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Abstract

expression profiling

Microglia are resident macrophages of the central nervous system, and their unique molecular signature is dependent upon
CSF-1 signaling. Previous studies have demonstrated the importance of CSF-1R in survival and development of microglia in
animal models, but the findings are of uncertain relevance to understanding the influence of CSF-1R on microglia in
humans. Hereditary diffuse leukoencephalopathy with spheroids (HDLS) [also known as adult onset leukoencephalopathy
with spheroids and pigmented glia (ALSP)] is a neurodegenerative disorder primarily affecting cerebral white matter, most
often caused by mutations of CSFIR. Therefore, we hypothesized that the molecular profile of microglia may be affected in
HDLS. Semi-quantitative immunohistochemistry and quantitative transcriptomic profiling revealed reduced expression of IBA-
1 and P2RY12 in both white and gray matter microglia of HDLS. In contrast, there was increased expression of CD68 and
CD163 in microglia in affected white matter. In addition, expression of selective and specific microglial markers, including
P2RY12, CX3CR1 and CSF-1R, were reduced in affected white matter. These results suggest that microglia in white matter in
HDLS lose their homeostatic phenotype. Supported by gene ontology analysis, it is likely that an inflammatory phenotype is
a key pathogenic feature of microglia in vulnerable brain regions of HDLS. Our findings suggest a potential mechanism of
disease pathogenesis by linking aberrant CSF-1 signaling to altered microglial phenotype. They also support the idea that
HDLS may be a primary microgliopathy. We observed increased expression of CSF-2 in gray matter compared to affected
white matter, which may contribute to selective vulnerability of white matter in HDLS. Our findings suggest that methods
that restore the homeostatic phenotype of microglia might be considered treatment approaches in HDLS.
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Introduction

Macrophages are a diverse family of phagocytic effector
cells of innate immunity. They play vital roles in defense
against pathogens as well as clearance of tissue debris and
repair of damaged tissue [13]. Microglia are a unique
population of macrophages of the central nervous system
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populated in early gestation from yolk sac-derived precur-
sor cells, with replenishment by local proliferation rather
than influx of blood borne cells [41, 42]. In addition to
their immune functions, microglia play important roles in
synaptic development and myelin maintenance [21, 46].
Recent studies have identified a specific molecular and
functional signature of microglia, separating them from
macrophages as well as other brain cell types [6, 7, 20, 27].
Moreover, this unique molecular signature is dependent
upon CSF-1 [7]. A number of animal studies have demon-
strated a role for CSF-1R in survival and development of
macrophages [10, 54, 55]. Many of these studies were
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limited in exploring functional relationships between CSE-
1 signaling and microglia due to use of reagents that did
not distinguish macrophage subtypes or by incomplete in-
hibition of CSF-1 signaling. Limited functional studies of
CSE-1 signaling associated with human pathology have
been reported [50].

It has been discovered that autosomal dominant muta-
tions in CSFIR, resulting in partial loss of function in
CSF-1R signaling, are the major genetic cause of heredi-
tary diffuse leukoencephalopathy with spheroids (HDLS)
[22, 40, 44]. HDLS, also known as adult-onset leukoen-
cephalopathy with spheroids and pigmented glia (ALSP)
[23], is a progressive neurodegenerative disorder charac-
terized by cerebral white matter degeneration with
axonal spheroids, ballooned cortical neurons, reactive
astrocytosis, and lipid- and pigment-laden macrophages
[2, 3, 28]. Recessive mutations in alanyl-transfer (t) RNA
synthetase 2 (AARS2) can produce a similar disorder,
through presumably different mechanisms [29]. There
are also families with nearly identical antemortem clin-
ical findings confirmed and HDLS-like pathology at aut-
opsy without mutations in either CSFIR or AARS2
[Wszolek, ZK, unpublished]. CSF-1R is the main recep-
tor for CSF-1 (also known as M-CSF), which is one of
two major macrophage trophic factors, with CSF-2 (also
known as GM-CSF) being the other [26]. CSF-1R signal-
ing mediates important cues for survival, proliferation,
differentiation and activation of cells of the macrophage
lineage, including microglia [17].

In light of current evidence, we studied functional
properties of microglia in HDLS. In this study, we inves-
tigated molecular and pathological effects of loss of CSE-
1 signaling due to mutations in CSFIR in postmortem
brain tissues of 11 patients with HDLS. We assessed
macrophage and microglial populations with immuno-
histochemistry for various cell type markers. We also an-
alyzed gene expression changes, focusing on genes
associated with macrophage and microglial functionality.
Our findings suggest a potential mechanism of disease
pathogenesis that links aberrant CSF-1 signaling to al-
tered microglial phenotype and to the selective vulner-
ability of white matter in HDLS.

Materials and methods

Case materials

All leukoencephalopathy cases used in this study were
diagnosed as HDLS and confirmed to have CSFIR
mutations, and we therefore use the more specific no-
menclature of HDLS, rather than ALSP. All HDLS
cases were submitted to the neurodegenerative disor-
ders brain bank at Mayo Clinic, Jacksonville. Inclusion
criteria for morphologic studies were presence of
formalin-fixed, paraffin-embedded tissue of HDLS
(n=11) and controls without significant
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neuropathologic changes (n=11) (Table 1). Assigned
case numbers for expression studies were randomly
chosen. Many of the HDLS cases have been previ-
ously reported or included in genetic studies of HDLS
[3, 33, 44].

Immunohistochemistry and immunofluorescence
Immunohistochemistry for IBA-1 (019-19,741, 1:3000,
Wako Chemicals, VA, USA), CD68 (M0814, 1:1000,
DAKO, CA, USA), CD163 (NCL-L-10D6, 1:250, Leica
(Novocastra), Newcastle, UK), and P2RY12 (1:250, Dr.
Butovsky) was performed on sections of medial frontal
lobe that included periventricular white matter, corpus
callosum and anterior cingulate gyrus. For comparison,
we used horizontal sections of cerebellum at the level of
the dentate nucleus. Immunohistochemistry was per-
formed on glass-mounted, 5-pum thick formalin-fixed,
paraffin-embedded sections. Sections were deparaffinized
in three 5 min washes of xylene, rehydrated in three 2 min
washes of a graded series of ethanol (100, 100, 95%), and
washed thoroughly in dH,0 prior to steaming in either
dH,0 or pH 6 citrate buffer (depending on the antibody)
for antigen retrieval. All stains were processed by a DAKO
AutostainerPlus (DAKO, Carpinteria, CA, USA) with the
DAKO EnVision™ + System-HRP (diaminobenzidine) sec-
ondary antibody system. Normal goat serum (1:20 in Tris
buffered saline; Sigma, St. Louis, MO, USA) was used to
block nonspecific antibody binding.

Double-labelled immunofluorescence was performed
with IBA-1 (1:750) and CD68 (1:500) on sections of peri-
ventricular white matter at the level of the anterior cin-
gulate gyrus. Slides were deparaffinized, rehydrated, and
washed as described above. They were then blocked with
DAKO serum-free protein block prior to incubation
with a cocktail of the primary antibodies over night at
4°C. After briefly washing with phosphate buffered sa-
line, slides were incubated with a cocktail of Alexa Fluor
488 and 568 conjugated secondary antibodies (1:500,
Molecular probes, Eugene, OR, USA) for 1.5h at room
temperature. Prior to coverslipping, the slides were
treated with Sudan Black for 2 mins to block autofluo-
rescence. Slides were cover slipped with Vectashield with
DAPI  mounting media (Vector  Laboratories,
Burlingame, CA, USA). Images were taken using a Zeiss
Axio Imager Z1 microscope (Carl Zeiss Microscopy,
Jena, Germany).

Image analysis

Immunostained sections were converted into high-
resolution digital images with Aperio ScanScope XT
Bright field slide scanner (Aperio Technologies, Vista,
CA, USA). Uniform-sized regions (2 x 480,000 um? re-
gions) of acute white matter lesions, chronic white mat-
ter lesions, deep peri-lesional gray matter (layers IV, V &
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Table 1 Demographic and genetic features of HDLS and control case cohorts. Inclusive of cases with fixed tissue available (+) for
imaging studies as well as cases from enlarged HDLS cohort without fixed tissue available () with available pathology reports and
demographic data sufficient for inclusion in gender and AD pathology analyses. NA = information not available or not applicable to
that case. Student’s t-test was performed on age at death between male and female HDLS cohorts, female age at death was

significantly younger than male (p =0.032)

Group Case # Sex Age CSFIR Mutation Histopathology Expression
HDLS 1 F 46 c.1897G > A, p.Glu633Lys + +
HDLS 2 M 55 €2320-2A > G, p.Cys774_Asn814del + +
HDLS 5 F 58 €.2633C > A p.Pro878His + +
HDLS 6 M 49 €2297T > C, p.Met766Thr + +
HDLS 9 F 52 c2381T>C, plle794Thr + +
HDLS 11 M 51 €2330G > A, p.Arg777GIn + +
HDLS 13 M 71 c.1897G > A, p.Glu633Lys + -
HDLS 14 F 49 €.2603T > C, p.Lys868Pro + -
HDLS 15 F 55 €2603 T > C, p.Lys868Pro + -
HDLS 16 M 62 c2381T>C, plle794Thr + -
HDLS 17 F NA €2297T>C, p.Met766Thr + -
Normal 3 M 69 - +
Normal 4 M 63 - +
Normal 7 F 61 - +
Normal 8 F 60 + +
Normal 10 M 53 - +
Normal 12 F 56 - +
Normal 18 M 74 + -
Normal 19 M 51 + -
Normal 20 F 65 + -
Normal 21 M 82 + -
Normal 22 F 60 + -
Normal 23 M 65 + -
Normal 24 M 50 + -
Normal 25 M 50 + -
Normal 26 F 53 + -
Normal 27 M 63 + -

VI), and superficial peri-lesional gray matter (layers I, II
& III) were selected for each different immunostain for
each case and tissue section. Custom designed algo-
rithms were developed using Aperio ImageScope soft-
ware to optimize signal-to-noise for quantification of
each antibody.

Gene expression array

A customized gene expression array chip was de-
signed on quantitative NanoString nCounter platform
(NanoString Technologies, Seattle, WA, USA). The
customized MG447 human microglia chip contains
376 microglial transcripts, 40 inflammation related
transcripts, 6 positive reference genes and 8 negative
controls in each platform [7]. Normal controls (1 =6)

and HDLS patients (n=6) were selected based on
availability of age- and sex-matched brain samples.
The brain samples were collected from frontal white
matter, frontal neocortex and cerebellar white matter.
Total RNA was extracted from brain samples using
Trizol™ reagent (Invitrogen, Carlsbad, CA, USA) ac-
cording to the manufacturer’s instruction. 100 ng of
total RNA from each sample was used for the nCoun-
ter analysis according to the manufacturer’s protocol.
All analyses were randomized in terms of diagnostic
category and brain region and analyses were double-
blinded. One subject in the control group (subject
#3), had to be excluded from analyses given that it
was an outlier based on heat map and principal com-
ponent analyses (PCA).
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Expression data analysis

Gene expression data were normalized against 6 house-
keeping genes and positive controls. The expression data
were excluded when they had lower than average of back-
ground signal from negative controls. PCA plots and heat
maps were generated using Partek” Genomics Suite® soft-
ware (Partek Inc. St. Louis, MO, USA) with Euclidean and
Average Linkage for clustering methods. Differentially
expressed transcripts were analyzed using one-way ana-
lysis of variance (ANOVA) in Partek® Genomics Suite®
software. Enrichment analysis was performed using Meta-
Core™ (GeneGo, St. Joseph, MI, USA).

Statistical analyses

SigmaPlot version 11 (Systat Software, San Jose, CA, USA)
was used for statistical analyses of immunohistochemistry
data. Due to small sample sizes, Kruskal-Wallis ANOVA
on rank was performed with Dunn’s post-hoc analysis for
pairwise comparison between HDLS, normal controls, and
other white matter diseases for each area analyzed. Data
that passed Shapiro-Wilk normality test were subjected to
one-way ANOVA followed by Holm-Sidak pairwise post-
hoc analysis. Mann-Whitney U test was used to compare
two groups of data. GraphPad Prism 6.00 for Windows
(GraphPad Software, La Jolla, CA, USA) was used for
graphical presentation. The following symbols were used
to indicate the degree of significant difference: * P < 0.05,
** P<0.01, *** P<0.001.

Results

Alterations in microglial and macrophage phenotypes in
HDLS

The focus of this study is on a series of patients with
CSFIR-related leukoencephalopathy consistent with
HDLS [2]. ALSP is an alternative term proposed by
some for cases with similar pathology [23], but ALSP in-
cludes cases without CSFIR mutations. Mutations in
CSFIR cause HDLS, and CSF-1R-mediated signaling is
critical for microglial development. Therefore, to assess
changes in microglia in HDLS, we performed immuno-
histochemistry with a panel of macrophage and micro-
glial markers, including IBA-1, P2RY12, CD163 and
CD68. We compared findings in affected cerebral white
matter of HDLS at the level of the anterior cingulate
gyrus with a similar region of neuropathologically nor-
mal controls. We also analyzed adjacent cerebral cortex
and unaffected cerebellar white matter of HDLS. We
used IBA-1 as a pan-macrophage marker [1]. In affected
white matter of HDLS, IBA-1 immunoreactivity was al-
most undetectable, but relatively spared in adjacent cor-
tex (Fig. la and b). More interestingly, the distribution
of IBA-1 positive cells in white and gray matter was vari-
able, including areas in deeper white matter with no
IBA-1 positive cells and other areas, closer to the gray-
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white junction, with seemingly increased density of IBA-
1 positive cells. Since both macrophages and microglia
express IBA-1, we also studied expression of P2RY12, a
purinergic receptor increasingly considered to be a spe-
cific microglia marker [7]. The staining pattern of
P2RY12 was similar to that of IBA-1, with loss of stain-
ing in affected white matter and relative sparing in the
adjacent neocortical gray matter (Fig. 1c and d). P2RY12
immunoreactivity in neocortical gray matter had a simi-
lar distribution pattern as IBA-1 immunoreactivity.

To understand whether the decrease of IBA-1 and
P2RY12 immunoreactivity was due to a decrease in the
number of microglia or changes in their phenotype, we
also studied adjacent sections of the same cases with
CD68 immunohistochemistry. CD68 detects a lysosomal
antigen in inflammatory or amoeboid macrophages and
microglia [4]. Despite the loss of IBA-1 and P2RY12 im-
munoreactive microglia, there were many CD68-positive
macrophages in affected white matter (Fig. 1e and f).

The loss of IBA-1 and P2RY12 immunoreactivity with
retention of CD68 immunoreactivity in affected HDLS
white matter raised the question of whether the CD68-
positive cells were parenchymal microglia or peripheral
monocyte-derived macrophages. To address this ques-
tion, we investigated immunoreactivity of CD163.
CD163 is a hemoglobin-haptoglobulin scavenger recep-
tor that is considered to be expressed exclusively on
perivascular macrophages in the brain under normal
conditions, as well as peripheral cells of monocyte
lineage [38, 56]. Interestingly, there were many paren-
chymal CD163-positive cells in affected white matter of
HDLS (Fig. 1g and h). This suggests that at least a sub-
population of macrophages in HDLS white matter may
be peripheral monocyte-derived cells. Taken together, al-
terations in macrophage markers seem to indicate the
possibility of an altered phenotype of resident microglia
and/or migration of peripheral monocytes into affected
white matter of HDLS.

Analysis of microglial phenotypes in different cortical
layers

We observed more marked white matter pathology, in-
cluding axonal loss, tissue vacuolation and gliosis, in
deep white matter compared with the white matter near
the gray-white junction (i.e. arcuate fibers). We also
noted that white matter near the cortical gray-white
junction had many axonal spheroids, frequent lipid-
laden macrophages, relatively intact oligodendroglia, and
less myelin loss [3]. Thus, we separately analyzed deep
white matter and subcortical white matter to investigate
the association between disease severity and microglial
phenotypes; we also compared affected cerebral white
matter to unaffected cerebellar white matter. Given evi-
dence from a CsfIr*’~ mouse model that deep cortical
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CD68 P2RY12 IBA-1

CD163

Fig. 1 Alterations in microglial and macrophage phenotype in HDLS. Microscopic comparison of 4 macrophage markers in a representative HDLS
case (case #7) and a representative normal control (case #8). IBA-1 expression (a & b) is decreased in the white matter of HDLS. Similarly, P2RY12
expression (c & d) is decreased in white matter of HDLS. Many amoeboid CD68 (e & f) macrophages are observed in HDLS lesional white matter.
Presence of parenchymal CD163 (g & h) positive cells are confined to the lesional white matter of HDLS, with almost no cells detected seen in
normal parenchyma. GM = gray matter, WM = white matter. Dotted line separates gray and white matter. Scale bar =100 um
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layers may be more severely affected than superficial
cortical layers [9], we also analyzed superficial cortical
layers (I, II and III) and deep cortical layers (IV, V and
VI) separately.

Semiquantitative analysis of IBA-1 expression in these
brain regions revealed significantly decreased IBA-1 im-
munoreactivity in both subcortical and deep white mat-
ter and in both superficial and deep cortical layers of
HDLS compared with normal controls (Fig. 2a). In con-
trast, CD68 immunoreactivity was most marked in
superficial cerebral white matter and less in deep white
matter and in cerebellar white matter of HDLS (Fig. 2b).
Taken together, the decrease in IBA-1 and CD68 in
superficial and deep gray matter is suggestive of a

decrease in gray matter microglial cells, as well as the
previously described non-uniform distribution.

We also observed significant increase in CD163 immu-
noreactive cells in both superficial and deep white mat-
ter of HDLS (Fig. 2c), but minimal CD163 cells in any
region of controls. These semi-quantitative analyses sug-
gest either an altered phenotype of resident microglia or
influx of peripheral monocytes into both superficial and
deep white matter of HDLS.

Analysis of subpopulations of macrophages in HDLS

Based on these observations of macrophage markers in
HDLS, we hypothesized that partial loss of the CSF-1
signaling may cause either abnormal differentiation of
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Fig. 2 Analysis of microglial phenotypes in different cortical layers. Graph panel of quantified (with Aperio software and specifically designed algorithms) DAB-
based immunohistochemistry images of: macrophage markers IBA-1 (a), CD68 (b), CD163 (c) in HDLS (n =12 for all stains and regions) and Normals (n =12 for
all stains and regions). Data represented as Tukey Box and Whisker plots. * indicates statistically significant p-value< 0.05
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microglia or migration of monocytes into affected white mat- CD68 and for CD68 with S-100 was used to further
ter, or both. Since CSF-2 is known to promote differentiation  characterize IBA-1-negative macrophages in superficial white
of myeloid cells into cells of dendritic lineage, possible imbal-  matter. The presence of CD68-positive, IBA-1-negative mac-
ance between CSF-1 and CSF-2 activity in HDLS may favor ~ rophages in the white matter of HDLS was confirmed (Fig. 3a
differentiation of progenitor cells into dendritic cells [12]. and b). While S-100 is often used as an astrocytic marker
Therefore, double immunofluorescence for IBA-1 with  [48, 49], it is also expressed in both mature and immature

IBA-1 + CD68 , S-100 + CD68

Fig. 3 Analysis of sub-population of macrophages in HDLS. a & b Immunofluorescence double stain of CD68 (Alexa Fluor 568 (red)), and IBA-1
(Alexa Fluor 488 (green)) with DAPI nuclear staining (blue). White arrowhead indicates an example of an IBA-1, CD68 double labelled amoeboid
macrophage. White arrow indicates an example of a CD68 positive, IBA-1 negative amoeboid cell. Scale bar =50 um. ¢ & d Immunofluorescent
double stain of CD68 (Alexa Fluor 568 (red)), and S-100 (Alexa Fluor 488 (green)), with DAPI nuclear staining (blue). White arrowhead indicates an
example of a CD68, S-100 double labelled cell with nuclear and cytoplasmic S-100 expression. Asterisk indicates example of a CD68 positive, S-
100 negative cell. Scale bar =25 um
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dendritic cells, such as Langerhans cells of the skin [47, 51].
S-100 and CD68 double immunofluorescence revealed S-
100-positive and CD68-positive cells (Fig. 3¢ and d). These
results suggest a sub-population of the infiltrating myeloid-
derived cells are aberrantly differentiating into cells of a den-
dritic lineage that are not normally present in the brain
parenchyma.

Identification of region-specific changes microglial
transcriptome in HDLS
Our immunohistochemical studies suggested that there
might be region-specific changes in microglial phenotype
in HDLS. To explore this further and to identify HDLS-
specific transcriptional changes, we performed gene ex-
pression profiling in HDLS (# = 6) and normal controls
(n=5) (Table 1). We measured expression levels of 460
macrophage-associated genes in frontal white matter
(FW), frontal gray matter (FG) and cerebellar white mat-
ter (CW). To analyze transcriptomes in double-blinded
fashion, we randomly assigned numbers to each individ-
ual and letters to each brain region. Hierarchical cluster-
ing based on gene expression patterns in FW was clearly
different between control and HDLS, and they formed
distinct clusters (Fig. 4a and b). In contrast to FW, there
was no clear distinction between control and HDLS in
FG or CW, suggesting that the basal microglial tran-
scriptomic signatures were not significantly different be-
tween control and HDLS in these areas (Fig. 4a).
Principal component analysis (PCA) plots were gener-
ated to compare gene expression patterns between brain
regions. Each data point on the PCA plot represents
gene expression of a single region from a single case. A
shorter distance between points indicates greater simi-
larity of the transcriptome for the two cases. Not unex-
pectedly, the transcriptome of FG was clearly different
from FW and CW (Fig. 4b). This reflects the differences
in molecular profiles between microglia in white matter
and gray matter. To further investigate region-specific
differences in the transcriptome between HDLS and
controls, PCA plots of each brain area were generated
(Fig. 4c, d and e). In the figures, red symbols represent
HDLS and blue symbols represent controls. Similar to
heat map observations (Fig. 4a), there were clear differ-
ences between HDLS and controls in FW (Fig. 4c). In
contrast, FG showed fewer differences between HDLS
and controls, as well as greater sample-to-sample hetero-
geneity. There were also no obvious differences in tran-
scriptome patterns in CW of HDLS and controls (Fig.
4e). Interestingly, three of the six HDLS cases had a dis-
tinctive gray matter expression pattern (Fig. 4d). These
heat map and PCA map findings indicate that transcrip-
tional changes in cerebral white matter differ from those
of gray matter. Moreover, cerebellar white matter is pre-
served in HDLS, suggesting that white matter changes in
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transcriptome patterns are both disease- and region-
specific.

Enrichment analyses with differentially expressed genes
in FW and FG

To further characterize region-specific molecular events
in HDLS, we studied transcriptional changes in the same
brain regions with greater than 1.5 fold difference and
statistical significance (p <0.05) (Fig. 5a). Among the
three brain regions, FW showed the greatest differences
in HDLS, with decreased expression of 16 and increased
expression of 87 genes. In FG two genes were decreased
and 44 genes were increased. In CW, nine genes were
decreased and 14 genes were increased. A Venn diagram
displays the overlap in differentially regulated genes by
brain region (Fig. 5b). Numbers in the Venn diagram are
the number of genes common to the regions that are
up- or down-regulated in HDLS compared to controls.

Transcriptional changes in cerebral white matter are
considered to provide information about pathogenic
mechanisms at the molecular level. Thus, we performed
pathway analysis using 75 genes exclusively altered in
FW of HDLS to understand the molecular pathophysi-
ology (Fig. 5c and d). We also performed pathway ana-
lysis using 24 FG genes to understand processes
unaffected in HDLS (Figure S1). The names and generic
functions of the 75 and 24 genes identified are summa-
rized in Tables S1 and S2, respectively.

The enriched functions of 75 or 24 genes are listed if
the p-value was less than 0.05 and if they had more than
2 genes in each functional category. The top 25 cerebral
white matter-specific pathways and gene ontology (GO)
processes are displayed in tables (Fig. 5¢ and d), and the
top 25 cerebral gray matter-specific pathways are shown
in Supplementary Data (Figure Sla and b). Interestingly,
pathways involved in CSF-1 signaling are enriched only
in affected FW (Fig. 5¢, highlighted in orange color). In
addition, many immune response-related pathways were
significantly enriched in FW, but not in FG (Fig. 5c,
highlighted in yellow color and Figure Sla). Several dis-
tinctive GO processes enriched in affected FW include
those related to axonal function, cell differentiation and
cell migration processes (Fig. 5d, highlighted in blue,
purple, and pink, respectively). The GO process findings
may correlate with pathologic changes observed in FW
of HDLS, including the axonal damage, altered micro-
glial phenotype and infiltration of peripheral macro-
phages (Figs. 1 and 2). The GO processes related to
synaptic organization, synaptic transmission and nervous
system development were enriched in FG (Figure S1b,
highlighted in blue color). Our results suggest that the
microglial molecular signature in affected white matter
clearly differs from unaffected frontal gray matter.
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18 147 114 81 48 15 18 51 84 17 15

Cerebellar white (CW)

46 02 42 86 13

Comparison of the microglial molecular signature in
different brain regions

We demonstrated an altered phenotype of macrophages
in FW of HDLS. Abnormalities of CSF-1 signaling may
explain pathologic events in cerebral white matter based
on gene enrichment analysis (Fig. 5). Thus, to further
characterize the molecular events in each brain region,
we examined levels of microglial and CSF signaling
markers in FW and FG. Expression of IBA-1 trended to
decrease in FW, but not in FG (Fig. 6). On the other
hand, there were significant decreases in P2RY12 and
CX3CRI levels in FW, yet little change in FG. Of note,
P2RY12 and CX3CRI are uniquely or highly expressed
in microglia, whereas IBA-I can be detected both in
microglia and monocyte-derived macrophages. Thus,

decreased levels of CX3CR1 and P2RY12 in HDLS sug-
gest that the disease process is associated with altered
phenotype of microglia in cerebral white matter micro-
glia, but not in unaffected white matter, such as CW.

We also examined levels of CSF-1 and CSF-IR in each
brain region. The level of CSF-1 was significantly in-
creased in both FW and FG (Fig. 6). On the other hand,
the level of CSF-IR was significantly decreased in FW,
but not in FG. These results suggest that significant re-
duction of CSF-IR expression is coupled with decreased
expression of microglial markers in FW. Results from
gene array analysis are consistent with findings from im-
munohistochemistry and suggest cerebral white matter
microglia have an altered phenotype in HDLS and lose
their homeostatic phenotype.
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Fig. 5 Enrichment analyses with differentially expressed genes in frontal cortex white matter. a The number of up- and down-regulated genes in
each brain region. FW, FG and CW are frontal cortex white matter (green), frontal cortex gray matter (pink) and cerebellum white matter (blue),
respectively. b The overlap between HDLS specific transcriptional changes in different brain areas. A Venn diagram displays the number of
differentially expressed genes in HDLS. The same color code was used to indicate each brain region. The total numbers of altered genes are
shown in parenthesis. Overlapping portions of circles indicates the number of genes shown in multiple brain regions. Seventy-five genes are FW-
specific and 24 genes are FG-specific. ¢ Enriched pathway maps in frontal cortex white matter. Enrichment analysis was performed using 75 FW-
specific genes. The table with top 25 pathways displays multiple CSF-1-involved pathways and a lot of immune response-related pathways. d
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Discussion

The discovery of CSFIR mutations as the genetic basis
of HDLS [44] was a major breakthrough in better defin-
ing this rare adult-onset hereditary disorder affecting
preferentially cerebral white matter. That recessive mu-
tations in AARS2 [29] could produce a similar, but not
identical phenotype (ALSP), suggests that more than one
pathogenic process can produce cerebral white matter
pathology with axonal spheroids and pigment-laden
macrophages. The selectivity of certain regions of cere-
bral white matter in HDLS (e.g., frontal white matter) is
difficult to explain given that CSFIR mutations should
affect cells that are dependent upon CSF-1 signaling in
both gray and white matter of all brain regions. Micro-
glia clearly depend on CSF-1 signaling. A spontaneous

mutant mouse (op/op [55]) with deletion of csfIr has
bone disease due to inefficient bone remodeling by oste-
oclasts [55]. They also have deficient microglial func-
tions, such as synaptic stripping in response to injury
[21]. Some studies report white matter pathology and
others report no overt white matter pathology in op/op
mice [11, 54]. These results indicate that white matter in
higher order brain regions of the human central nervous
system may be uniquely dependent on microglial CSF-1
signaling. Frontal white matter is also susceptible to age-
associated white matter rarefaction that appears to be
closely linked to small vessel pathology [32]. Given that
HDLS becomes clinically evident in adulthood, it may
indicate that age-dependent processes contribute to se-
lective vulnerability of frontal white matter when
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Fig. 6 Comparison of molecular microglial signature in different brain regions of HDLS patients. The relative expression level of microglial-specific
transcripts, IBA-1, P2RY12 and CX3CR1. All three genes have a trend of decreasing their level in HDLS cases. However, it is statistically significant
only in frontal cortex white matter (P2RY12, p=0.0033, CX3CR1, p = 0.0086). The relative expression level of CSF-1 and CSF-1R. The level of CSF-1
significantly increased both in white and gray matter. However, the level of CSF-1R significantly decreased only in white matter while it showed
trend of increasing in gray matter. The box and whisker plot displays median values with the error bars of maximum and minimum values. Two
tailed student t-test were used *p < 0.05, **p < 0.01, ***p < 0.005

coupled with deficits in CSF1 signaling in microglia. It
should be noted that although human microglia depend
on CSF-1 (M-CSF) signaling, they also respond to CSF-2
(GM-CSF), especially in response to injury-associated
astrocytic signaling [26]. In the absence of CSF-1R-
dependent signaling, CSF-2 may compensate in normal
development, but may be less efficient in response to in-
jury with aging.

In this study, we used immunohistochemistry and mRNA
expression analysis of macrophage and microglia-specific
markers to assess the microglial phenotype in HDLS. We
demonstrate loss of IBA-1 and P2RY12 in vulnerable white
matter, but not in relatively unaffected cortical gray matter
or in unaffected cerebellar white matter. Concurrent with
decreased microglia-specific markers, such as P2RY12, we
found increased CD68 immunoreactivity in microglia of af-
fected white matter (Figs. 1, 2, 3). These results are in
agreement with previous data in a small Japanese cohort of
HDLS cases that illustrated similar pathologic hallmarks
[50]. This suggests that in spite of loss of normal CSF-1 sig-
naling due to mutations in CSFIR, macrophages remain
abundant in HDLS, but either they have loss of the unique
and homeostatic microglia phenotype or there is infiltration
of peripheral macrophages. A subset of cells was positive
for markers CD163 and S100, consistent with infiltration of
peripheral myeloid cells and their subsequent differenti-
ation into cells of a dendritic lineage. Dendritic cells are
normally confined to the meninges, perivascular space and

choroid plexus with the brain parenchyma being devoid of
such cells; however, dendritic cells in the brain parenchyma
are a hallmark of other inflammatory disorders such as MS.
[47] The vulnerable cerebral white matter also had macro-
phages with an inflammatory phenotype. These changes in
macrophage phenotype and the selective vulnerability of
cerebral white matter were confirmed by expression array
data (Figs. 4 and 5). These results highlight an aberrant and
skewed inflammatory phenotype in affected frontal white
matter that differed from unaffected cerebral gray matter
and unaffected cerebellar white matter. A majority of white
matter-specific transcriptional changes were related to im-
mune response (Fig. 5¢, highlighted in yellow). These
changes in immune function were not found in unaffected
cerebral gray matter. The observed region-specific changes
in expression of genes related to immune functions may be
downstream of haploinsufficiency of CSE-1R (Fig. 6). Based
on the level of CSE-1R, the loss of homeostatic microglia in
cerebral white matter may be due to significant loss of
CSE-1 signaling. In contrast, cerebral gray matter was rela-
tively spared, perhaps because CSF-1 signaling is less crit-
ical in gray matter where microglia retained their
homeostatic signature (Fig. 6).

Several lines of evidence support our observation that
HDLS is related to a loss of function of CSF-1R [40]. In
addition, the inflammatory phenotype we observe in
HDLS has been reported in other studies investigating
consequences of loss of CSF-1 signaling [16, 43].
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Inhibition of CSF-1R has been shown to lead to a
phenotypic shift in microglia from anti-inflammatory/
homeostatic to primed/activated [43]. It has been also
suggested that CSF-1 and CSF-2 signaling represent op-
posing influences on the phenotype of macrophages,
with CSF-1 being protective against inflammation [12].
Moreover, P2RY12 expression is decreased and lost in
macrophages that exhibit an inflammatory phenotype
[19, 31]. Taken together, the partial loss of CSF-1R sig-
naling was associated with loss of microglial characteris-
tics and presence of an inflammatory phenotype, which
likely contributes to white matter damage in HDLS [25].

In normal brains, microglia are relatively evenly dis-
tributed throughout gray and white matter. While the
cell bodies remain relatively stationary, the processes of
microglia are extremely motile [34, 53]. As sentinels of
the immune system, the grid-like distribution of micro-
glia allows rapid surveillance of the brain over a wide
area [34]. In our HDLS cohort, we observed an abnor-
mal distribution of microglia, corroborating data from a
previous study in a Japanese cohort [50]. In the white
matter, this abnormality is in part a response to the
myelin and axonal damage as microglia undergo chemo-
tactic migration towards areas of insult. Microglia usu-
ally become heterogeneously distributed when they
respond to an insult or stimulus [39]. Despite little overt
neocortical pathology in HDLS, with the exception of
ballooned or chromatolytic neurons [3], we also ob-
served heterogeneous distribution of microglia in neo-
cortex. We attempted to identify pathologic hallmarks of
various insults in the regions of the gray matter that
may account for this heterogeneity. The observed clus-
ters of microglia did not appear to be associated with
any obvious pathology, such as ballooned neurons,
blood-brain barrier damage, tissue vacuolation, hyper-
trophic astrocytes or reactive astrocytosis.

It has recently been reported that CSFIR regulates
microglial density and distribution in zebrafish [37], sup-
porting our finding of altered microglial distribution in
CSFIR-related leukoencephalopathy. Other studies have
shown that the CSF-1 signaling pathway is required for
microglial motility [39]. Here, we found CD68 and
CD163 immunoreactive macrophages in HDLS white
matter (Figs. 1 and 2). Brain parenchymal CD163 posi-
tive macrophages correlate with blood-brain barrier
damage in other white matter disorders [5, 45, 56].
There is no evidence of a specific blood-brain barrier ab-
normality in HDLS. Parenchymal CD68- and CD163-
positive cells in HDLS may be related to an altered
phenotype of brain microglia or alternatively, migration
of peripheral monocytes into brain parenchyma. CSF-2
promotes migration of blood-borne monocytes across
the blood-brain barrier, which then differentiate into
macrophages in the presence of CSF-1 and CSE-2 [16,
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17, 26, 52]. CSF-2 in isolation also promotes their differ-
entiation into a dendritic cell lineage, which maintains a
phagocytic phenotype (CD68 immunopositive) [17, 30].
Thus, the reliance of HDLS patients on CSF-2 signaling
due to genetically driven deficiencies in CSF-1 signaling
may account for the observed cellular profiles. The co-
localization of S-100 and CD68 in macrophages in
HDLS suggests at least a subpopulation of the CD68
positive and IBA-1 negative cells have a dendritic cell
phenotype, likely differentiating from infiltrating periph-
eral macrophages.

The data from our enrichment analysis support the
possibility of alteration in macrophage population or dis-
tribution (Fig. 5d, highlighted in purple and pink).
Enriched “regulation of cell differentiation” and “cell mi-
gration” GO processes indicate that the loss of CSF-1R
may induce differentiation to alternative cell populations
other than microglia or cause monocyte infiltration.
Both immunohistochemistry and gene array results high-
light a possible role of infiltrating monocyte-derived cells
in HDLS.

Although we observed decreased gene expression of
CSF-IR in frontal white matter, it is possible that other
pathways had compensatory activation. For example, it
would be informative to examine CSF-2 signaling, since
it shares downstream functions in regulating differenti-
ation of myeloid cells. The unique vulnerability of
frontal white matter in HDLS may also be accounted for
by differences in abundance of the two main microglial
trophic factors between brain regions, with CSF-2 being
significantly up-regulated in gray matter compared to
white matter and vice versa for CSF-1 [26]. In addition,
IL-34 is newly identified ligand for CSF-1R, and it is re-
ported to support maintenance of microglia [14]. Recent
work in a mouse CsfIr*~ model illustrated a potential
role in neuronal development and hypermyelination in
early disease [9]. Thus, it might be interesting to further
investigate whether alteration in CSF-2 or IL-34 medi-
ated pathways account for, or compensate, the pheno-
typic changes in brain regions less vulnerable to
pathology in HDLS.

There is evidence to suggest that a unique signature of
microglia leads to a more quiescent, anti-inflammatory
phenotype when microglia are cultured with CSF-1.
Under these conditions, there is suppression of 19 genes,
many associated with a pro-inflammatory response [7].
This homeostatic signature, termed MO, suggests that
peripheral blood-borne macrophages have a more proin-
flammatory phenotype under baseline conditions. A neu-
rodegenerative disease-associated microglial signature
has also been described, termed MGnD [24]. MGnD
represents an induced inflammatory signature mediated
by the triggering receptor expressed on myeloid cells 2
(TREM2)-apolipoprotein E (APOE) pathway, which
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suppresses the MO signature. Interestingly, our gene ex-
pression data from affected frontal white matter showed
a significant increase in several transcripts associated
with the MGnD phenotype (e.g., APOE, GPNMB and
LGALS3) and decrease in MO signature markers (e.g.
TMEM119, GPR34 and TGFA) and (Table S1). This re-
sult suggests that the molecular characteristics of micro-
glia in HDLS changes with CSF-1R haploinsufficiency
and that microglia in affected frontal white matter de-
velop a MGnD phenotype. This change in brain-resident
macrophage phenotype may be attributed to a change in
microglial phenotype, or a loss of parenchymal microglia
and a compensatory infiltration of peripheral monocytes.

Loss of the MO-homeostatic microglial signature in
animal models of amyotrophic lateral sclerosis (ALS) is
associated with up-regulation of inflammatory genes,
which correlates with disease severity [6]. Interestingly,
the phenotype of microglia we observed in HDLS is
similar to that found in an SOD1 ALS mouse model and
in multiple sclerosis patients, in which the molecules as-
sociated with the homeostatic microglial phenotype (e.g.,
P2RY12, CSF-1R) are down-regulated and inflammatory
markers are up-regulated [24, 57]. This suggests that
microglia are similar in these disorders and suggests
other inflammatory disorders may also exhibit an MGnD
phenotype when microglia lose their homeostatic signa-
ture. It has been reported that peripheral administration
of anti-miR155 in SOD1 mice reversed this abnormal
phenotype of microglia and ameliorated the disease [6].
Our results raise the possibility that this treatment target
may have benefits in HDLS.

Recent studies have described patients with homozy-
gous CSFIR mutations causing a severe leukoencephalo-
pathy with apparent congenital absence of microglia as
well as skeletal dysplasia in some patients [15, 36]. The
more severe phenotype, which was associated with bone
malformation, bears similarity to TREM?2-associated
Nasu-Hakola disease and suggests CSF-1 and TREM2
act on convergent pathways. The two disorders may lie
on a disease spectrum, possibly converging via the
TREM2-APOE pathway previously reported to be asso-
ciated with MGnD [24]. The presence of leukoencepha-
lopathy without apparent microglia reinforces the vital
importance of microglia on white matter integrity.

In addition to mutations in CSFIR, some individuals
with similar clinical and pathologic features have muta-
tions in AARS2 [29]. It is challenging to understand how
a mutation in a mitochondrial transfer-RNA synthetase
can lead specifically to white matter pathology. Future
research into this might highlight a novel microglial
phenotype regulatory system reliant on AARS2 gene or
highlight the importance of mitochondrial health in
microglia and the effect this may have on their pheno-
type. Combined with developmental issues highlighted
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in Csflr”~ mice, where it has been suggested that aber-
rant energy metabolism may play a pathogenetic role,
additional studies are warranted on these factors in
HDLS [9].

Analysis of our HDLS cases revealed that age at death
was younger in women than men (p = 0.032). The aver-
age age at death of women was 48 years, while that of
men was 59 years. A sex-difference in susceptibility has
been reported in a Japanese cohort of HDLS associated
with CSFIR mutations [23]. There is a well-established
sex-related link between severity and vulnerability to
chronic (but not acute) inflammatory disorders in disor-
ders such as cystic fibrosis and multiple sclerosis [8, 18].
This additional link between HDLS and autoimmune
disorders implicated inflammation as a potential patho-
genic mechanism and suggests that HDLS may be con-
sidered a primary microgliopathy.

Targeting CSF-1R has recently been reported to ameli-
orate AD pathology in APP/PS1 mice, where inhibition
of CSF-1R reduced microglial proliferation and de-
creased the inflammatory phenotype of microglia around
amyloid plaques [35]. While these short-term preclinical
models might suggest that antagonism of CSF-1R may
be a promising treatment in AD, given the probable
need for long-term treatment and adverse response to
CSE-1R inhibition may be white matter damage medi-
ated by microglial dysfunction.

In conclusion, we defined distinct microglial popula-
tions in affected frontal white matter in HDLS with im-
munohistochemistry and transcriptome profiling, which
differed from microglia in unaffected frontal gray matter
and cerebellar white matter. A limitation of this study is
that it was based on autopsy tissue where variable post-
mortem delay and agonal changes may have contributed
to findings. On the other hand, controls were susceptible
to the same shortcomings. Despite this limitation, our
findings provide important insights into microglial phe-
notypes in affected frontal white matter providing in-
sights into pathogenetic mechanisms of HDLS.
Specifically, our study links aberrant CSF-1 signaling to
region-specific loss of a homeostatic phenotype (MO)
and acquisition of a phenotype (MGnD) characteristic of
degenerative and demyelinating disorders. While the na-
ture of the selective vulnerability of frontal white matter
is still unknown, our study suggests that compensatory
microglial signaling (e.g., CSF-2) may be deficient in
frontal white matter. This may contribute to likely com-
pensatory influx of peripheral macrophages and other
myeloid-derived cells that explain both our observations
of parenchymal cells of a dendritic lineage and a skewed
inflammatory phenotype of the parenchymal macro-
phages. Our study also provides gene expression profiles
of a human primary microgliopathy and suggests specific
transcripts that may be protective or pathogenic. This
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knowledge may provide valuable information in develop-
ing therapies targeting microglial functions beyond this
rare familial CSF-1R-related leukoencephalopathy.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540478-020-00947-0.

Additional file 1: Figure S1. Enrichment analyses with differentially
expressed genes in frontal cortex gray matter. (a) Enriched pathway maps
in frontal cortex gray matter. Enrichment analysis was performed using
24 FG-specific genes. Unlike Fig. 6b, the table displays nothing related to
CSF-1-involved pathways or immune response-related pathways. (b) Gene
ontology process in frontal cortex gray matter. Enrichment analysis was
performed using 24 FG-specific. The table with top 25 processes includes
some synaptic function-related processes.

Additional file 2: Figure S2. Differentially expressed genes in frontal
cortex white matter and gray matter. (a) Heat map of 75 transcripts
exclusively changed in frontal cortex white matter. (b) Heat map of 24
transcripts exclusively changed in frontal cortex gray matter. The
displayed groups are; FW, frontal cortex white matter; FG, frontal cortex
gray matter; CW, cerebellum white matter; Ctl, control; HDLS, hereditary
diffuse leukoencephalopathy with spheroids. Up- and down-regulated
transcripts in HDLS are shown in red and blue, respectively.

Additional file 3: Supplementary Table S1. Gene names and the
generic functions of 75 genes exclusively altered in frontal cortex white
matter of HDLS. The gene symbol and RefSeq accession numbers are
shown on the left. The genes were categorized by their generic function
using MetaCore™. P-value was calculated by one-way ANOVA. (Blue font
- up-regulated, red font — down-regulated; MGnD - transcripts positively
(+) or negatively (-) associated with MGnD microglial phenotype.

Additional file 4: Supplementary Table S2. Gene names and the
generic functions of 24 genes exclusively altered in frontal cortex gray
matter of HDLS. The gene symbol and RefSeq accession numbers are
shown on the left. The genes were categorized by their generic
functional using MetaCore™. p-value was calculated by one-way ANOVA.
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