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Abstract

Background: The search for an accurate, gene-based test to identify heritable risk factors for 

Reward Deficiency Syndrome (RDS) was conducted based on hundreds of published studies about 

the role of dopamine in addictive behaviors, including risk for drug dependence and compulsive/

impulsive behavior disorders. The term RDS was first coined by Blum’s group in 1995 to identify 

a group of behaviors with a common neurobiological mechanism associated with a polymorphic 

allelic propensity for hypodopaminergia.

Objectives: To outline the process used to select risk alleles of reward genes for the Genetic 

Addiction Risk Score (GARS) test. Consequently, to address the limitations caused by inconsistent 

results that occur in many case-control behavioral association studies. These limitations are 

perhaps due to the failure of investigators to adequately screen controls for drug and alcohol 

use disorder, and any of the many RDS behaviors, including nicotine dependence, obesity, 

pathological gambling, and internet gaming addiction.

Methods: Review of the literature related to the function of risk alleles of reward genes 

associated with hypodopaminergia relevant case-control association studies for the selection of 

alleles to be measured by the Genetic Addiction Risk Score (GARS) test.

Results: The prevalence of the DRD2 A1 allele in unscreened controls (33.3%), compared 

to “Super-Controls” [highly screened RDS controls (3.3%) in proband and family] is used to 

exemplify a possible solution.

Conclusion: Unlike one gene-one disease (OGOD), RDS is polygenetic, and very complex. 

In addition, any RDS-related behaviors must be eliminated from the control group in order to 

obtain the best possible statistical analysis instead of comparing the phenotype with disease-ridden 

controls.

Keywords
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genetic prevalence; hypodopaminergia; Reward Deficiency Syndrome (RDS); Single Nucleotide 
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1. INTRODUCTION

The primary basis for an accurate test to identify heritable risk resides in the identification 

of risk alleles linked to genes in the brain’s reward circuitry, that contribute to reward 

deficiency. The test recently developed by Blum’s group is known as the Genetic Addiction 
Risk Score (GARS), for which the United States Patent and Trademark Office (USPTO) 

issued a patent on 9/11/18 [1]. Reward Deficiency Syndrome (RDS) was first coined 

by Blum’s group [2] to identify a group of behaviors that includes both drug addictive, 
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compulsive and impulsive behaviors, and provides the rationale for suggesting a common 

genetic rubric.

1.1. Reward Deficiency Syndrome (RDS)

Reward Deficiency Syndrome (RDS) involves dopamine resistance, a form of sensory 

deprivation of the brain’s reward or pleasure mechanisms. The syndrome occurs because 

of an individual’s inability to derive reward from ordinary, everyday activities. Reward 

deficiency can be relatively mild or severe, and addiction is a manifestation of RDS. The 

subject of extensive peer review RDS is a disorder of the neurochemistry of the brain and 

affects over one-third of the US population. Dopamine is a principal component of brain 

function and RDS. The healthy function of molecular neuroanatomy ultimately results in 

the release of the neurotransmitter dopamine which is the key to feelings of well-being, 

motivation and happiness.

Dopamine induces “pleasure” and reduces “stress.” This phenomenon, the neuronal release 

of dopamine at the reward site of the brain, the Nucleus Accumbens (NAc), involves 

a complicated cascade of neurotransmission called the “Brain Reward Cascade” (BRC). 

Dopamine released into the synapse results in feelings of well-being and reduced stress.

1.1.1. The Brain Reward Cascade (BRC)—The activation of the dopamine post-

receptor site in the brain reward center is facilitated by the interaction of many other 

brain chemicals. The amount of dopamine release relies on the upstream neurotransmitter 

serotonin, to stimulate endorphins and enkephalin. Subsequently, endorphins regulate the 

activity of GABA then GABA regulates the actual release of dopamine in the reward site of 

the brain [3].

The BRC of the mesocorticolimbic dopaminergic pathway plays an especially important 

role in mediating natural reward like sexual drive and hunger, as well as unnatural rewards, 

like substance-seeking. Natural rewards include the satisfaction of physiological drives, 

while unnatural rewards are learned and involve satisfaction of acquired pleasures, such 

as hedonic sensations. Alcohol and other drugs, as well as most positive reinforcers like 

sex, food, gambling and aggressive thrills, cause activation and neuronal release of brain 

dopamine into the synapses. The dopamine release can decrease negative feelings and satisfy 

abnormal cravings for alcohol, cocaine, heroin, nicotine, and with chronic use, exacerbate 

low dopamine function.

Following extensive research, a new understanding of how these substances influence the 

neurology of dopamine release and addictive behaviors arose. The research determined 

that alcoholism is like dependence on opiates, cocaine, nicotine, food, and some repetitive 

behaviors, like gaming, sex addiction. Both psychoactive drugs and certain behaviors 

produce a surge of dopamine in the midbrain (mesolimbic reward center), the biological 

substrate for addictive behavior. Individuals, genetically predisposed to crave (“want”) 

dopamine release, are at higher risk for addiction due to environmental and genetic factors 

that can, especially, in combination, reduce dopamine release and cause craving.
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There are multitudes of genetic studies that associate specific behaviors with identified 

reward gene alleles, Single Nucleotide Polymorphisms (specific SNPs) within the 

mesolimbic pathway [4, 5]. These studies are descriptions of the contribution made by 

polymorphisms (sequence variations) that affect the healthy function of reward genes 

and association studies that illustrate why the presence of these alleles in a gene panel 

indicates genetic risk for associated behaviors. Notably, the suggestion is that the actual 

phenotype is RDS, and deficiencies in the brain’s reward cascade, either hereditary or 

environmental (epigenetically produced), are responsible for impulsive, compulsive, and 

addictive behaviors both substance and non-substance [2, 6] (Table 1).

RDS behaviors include substance use disorders. Dependence on alcohol, psychostimulants, 

marijuana, nicotine (smoking) and opioid misuse with altered opiate receptor function, 

carbohydrates,; sugar-binging and obesity are substance-related RDS. Pathological 

gambling, sex addiction, reactive aggression, pathological aggression, and some personality 

disorders are non-substance RDS behaviors. RDS personality disorders include novelty 

seeking and non-suicidal self-mutilation. Polygenes are involved, and these RDS behaviors 

induce pre-synaptic dopamine release in the NAc. Spectrum disorders, such as Attention 

Deficit Hyperactivity Disorder (ADHD), Tourette’s Syndrome, and Autism, involve 

dopamine deficiency due to genetic, dopamine dysregulation. There are many hundreds 

of study results that support the theory that polymorphisms of the reward genes identified in 

the brain reward system are significantly associated with these reward-dependent traits.

Reward deficiency [7] is a type of flawed dopamine metabolism and function, linked to 

gene variants that cause hypodopaminergia. These polymorphisms affect the function of 

the genes involved in the Brain Reward Cascade, for example, the dopamine D2 receptor 

gene makes D2 receptors, and the polymorphism (variation) A1 causes a reduction in 

receptor numbers (30–40% fewer receptors at birth) [8]. The established concept of RDS 

helps to identify a complex array of behaviors, associated with molecular dysfunctions in 

the mesolimbic system of the brain. Essentially, high-risk individuals seek behaviors and 

substances including alcohol, opiates, cocaine, nicotine, and glucose known to cause the 

preferential release of dopamine at the NAc. Activation of the dopaminergic pathways offset 

low dopaminergic function, caused by gene variants in the BRC.

Comprehension of this shared mechanism will eventually lead to improved diagnosis, 

treatment, and relapse prevention. We cannot as yet claim that we have “hatched the 

behavioral addiction egg,” We are, however, starting to make the right inquiries. Based 

on numerous independent studies from around the world, it is becoming increasingly clear 

that risk analysis of reward gene polymorphisms can provide vital information for addiction 

clinicians. Meanwhile, many studies are investigating high and low drug metabolism, in 

particular, for opiates like buprenorphine/naloxone with polymorphisms of the P450 system 

[9]. Many firmly believe that pharmacogenetic testing is relevant to clinical practice. 

However, RDS risk for drug and non-drug addictive behaviors cannot be identified by using 

pharmacogenetics alone [10] and requires a detailed understanding of the BRC and related 

genetic variants.
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2. MATERIALS AND METHODS: DEVELOPMENT OF GARS

To develop the Genetic Addiction Risk Score (GARS), we first selected ten candidate 

genes from the plethora of chemical messengers involved in the neurotransmission of 

dopamine. The neurotransmission of dopamine follows a systematic interaction of many 

neurotransmitters and secondary messengers involved in signal transmission across the 

brain circuitry. Indeed, it is the net release, regulated catabolism, and receptor function of 

dopamine that is responsible for brain health and impulse control. The neurotransmitter 

dopamine is responsible for feelings of well-being and stress reduction [11]. Genes selected 

based on their influence on the net release of dopamine at the brain reward site were 

the Dopamine Receptors (DRD1, 2, 3, 4), Dopamine Transporter (DAT1), Serotonin 

Transporter (5-HTTLPR), COMT, MAO, GABA, Mu Opiate Receptor (OPRM1). The 

sequence variants or SNPs, including point-mutations of those genes, were chosen to reflect 

a hypodopaminergic trait. The basis of the selection was association studies; experimental 

vs. controls provided strong evidence that specific alleles support a hypodopaminergic trait 

(Table 2).

After an exhaustive review of the genetic literature related to all RDS behaviors followed 

by initial testing, only those alleles that lead to hypodopaminergia as the overall risk were 

selected (except for dopamine D3 gene). In the review process, we sought to reduce the 

number of possible genes and alleles and to eliminate spurious results and, as such, by 

trial and error, following adding and subtracting genes and alleles, decided on the proposed 

11 allele panel from ten genes. For example, in place of using serotoninergic receptors, 

the serotonin transport was chosen as a way to track serotonin in the synapse [12] which 

resulted in an accurate and significant prediction of drug and alcohol severity, linked to 

a clinical outcome referred to as the Addiction Severity. Index (ASI-Media version V). 

This work was a substantial undertaking involving many alleles, genes, kinases, and second 

messengers. The use of the Brain Reward Cascade (BRC), the result of many years of work 

done by Blum et al. and others globally [1], Fig. (1) helped guide our search. In support, 

Li and associates [6] found over 800 haplotypes but tracked them to two major pathways 

glutaminergic and dopaminergic; this provided further rationale for the GARS selection 

criteria.

Ten genes and 11 common polymorphisms including Single Nucleotide Polymorphisms 

(SNPs), and Variable Number Tandem Repeats (VNTRs) connected to the promotion 

of a genetically-induced hypodopaminergia were selected for the GARS test [13]. The 

presence of hypodopaminergia is a complicated but determining condition of the GARS 

test results. The search for studies that report low-dopamine function associated with 

specific SNPs of reward genes formed the cornerstone of the development of the GARS 

test [14]. While there are many possible addiction-related genes; as pointed out by 

Li et al. [6], neurotransmitter pathways located in the mesolimbic/pre-frontal cortices 

including the Serotonergic, Cannabinoidergic, Endorphinergic, GABAergic, Glutaminergic, 

and Dopaminergic, pathways are related to brain reward functioning and any dysfunction 

can result in unwanted dopaminergic dysregulation [6]. Polymorphisms of reward genes that 

have been correlated with chronic dopamine deficiency and reward-seeking behavior were 

selected for the genetic panel (Table 3).
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In terms of selection, one example of the detailed and careful selection relates to the 

dopamine transporter (DAT1) gene. The authors theorized that carriers of the 9 allele of the 

DAT1 gene would present an improved treatment reaction with buprenorphine, because its 

transport function; which results in the hypodopaminergic attribute, is four times faster than 

the 10 allele.

The development of a polygenic polymorphic test to evaluate the risk for all addictive 

behaviors is a worthwhile endeavor, and some studies have addressed this possibility 

for future clinical practice. Gerra et al. [10] provided clear evidence that buprenorphine 

treatment response in humans with heroin use disorder is related to the dopaminergic 

system. In the incidence of kappa opioid receptor (OPRK1) 36G>T SNP, they were 

surprised to have found no difference between responders and non-responders to 

buprenorphine. Nevertheless, the incidence of DAT gene polymorphism allele 10 (SLC6A3/

DAT1), was significantly increased in “non-responder,” above “responder” persons (64.9% 

vs. 55.9%). The incidence of the class of additional alleles was increased in the responder 

group, rather than in non-responder persons (11.0% vs. 2.1% respectively). These outcomes 

dovetail with the effort of others, presenting improved treatment results and agreement 

also based on dopaminergic polymorphisms, where hypodopaminergic qualities facilitate 

an enhanced reaction throughout treatment [26]. While the ten gene panel with associated 

polymorphisms based on these and many other studies reviewed previously represents the 

“state of the art,” we encourage others to further the development of a risk stratification test 

for RDS behaviors.

Pearson-Fuhrhop et al. [26] produced a genetic risk score by merging the functional 

polymorphisms from five genes involved in synaptic dopamine availability, the DAT and 

COMT, and genes involved in dopamine receptor binding DRD1, DRD2, DRD3. They 

drew data from three separate groups: 1) a discovery group of healthy adult subjects 

(n = 273); 2) a duplication group of adults suffering from depression, (n = 1,267); 

and 3) a group of healthy adult subjects (n = 382). Their genetic risk score associated 

with depressive symptomatology with poor dopamine function and specified decreased 

dopaminergic neurotransmission that anticipated increased levels of depression. The authors 

then simulated these results based on genetic data from adults suffering from depression 

using a comparable genetic risk score. Based on these results, Pearson-Fuhrhop et al. 
[26] suggested that a sequence variation in multiple dopaminergic genes may influence 

depressive symptoms in an additive manner. There are, however, negative reports, from 

others in terms of depression and dopaminergic genetics [27]. While the GARS test is not 

designed to determine depressive symptoms per se, Blum’s group and others have suggested 

that a primary symptom of depression is anhedonia, which is, indeed, a subset of RDS 

behaviors [28].

The algorithm governing GARS identifies the gene in which the polymorphism is found and 

counts the risk alleles for each subject. Each allelic gene polymorphism was selected based 

on an understanding of the physiology and many case-controlled associations found in the 

literature. The exponential growth of the Behavioral Genetics field notwithstanding, there 

is confidence that we can rely on the case controls used in the GARS research, and that, 

based on results from the literature, each allele selected is associated with high risk for RDS 

Blum et al. Page 6

Curr Psychopharmacol. Author manuscript; available in PMC 2020 May 19.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



behaviors (Table 3). However, it is noteworthy that highly-screened controls (eliminating 

any addictive, compulsive and impulsive behaviors in both proband and family), have 

importance in all genetically based research in the field of behavioral addictions especially 

in the study of vulnerable, addiction-prone populations. While the selection of the ten gene 

panel relies on the reward cascade (BRC) which mirrors the mesolimbic reward circuit (Fig. 

1), the selection also included consideration of hundreds of case-control studies of those 

genes and their polymorphic variants. Additional GARS research involved the relationship 

of dopaminergic genes and the prediction of risk severity for substance misuse [1, 2] without 

needed RDS free controls. While as yet positive GARS results have not been compared to 

RDS free controls, the goal is to do so.

3. SOME LIMITATIONS AND STRATEGIES OF GENETIC ASSOCIATION 

STUDIES

3.1. Adequately Screened Controls

Blum’s laboratory is currently developing RDS-free controls which will provide additional 

adjustments to GARS. The development of RDS free controls will enable the calculateion 

of Odds Ratios (ORs) for each experimental risk allele. The ORs may provide the actual 

contribution to the variance for any risk allele and enable the “true” weighting of each 

polymorphism.

The goal is to develop RDS-free controls by eliminating all known RDS behaviors in, 

not only the probands but their family as well. These subjects were referred to as “Super 

Controls” in a previously published study [29]. “Super Controls” were identified for the 

DRD2 A1 allele and were also used to determine the role of percent body fat as a function of 

the DRD2 A1 allele [30].

Much of the current literature involving genetic studies in the field of drug and non-

drug behavioral addictions is flawed because of disease-laden controls displaying many 

RDS behaviors. Reward Deficiency Syndrome, now a featured disorder in the SAGE 

Encyclopedia of Abnormal & Clinical Psychology [31], includes a remarkable list of 

behaviors (Table 1). While exploring the dopamine D2 receptor gene (DRD2) variants and 

percent body fat, a known subset of RDS, in an earlier study [29] Blum’s group genotyped 

122 obese/overweight (O/OW) Caucasian subjects and compared them with 30 non-obese 

Caucasian controls, screened to exclude substance abuse. These subjects were assessed for 

weight, body mass index (BMI; kg m-2) and percent body fat using Dual-Energy X-Ray 

Absorptiometry (DEXA).

It is noteworthy that this previous research controlling for any known RDS behaviors, in, for 

example, overweight probands and their families resulted in a very significant reduction of 

DRD2 A1allelic prevalence “Super Controls” (Fig. 2) [29].

Fig. (2) compares the percentages of the DRD2 Taq1 A1 allele in an unscreened literature 

controls 29.4% (P≤0.001) [30] to Group B Controls from an earlier larger study screened 

(for drug abuse and obesity) 33.3% [29], Super controls 3.3%, and an Overweight and Obese 

cohort 67% [30].

Blum et al. Page 7

Curr Psychopharmacol. Author manuscript; available in PMC 2020 May 19.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



The point here is to illustrate that after carefully eliminating every RDS behavior in the 

proband and family of 183 people attending a family practice clinic, we found a total of 

30 people that were considered RDS-free. When this RDS free cohort was genotyped for 

the DRDA1 allele, one individual out of 30 carried the risk allele - a 3.3% prevalence [29]. 

This finding strongly suggests that the completion of an on-going study to obtain a larger 

RDS-free control cohort will facilitate the most accurate results possible for the GARS test 

and other genetic associations.

An enormous amount of research, funding and diligent work has accrued since1990 in 

the area under investigation; Psychiatric Genetics, however, without carefully controlling 

for RDS-free controls, we are mixing diseased controls with experimental subjects. The 

results, as observed, for example, in the Bolos et al. [32] study, failed to show the now 

well-known association of the DRD2 A1 and alcoholism. The flaw in their study was the use 

of non-alcoholic controls from a French population which was later found to have Tourette’s 

Syndrome, a subset disorder in RDS. Many other studies and meta-analyses which have at 

least controlled for smoking behavior along with SUD, have resulted in a clear, worldwide 

acceptance of the association between DRD2-A1 and alcohol use disorder (AUD). In a 

recent study, involving almost 275,000 subjects, Penn State investigators found that at least 

two polymorphisms of the DRD2 gene are required to identify risk for heavy drinking and 

AUD [33] as stated originally in the 1990 JAMA study Blum and Noble et al. [8, 34] albiet a 

different allele.

3.2. Strategy to Obtain RDS-free Controls

The initial plan to obtain RDS free controls involves the validation of a 29-item 

questionnaire related to a Reward Deficiency Syndrome Index (RDSI). The work is 

in progress in conjunction with Dr. Zsolt Demetrovics and staff at the Eotvos Loránd 

University, Institute of Psychology, Budapest, Hungary. The RDSI data has been collected 

from over 1500 students attending the University, and 850 of these students have been 

GARS tested. The goal is to match low RDSI behavior scores with GARS genotypes to 

determine RDS-free controls. Another goal is a collaboration with a Texas-based hospital 

to develop a computer-based program to identify subjects without any RDS behaviors using 

interview histories (both proband and family) from the hospital population.

Also, we intend to utilize the RDSI in a local collection of the general population to obtain 

and genotype RDS free individuals. Determination of RDS free controls would require that 

the subjects have from 0 to 3 of any alleles measured with GARS test and a low RDS Index. 

The final criteria to find RDS free controls is to determine an odds ratio (OR) to measure 

the strength of the association between each allele with the experimental group and the 

RDS-free control group and then to develop a weighted analysis providing multiplier power 

for each gene in GARS.

3.3. Allelic Prevalence

As stated previously, earlier work from Blum’s group [29, 30] compared the results of 

DRD2 A1 association studies with a tested RDS-free control and found that the percent 

prevalence of just one gene the DRD2 A1 allele was different across unscreened, screened 
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and RDS free controls. The study involved 183 probands attending a generalized family 

practice clinic in Princeton, NJ. Through a computerized algorithm involving many RDS 

behavioral search words related to the probands and their families, using behaviors based 

on intake questionnaires and structured interviews, a total of 30 RDS free controls were 

obtained. When genotyped the range of prevalence of the DRD2 A1 allele was from 49.3% 

to 29.4% in non-alcoholic screened controls. RDS free controls showed only one out of 30 

and, as such, only a 3.3% prevalence in these non-disease super controls (Fig. 3).

Blum along with Marjorie Gondre Lewis of Howard University, in unpublished research, has 

already shown that 100 percent of 35 methadone or Suboxone dependent patients carry at 

least 4 or more alleles found in the GARS panel of ten genes and eleven polymorphisms. 

Sixty percent of these patients tested showed 7 or more alleles and as such revealing high 

risk for alcoholism.

Table 4 represents a very small sample of percent prevalence of each SNP measured in 

GARS in a mixed population with poorly screened controls (Table 5). It is provided so that 

the interested reader can observe that the prevalence for each SNP seems relatively high 

and therefore RDS -free controls are needed. However, the magnitude of many (in some 

cases thousands of studies) known functions of each SNP leading to physiologically low 

dopamine function provides strong confidence that our risk allele gene selection across the 

reward circuitry is prudent. However, the goal is to develop these controls not because it 

is easy, but because it is hard. NIDA scientists, including Jean Lud Cadet, Chief of the 

Molecular Neuropsychiatry Research Branch and his team agree that the development of 

RDS free controls is essential. They pointed out in their study of genetic and environmental 

risk factors for Cannabis use: “Exclusion criteria included serious mental health disorders 

and severe somatic disorders, use of other drugs and alcohol abuse; control subjects were not 

screened to remove Reward Deficiency Syndrome (RDS) behaviors” [46].

4. POPULATION GARS PREVALENCE

Table 6 represents the GARS results involving 419 samples just stratified by ancestry in 

terms of allelic frequency. While there are prevalence differences between ethnic groups, the 

number is too small to make any definitive statements. However, ethnicity is an essential 

caveat in trying to understand actual genetic risk and must be factored into all association 

and microarray studies.

Shields et al. [47] performed a thoughtprovo-king association study. In an attempt to find 

a genetic basis for smoking, they compared polymorphisms of the DRD4 gene and risk 

for smoking between African Americans and Caucasians. Although the number of African 

Americans is small in this study, they found that African American smokers who at least 

have one L allele of the serotonin transporter gene have an increased risk of smoking. 

The increased risk caused by polymorphic loci in African Americans, but not Caucasians, 

implied that the VNTR here is a marker for another polymorphic site in African Americans, 

but not in Caucasians.
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CONCLUSION

This article elucidates the basis for the Genetic Addiction Risk Score (GARS), a 

comprehensive test that identifies alleles linked to genes in the brain reward circuitry. 

There are many possible addiction-related genes as indicated by the work of Li and 

others [48]. At least it is agreed that neurotransmitter pathways and respective candidate 

genes that constitute the meso-limbic/ pre-frontal cortical pathways, including Serotonergic, 

Cannabinoidergic, Endorphinergic, GABAergic, Glutaminergic, and Dopaminergic systems 

are linked to healthy brain reward functioning. Any deviation can result in unwanted reward 

dysregulation.

A review of the literature related to the function of many reward genes led to the 

identification of allelic gene polymorphism based on an understanding of the physiology, 

as well as, many case-controlled associations and meta-analyses found in the literature, that 

provided the means to identify risk alleles. These polymorphisms selected to be counted 

in the GARS test associated with low dopamine function (hypodopaminergia). We have 

confidence that we can rely on these case controls used in the GARS test. However, it 

is noteworthy that highly-screened controls (eliminating any addictive, compulsive and 

impulsive behaviors in both proband and family), have importance in all genetically based 

research in the field of behavioral addictions. Also, in the current case-control literature, 

spurious results occur in many of the association studies because the investigators failed 

to appropriately screen controls for drugs and alcohol use disorder and many of the RDS 

behaviors listed in Table 1. The authors of this perspective and mini-review show evidence 

for the prevalence of the DRD2 A1 allele in unscreened controls (33.3%) compared to 

“Super-Controls” highly RDS-screened controls (3.3%) in proband and family. The message 

is that unlike one gene-one disease (OGOD), RDS is very complex and any associated 

RDS behaviors must be eliminated from controls in order to obtain an acceptable statistical 

analysis, instead of analyzing disease with disease-ridden controls.

Finally, careful scientific exploration, especially, as it relates to an inheritable basis of risk 

severity, by the elimination RDS behaviors is tantamount to provide disease-free controls. 

This simple fact is imperative, and any departure will provide untruths instead of objective 

scientific evidence.
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Fig. 1. 
The interaction of the primary neurotransmitters of the Brain Reward Cascade (BRC). 

Schematic of the interaction of neurotransmitters within the mesolimbic reward system. 

Modified from [4].
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Fig. 2. 
The percentage prevalence of the A1 allele in variously screened controls.

Blum et al. Page 15

Curr Psychopharmacol. Author manuscript; available in PMC 2020 May 19.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 3. 
Prevalence of DRD2 A1 allele in severe alcoholics and less severe alcoholics compared to 

super controls.
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Table 2.

The reward gene studies found in PUBMED on November 12th, 2017.

GENE STUDIES

SEROTONIN RECEPTOR 2a/c 108

SEROTONIN TRANSPORTER 391

COMT 579

MONAMINE OXIDASE-A 253

DOPAMINE D1 RECEPTOR 468

DOPAMINE D2 RECEPTOR 1493

DOPAMINE D3 RECEPTOR 322

DOPAMINE D4 RECEPTOR 521

DOPAMINE TRANSPORTER 237

DOPAMINE-BETA-HYDROXYLASE 142

OPIOID RECEPTOR 739

GABA RECEPTOR 183
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Table 5.

Global heterozygous prevalence.

SNP Global Heterozygous Prevalence

rs4532 32%

rs1800497 46%

rs 6280 41%

rs1800955 Frequency of C allele =.42*

rs4680 42%

rs1799971 29%

*
Prevalence not available

Note resources used to build Table 5:

CEU-180 samples of Utah residents with Northern and Western European ancestry from the CEPH collection (originally 30 mother-father-child 
trios); CHB-90 samples of Han Chinese in Beijing, China (previously called HCB, originally 45 unrelated samples); JPT - 91 samples of Japanese 
in Tokyo, Japan (originally 44 unrelated samples);

YRI-180 samples of Yoruba in Ibadan, Nigeria (originally 30 Yoruba mother-father-child trios); In Phase III of the study, seven additional 
populations were added to the study;

ASW-90 samples of African ancestry in Southwest USA;

CHD-100 samples of Chinese in Metropolitan Denver, Colorado;

GIH-100 samples of Gujarati Indians in Houston, Texas;

LWK-100 samples of Luhya in Webuye, Kenya;

MEX-90 samples of Mexican ancestry in Los Angeles, California;

MKK-180 samples of Maasai in Kinyawa, Kenya;

TSI-100 samples of Toscani in Italia.
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