization and risk communication must convey more than esti-
mates of slopes and confidence intervals for dose-response functions at
and below current exposure levels. They should also convey any sig-
nificant uncertainty about whether reducing exposure will reduce risk,
as described by the estimated dose-response function, or whether the
function instead describes risks attributed to or associated with dif-
ferent levels of exposure, but not necessarily preventable by reducing it.
Dose-response functions assessed by regression modeling applied to
epidemiological data, and referring only to associations and attributed
risks, do not address how much (if at all) reducing exposure would
reduce risk. Hence, they do not tell policy makers what they need to

know to take effective action to protect health based on quantitative
evaluation of risk reductions expected from limiting exposures. This
uncertainty about the causal relevance of estimated dose-response re-
lationships, and of risk characterizations based on them, is seldom
clearly communicated to policy-makers. Yet is often more relevant for
well-informed and causally effective decision-making than the widths
of confidence intervals for estimated slope factors (Pearl, 2009).

In practice, risk assessments often present policy-makers with point
estimates and confidence or uncertainty intervals for risk estimates
using units such as “premature deaths prevented per unit of reduction
in exposure concentration” or “statistical lives (or life-years or quality-
adjusted life-years) saved per unit reduction in cumulative exposure.”
These estimated risks per unit of exposure seldom warn policy-makers
(or other recipients) that “per” here only signifies that an estimated
burden of mortality or morbidity attributed to exposure has been di-
vided by an estimated exposure amount, and that it has no necessary
implication that reducing the amount of exposure would reduce the
burden of mortalities or morbidities attributed to it. Uncertainty about
the causal interpretation of estimated dose-response models cannot be
communicated or characterized by presenting confidence intervals (or
resampling or Bayesian uncertainty intervals) and sensitivity analyses.
It requires explicitly discussing whether the dose-response relationship
and risk characterizations being presented reflect association and causal
attribution, or changes in risk caused by changes in exposure.
Conflating these two very different concepts risks misinforming risk
management decision and policy makers about the expected con-
sequences caused by interventions (Pearl, 2009).

Failure to clearly distinguish in charactering and communicating
risk between risks associated with and attributed to exposure and risk
preventable by reducing exposure leads to what might be called the
supralinearity paradox: substances that have been studied for decades
and subjected to increasingly tight regulations are often estimated to be
more dangerous (potent) in newer regression-based studies than in
older ones, leading to speculations that lower concentrations have been
discovered to be disproportionately dangerous compared to higher
concentrations (Hornung and Lanphear, 2014). A different possible
explanation is that causally ineffective reductions in exposures do not
reduce the risks attributed to them as originally predicted by regression
models (e.g., because imperfectly controlled confounding or non-
linearities or interactions created regression coefficients that do not
represent the causal effect on risk per unit reduction in exposure). At-
tributing undiminished risk to substantially lowered exposures in-
creases the regression coefficient linking exposure to risk. This can
create the appearance of higher risk-per-unit-exposure at lower con-
centrations (supralinearity) simply because the exposure-risk associa-
tion attributes risk to exposures that do not cause it.

Fig. 5 illustrates some of these points. It fits three univariate models
– linear, quadratic, and nonparametric smoothing regression curves – to
data on blood lead concentration levels (x axis) and mortality during
follow-up for nonsmokers in the NHANES data set. (Logistic regression
would also seem appropriate a priori, but does not fit the data well, as
the conditional expected value of the mortality rate is not a sigmoid
function of concentration.) The data are used only to illustrate some
conceptual and methodological points, so we forego discussion of de-
tails of the data set (or of alternative regression models, such as pro-
portional hazards, that would better address survival data); the full data
set can be downloaded from http://cox-associates.com/
CausalAnalytics/. It is file "blood_lead.xlsx".. The linear and quadratic
models have 95% confidence bands (shown as dashed curves). The
nonparametric regression curve is approximately flat at the right edge
of the plot, where the linear model slopes up and the quadratic model
slopes down.

Fig. 5 illustrates several points about risk and uncertainty char-
acterization. First, confidence intervals do not convey model
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uncertainty. For most of the range of values, the 95% confidence in-
tervals for the linear and quadratic model specifications do not overlap.
The best-fitting non-parametric model does not fall within either set of
confidence bands at the right side of the graph. Although model diag-
nostics and goodness-of-fit tests can help select the best-fitting para-
metric model (e.g., quadratic rather than linear), they do not fix the fact
that even the best-fitting model in a parametric class of models may not
fit the data very well. Confidence bands do not communicate this aspect
of model uncertainty: the confidence intervals in Fig. 5 are narrow
compared to the range of predictions from different models. For this
reason, sensitivity analysis (discussed later) is often used to assess the
extent to which predictions from different models differ (NIOSH, 2020).
This leaves open the question of how to reconcile (or select or combine)
risk predictions from different models, as well as the question of whe-
ther any of the different models considered make accurate predictions.

Second, without a thorough discussion of confounding, model spe-
cification errors, nonlinearities, interactions, and residual confounding,
it is impossible for a policy maker to determine from the results of such
models – for example, from the linear model and its confidence bands
extrapolated below the range of data – how or whether reducing blood
lead levels (BLL) would affect mortality risk. For example, if the strong
positive association between BLL and mortality risk were entirely ex-
plained by incompletely controlled confounding by age (i.e., older
people having higher BLL and higher mortality probabilities, with a
nonlinear increase in mortality risk at older ages (and higher BLL levels)
that is not entirely corrected for including age as a predictor in a re-
gression model), then the models in Fig. 5 would have no implications
for how much or whether reducing lead concentrations would reduce
risk. That statistical risk models do not necessarily describe how or
whether reducing exposure would reduce risk, even if they fit observed
data well and have tight confidence limits, is well understood by many
epidemiologists. It is not always as clear to risk managers and reg-
ulatory risk assessors, many of whom seek to use quantitative estimates
of low-dose risk obtained from regression-based dose-response models
to inform decisions about how to limit exposures in order to protect
health (NIOSH, 2020), without understanding that regression-based
dose-response (or exposure-response) curves are usually not appro-
priate for this purpose because they do not reveal how changing ex-
posures would change risks (Pearl, 2009). Risk and uncertainty char-
acterization and communication of risk assessment results to decision-
makers should clarify such uncertainty about consequences of

interventions in order to inform rational and effective decision-making.
More constructively, presenting results from validated causal Bayesian
network risk models (Pearl, 2009; Hack et al., 2010; Cox, 2018b) and
dynamic simulation risk models (Cox, 2020) can show how interven-
tions, such as reducing exposure, are predicted to change the prob-
ability distributions of outcomes such as disease and mortality risks.

2.6. LNT rationales: additivity to background, population heterogeneity,
and upper-bound estimates

Regulatory risk assessment has long embraced three principles that
help to explain why LNT assumptions are often used in practice, despite
reservations about possible nonlinearity such as those described in
previous sections (e.g., Crump, 2017; Rhomberg et al., 2011a,b). The
first is an assumption that incremental cancer risks from exposures to
chemicals (and radiation) add to background processes, leading to ef-
fective linearity of the exposure-related dose-response or C-R curves.
The second is that population heterogeneity tends to linearize popula-
tion C-R functions, even if individual-level ones have thresholds or
other nonlinearities. The third is that statistical upper confidence limits
on LNT functions are appropriately conservative or health-protective in
the face of uncertainty about the true C-R functions. All three principles
have been debated for years. However, some recent examinations of the
additivity-to-background assumption have concluded that it is often
unjustified on both mathematical and biological grounds, in part be-
cause mechanisms of exposure-related harm, such as activation of
NLRP3 inflammasomes, differ from mechanisms of background (spon-
taneous) harm in many cases, leading to genuine thresholds or
threshold-like nonlinearities for incremental risks caused by exposures
(Bogen 2016, 2019; Calabrese, 2018; Cox, 2018). Likewise, careful
explication of the population heterogeneity argument has concluded
that it broadens C-R uncertainty bands, but does not linearize nonlinear
functions and should not be construed as implying linear upper con-
fidence limits at low exposure concentrations (Rhomberg et al.,
2011a,b; Crump, 2017; Bogen, 2016). Specifically, if thresholds or
sharp nonlinearities hold for individuals, a combination of uncertainty
and variability in C-R functions, together with exposure estimation
error, may create a range of values at the population level over which
estimated population risk decreases gradually with decreasing exposure
concentrations, but this does not in general imply that linear extra-
polation down to zero is justified, even if it is deemed prudent to use
upper uncertainty limits (Cox, 2018c; Bogen, 2019). As illustrated on
the right side of Fig. 2, Monte Carlo uncertainty analysis can lead to
wide uncertainty bands that are nonetheless nonlinear. We conclude
that, in general, nonlinear models deserve careful uncertainty analysis,
and that simplifying LNT assumptions are not necessarily well justified
even if there are positive background rates, population heterogeneity,
and a desire to be conservative by using upper uncertainty distribution
quantiles for purposes of regulation. Monte Carlo uncertainty analysis
provides a constructive approach for characterizing uncertainty in
nonlinear models, including Bayesian networks and dynamic simula-
tion models, if enough is known to model uncertain quantities as
random variables.

2.7. Use of sensitivity analysis and scientific judgment

Scientific judgment is often invoked as a way to address limitations
in knowledge and data used in risk assessment. For example, NIOSH
(2020) states that “Limitations in available data often require scientific
judgment in order to fill gaps in model specifications. Risk assessors
identify and characterize these judgements by conducting additional
analyses to test plausible alternative assumptions, examine the ro-
bustness of main analyses, and improve transparency in the risk

Fig. 5. Mortality during follow-up vs. blood lead level (μg/dL) for non-smokers
in NHANES data.
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assessment process. These alternative analyses comprise sensitivity and
modeling uncertainty analyses. NIOSH defines sensitivity analysis as a
study of the uncertainty in estimates from the mathematical model that
can be apportioned to uncertainties in its inputs.” Sensitivity analyses
inform decision-makers about how predictions depend on uncertain
modeling assumptions, for example, by showing the different risk pre-
dictions made by different models (e.g., the linear and quadratic models
in Fig. 5). However, they do not identify whether any of the alternatives
is close to the truth. Moreover, they are limited to studying how
changes in assumed inputs affect outputs, but they do not address un-
certainty about what the outputs mean, such as whether estimated C-R
functions reflect association or causation (or both).

Similarly, NIOSH (2020) adds that “Because different model speci-
fications can lead to different estimates, a key step in dose-response
analysis is model selection. Clearly, it is preferable to base model se-
lection on biologic plausibility, although a strong advantage of one
model among several plausible models is rarely evident. Furthermore,
data from most studies are imperfect and potentially incomplete. In lieu
of available statistical techniques and algorithms designed to deal with
data imperfections, the risk assessor may have to rely on assumptions
based on scientific judgment.” However, empirical studies of the per-
formance of scientific judgment under uncertainty indicate that it (like
other human judgments under uncertainty) is subject to heuristics and
biases that make it a very unreliable guide to truth (Kahneman, 2011).
Using statistical techniques and algorithms usually outperforms expert
judgment, in a variety of domains (Tetlock and Gardner, 2015).
Moreover, the previous sections have illustrated that the specific tech-
nical challenges arising in risk assessment can be quite subtle and
challenging, making it difficult to see how scientific judgment alone can
address them usefully. Scientific judgment used in lieu of available
statistical techniques and algorithms might be hard pressed to yield
useful assessments and corrections for residual confounding due to
slight departures from linearity (Fig. 1); or to reliably assess whether a
repeated exposure will produce internal doses that exceed a threshold
(Fig. 3); or to adjust correctly for nonlinearities in extrapolating from
high to low exposure concentrations (Fig. 4); or to predict how cor-
recting for exposure measurement errors and for variance and auto-
correlations in exposure time series would change the shapes of esti-
mated C-R functions; or to estimate the results of averaging the risk
predictions from an ensemble of models while varying exposure and
holding other variables fixed, as in a partial dependence plot. These are
not types of tasks that judgment excels at. Scientific judgments about
causality are notoriously error-prone (Kahneman, 2011), and C-R re-
gression curves and confidence intervals do not offer even the most
discerning judgment the empirical information needed to determine
how or whether changing exposure would change risk (Fig. 5, Pearl,
2009). Judgments organized, tested, and validated using causal Baye-
sian network appear to be promising for addressing causal questions
(Pearl, 2009) and for quantifying causal C-R functions (Fig. 2). How-
ever, testing and validating such models with data makes heavy use of
statistical methods and algorithms (such as conditional independence
tests, calculation of adjustment sets, estimation of conditional prob-
ability tables of functions, and inference of causal exposure-response
relations controlling for the variables in adjustment sets) (Cox, 2018b).

At the same time, it is undeniable that formulating useful models of
pharmacokinetics, pharmacodynamics, and disease processes requires
considerable scientific judgment. Understanding of relevant biology is
needed to decide what details can (and should) be safely omitted or
averaged over, what simplifying assumptions should be made to reduce
complex reality to a manageable model with parameters that can be
estimated from data, and how compartments and flow rates or transi-
tion rates should be specified and parameterized. Thus, scientific
judgment is often essential in identifying appropriate model structures
and simplifications, and in specifying what needs to be estimated from

data, e.g., exposure-dependent transition rates or flow rates among
model compartments. Statistical algorithms can then be applied to ap-
propriate data (if it is available) to estimate these parameters. Thus, we
conclude that scientific judgment should not be used in lieu of statis-
tical methods and algorithms, but rather should be used in combination
with them. For example, human understanding and judgment of plau-
sible causal pathways and mechanisms, together with statistical models
of conditional probabilities and of pharmacokinetics, pharmacody-
namics, and disease processes, can contribute to developing, testing,
and refining causal Bayesian networks (Hack et al., 2010) or dynamic
simulation models (Cox, 2020). Such data-informed models, in turn,
can contribute to credible risk estimates and causal C-R models for
informing risk management decisions.

3. Discussion and Conclusions

3.1. Risk Management and Risk Assessment Implications of Nonlinearity

The aspects of nonlinear C-R function estimation and interpretation
discussed in previous sections have clear implications for more effective
risk management, as well as for more informative risk assessment. One
is the importance of including time patterns of exposure, such as times
between successive high-concentration exposures, in characterizing and
regulating risks for some substances. Reducing time-weighted average
(TWA) exposure concentrations may not succeed in reducing risk if
times between consecutive high exposure concentrations are not also
controlled (Fig. 3). Likewise, regulations that limit variability around
mean concentrations, and autocorrelations in exposure histories on
different time scales, may be much more effective in controlling risks
for some substances that measures that only reduce time-weighted
average (TWA) mean concentrations. When C-R functions are non-
linear, as in Fig. 4, an exposure history that randomly fluctuates be-
tween 0 and 2 units of concentration, with a mean of 1 unit of con-
centration, may be far more dangerous than a constant (zero-variance)
exposure to 1 unit of concentration, even though they have identical
TWA values. Regulations based on C-R functions that do not model and
correct for errors in exposure estimates may be ineffective if the dis-
torted shape of the estimated C-R function (e.g., a low-dose linear
curve) does not accurately represent the true shape of the underlying
causal dose-response function (e.g., a threshold or other nonlinear
function). Thus, the practical design of regulations that better protect
worker health by addressing these aspects of exposure appears to be a
worthwhile topic for further applied research. Dynamic simulation
modeling can help to understand effects of proposed regulations on risk,
accounting for realistic variability and autocorrelations in exposure
time series; time patterns of mean exposure concentrations within
working weeks and over lifetimes; inter-individual variability in ex-
posure response parameters; and exposure estimation errors and un-
certainty (Cox, 2020). However, developing and validating dynamic
simulation models of exposures, pharmacokinetics, pharmacodynamics,
and disease processes requires considerable research compared to re-
gression modeling of estimated exposure-response data.

Recognizing the limitations and challenges of regression modeling
for nonlinear C-R functions does not imply that regression modeling
should not be used in risk assessment, characterization, and commu-
nication; but only that it should be used and interpreted carefully, and
in conjunction with other techniques that better address causality.
Regression modeling should be used with errors-in-variables correc-
tions if there are errors in variables; with nonparametric model en-
sembles such as random forest if there is uncertainty about model forms
and specification errors; with latent variable techniques if there might
be unobserved factors that modify observed responses; and so forth
(Table 1). Well-specified regression models can be highly useful for
estimating conditional probability and conditional expected value
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relationships between a variable and its direct causes, if these are
known and suitable adjustment sets have been identified. However,
regression per se does not address the causal interpretation of the C-R
curves that it produces (Pearl, 2009). Judgment is not usually a viable
substitute for more formal analytic methods (Kahneman, 2011; Tetlock
and Gardner, 2015); conversely, even the best current formal analytic
methods cannot replace the scientific judgment and knowledge needed
to create dynamic simulation models and other detailed causal models
of complex biological processes. Even strong and statistically significant
associations observed in well-designed and controlled health impact
assessment studies do not necessarily translate into valid causal re-
lationships between the studied variables. Furthermore, statistical sig-
nificance does not necessarily imply practical or clinical significance.
These limitations are relevant for both linear and nonlinear models.

When regression modeling is used to estimate C-R functions, addi-
tional data-driven techniques are usually needed to establish valid
causal interpretations of these curves, and, in particular, to clarify the
extent to which changes in exposures will bring about changes in risk
(Pearl, 2009). Difficulty in demonstrating direct causation is not the
same as evidence against such causation, and finding alternative ways
to explain apparent associations of agents and effects should not ne-
cessarily be taken as evidence that the agent does not contribute to
causing the effect. Rather, causal analysis clarifies whether a data set
provides evidence of a dependence of effects on exposure that is not
fully explained away by standard alternative explanations such as
confounding, model specification error, and measurement error. If so,
then it may be prudent to treat the dependence (at least provisionally)
as being causal. If not – for example, if effects are conditionally in-
dependent of exposure to an agent, given the values of measured con-
founders, or given plausible assumptions about effects of unmeasured
or residual confounding – then additional evidence is needed to warrant
a hazard identification conclusion that exposure to the agent increases
probability of the effect.

There has been remarkable progress in statistical and machine
learning methods for dose-response modeling in recent decades. Most of
the techniques we have mentioned for extending regression modeling to
meet challenges arising from realistic imperfections in relevant data
and knowledge, from the statistical methods in Table 1 to machine
learning methods such as random forest partial dependence plots, were
not widely taught or practiced by earlier generations of risk analysts;
many did not yet exist. Now they are increasingly being included in
state-of-the-art risk analysis practice and guidance (NIOSH, 2020). We
suggest that, in addition to these methods, causal Bayesian networks
(Fig. 2) (Pearl, 2009; Hack et al., 2010; Cox, 2018b) and dynamic si-
mulation modeling of nonlinear C-R functions (Figs. 3 and 4) appear
promising for further improving the realism of C-R modeling. These
techniques typically require more detailed analysis than regression
modeling alone, but the extra effort may be rewarded by increased
success in designing exposure regulations that more effectively protect
human health.
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