
From Characters to Time Intervals: New Paradigms for
Evaluation and Neural Parsing of Time Normalizations

Egoitz Laparra*, Dongfang Xu*, Steven Bethard
School of Information, University of Arizona, Tucson, AZ

Abstract

This paper presents the first model for time normalization trained on the SCATE corpus. In the

SCATE schema, time expressions are annotated as a semantic composition of time entities. This

novel schema favors machine learning approaches, as it can be viewed as a semantic parsing task.

In this work, we propose a character level multi-output neural network that outperforms previous

state-of-the-art built on the TimeML schema. To compare predictions of systems that follow both

SCATE and TimeML, we present a new scoring metric for time intervals. We also apply this new

metric to carry out a comparative analysis of the annotations of both schemes in the same corpus.

1 Introduction

Time normalization is the task of translating natural language expressions of time to

computer-readable forms. For example, the expression three days ago could be normalized

to the formal representation 2017-08-28 in the ISO-8601 standard. As time normalization

allows entities and events to be placed along a timeline, it is a crucial step for many

information extraction tasks. Since the first shared tasks on time normalization (Verhagen et

al., 2007), interest in the problem and the variety of applications have been growing. For

example, Lin et al. (2015) use normalized timestamps from electronic medical records to

contribute to patient monitoring and detect potential causes of disease. Vossen et al. (2016)

identify multilingual occurrences of the same events in the news by, among other steps,

normalizing time-expressions in different languages with the same ISO standard. Fischer

and Strötgen (2015) extract and normalize time-expressions from a large corpus of German

fiction as the starting point of a deep study on trends and patterns of the use of dates in

literature.

A key consideration for time normalization systems is what formal representation the time

expressions should be normalized to. The most popular scheme for annotating normalized

time expressions is ISO-TimeML (Pustejovsky et al., 2003a; Pustejovsky et al., 2010), but it

is unable to represent several important types of time expressions (e.g., a bounded set of

intervals, like Saturdays since March 6) and it is not easily amenable to machine learning

(the rule-based HeidelTime (Strötgen et al., 2013) still yields state-of-the-art performance).

Bethard and Parker (2016) proposed an alternate scheme, Semantically Compositional

laparra@email.arizona.edu.
*These two authors contributed equally.

HHS Public Access
Author manuscript
Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

Published in final edited form as:
Trans Assoc Comput Linguist. 2018 ; 6: 343–356. doi:10.1162/tacl_a_00025.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Annotation of Time Expressions (SCATE), in which times are annotated as compositional

time entities (Figure 1), and suggested that this should be more amenable to machine

learning. However, while they constructed an annotated corpus, they did not train any

automatic models on it.

We present the first machine-learning models trained on the SCATE corpus of time

normalizations. We make several contributions in the process:

• We introduce a new evaluation metric for time normalization that can compare

normalized times from different annotation schemes by measuring overlap of

intervals on the timeline.

• We use the new metric to compare SCATE and TimeML annotations on the same

corpus, and confirm that SCATE covers a wider variety of time expressions.

• We develop a recurrent neural network for learning SCATE-style time

normalization, and show that our model outperforms the state-of-the-art

HeidelTime (Strötgen et al., 2013).

• We show that our character-based multi-output neural network architecture

outperforms both word-based and single-output models.

2 Background

ISO-TimeML (Pustejovsky et al., 2003a; Pustejovsky et al., 2010) is the most popular

scheme for annotating time expressions. It annotates time expressions as phrases, and

assigns an ISO 8601 normalization (e.g., 1990-08-15T13:37 or PT24H) as the VALUE
attribute of the normalized form. ISO-TimeML is used in several corpora, including the

TimeBank (Pustejovsky et al., 2003b), WikiWars (Mazur and Dale, 2010), TimeN (Llorens

et al., 2012), and the TempEval shared tasks (Verhagen et al., 2007; Verhagen et al., 2010;

UzZaman et al., 2013).

However, the ISO-TimeML schema has a few drawbacks. First, times that align to more than

a single calendar unit (day, week, month, etc.), such as Saturdays since March 6 (where

multiple Saturdays are involved), cannot be described in the ISO 8601 format since they do

not correspond to any prefix of YYYY-MM-DDTHH:MM:SS. Second, each time expression

receives a single VALUE, regardless of the word span, the compositional semantics of the

expression are not represented. For example, in the expressions since last week and since
March 6, the semantics of since are identical – find the interval between the anchor time (last
week or March 6) and now. But ISO-TimeML would have to annotate these two phrases

independently, with no way to indicate the shared portion of their semantics. These

drawbacks of ISO-TimeML, especially the lack of compositionality, make the development

of machine learning models difficult. Thus, most prior work has taken a rule-based

approach, looking up each token of a time expression in a normalization lexicon and then

mapping this sequence of lexical entries to the normalized form (Strötgen and Gertz, 2013;

Bethard, 2013; Lee et al., 2014; Strötgen and Gertz, 2015).

Laparra et al. Page 2

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As an alternative to TimeML, and inspired by previous works, Schilder (2004) and Han and

Lavie (2004), Bethard and Parker (2016) proposed Semantically Compositional Annotation

of Time Expressions (SCATE). In the SCATE schema, each time expression is annotated in

terms of compositional time entity over intervals on the timeline. An example is shown in

Figure 1, with every annotation corresponding to a formally defined time entity. For

instance, the annotation on top of since corresponds to a BETWEEN operator that identifies an

interval starting at the most recent March 6 and ending at the document creation time (DCT).

The BETWEEN operator is formally defined as:

Between([t1, t2): Interval, [t3, t4): Interval): Interval = [t2, t3) .

The SCATE schema can represent a wide variety of time expressions, and provides a formal

definition of the semantics of each annotation. Unlike TimeML, SCATE uses a graph

structure to capture compositional semantics and can represent time expressions that are not

expressed with contiguous phrases. The schema also has the advantage that it can be viewed

as a semantic parsing task and, consequently, is more suitable for machine-learning

approaches. However, Bethard and Parker (2016) present only a corpus; they do not present

any models for semantic parsing.

3 An interval-based evaluation metric for normalized times

Before attempting to construct machine-learned models from the SCATE corpus, we were

interested in evaluating Bethard and Parker (2016)’s claim that the SCATE schema is able to

represent a wider variety of time expressions than TimeML. To do so, we propose a new

evaluation metric to compare time normalizations annotated in both the ISO 8601 format of

TimeML and the time entity format of SCATE. This new evaluation interprets normalized

annotations as intervals along the timeline and measures the overlap of the intervals.

TimeML TIMEX3 (time expression) annotations are converted to intervals following ISO

8601 semantics of their VALUE attribute. So, for example, 1989-03-05 is converted to the

interval [1989-03-05T00:00:00, 1989-03-06T00:00:00), that is, the 24-hour period starting at

the first second of the day on 1989-03-05 and ending just before the first second of the day

on 1989-03-06. SCATE annotations are converted to intervals following the formal

semantics of each entity, using the library provided by Bethard and Parker (2016). So, for

example, Next(Year(1985), SimplePeriod(YEARS, 3)), the 3 years following 1985, is

converted to [1986-01-01T00:00, 1989-01-01T00:00). Note that there may be more than one

interval associated with a single annotation, as in the Saturdays since March 6 example.

Once all annotations have been converted into intervals along the timeline, we can measure

how much the intervals of different annotations overlap.

Given two sets of intervals, we define the interval precision, Pint, as the total length of the

intervals in common between the two sets, divided by the total length of the intervals in the

first set. Interval recall, Rint is defined as the total length of the intervals in common between

the two sets, divided by the total length of the intervals in the second set. Formally:

Laparra et al. Page 3

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

IS⋂IH = {i ∩ j: i ∈ IS ∧ j ∈ IH}

Pint(IS, IH) =
∑

i ∈ COMPACT(IS⋂IH)
∣ i ∣

∑
i ∈ IS

∣ i ∣

Rint(IS, IH) =
∑

i ∈ COMPACT(IS⋂IH)
∣ i ∣

∑
i ∈ ∪ IH

∣ i ∣

where IS and IH are sets of intervals, i ∩ j is possibly the empty interval in common between

the intervals i and j, |i| is the length of the interval i, and COMPACT takes a set of intervals and

merges any overlapping intervals.

Given two sets of annotations (e.g., one each from two time normalization systems), we

define the overall precision, P, as the average of interval precisions where each annotation

from the first set is paired with all annotations that textually overlap it in the second set.

Overall recall is defined as the average of interval recalls where each annotation from the

second set is paired with all annotations that textually overlap it in the first set. Formally:

OIa(B) = ⋃
b ∈ B:OVERLAPS(a, b)

INTERVALS(b)

P(S, H) = 1
∣ S ∣ ∑

s ∈ S
Pint(INTERVALS(s), OIs(H))

R(S, H) = 1
∣ H ∣ ∑

ℎ ∈ H
Rint(INTERVALS(ℎ), OIℎ(S))

where S and H are sets of annotations, INTERVALS(x) gives the time intervals associated with

the annotation x, and OVERLAPS (a, b) decide whether the annotations a and b share at least

one character of text in common.

It is important to note that these metrics can be applied only to time expressions that yield

bounded intervals. Time expressions that refer to intervals with undefined boundaries are out

of the scope, like in “it takes just a minute” or “I work every Saturday”.

Laparra et al. Page 4

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4 Data analysis

4.1 TimeML vs. SCATE

Both TimeML and SCATE annotations are available on a subset of the TempEval 2013

corpus (UzZaman et al., 2013) that contains a collection of news articles from different

sources, such as Wall Street Journal, New York Times, Cable News Network, and Voices of

America. Table 1 shows the statistics of the data. Documents from the AQUAINT and

TimeBank form the training and development dataset. The SCATE corpus contains 2604

time entities (individual components of a time expression, such as every, month, last,
Monday, etc.) annotated in the train+dev set (i.e. AQUAINT+TimeBank). These entities

compose a total of 1038 time expressions (every month, last Monday, etc.) of which 580

yield bounded intervals, i.e. intervals with a specified start and ending (last Monday is

bounded, while every month is not).

We apply the interval-based evaluation metric introduced in Section 3 to the AQUAINT and

TimeBank datasets, treating the TimeML annotations as the system (S) annotator and the

SCATE annotations as the human (H) annotator. Table 2 shows that the SCATE annotations

cover different time intervals than the TimeML annotations. In the first row, we see that

TimeML has a recall of only 92% of the time intervals identified by SCATE in the

AQUAINT corpus and of only 83% in the TimeBank corpus. We manually analyzed all

places where TimeML and SCATE annotations differed and found that the SCATE

interpretation was always the correct one.

For example, a common case where TimeML and SCATE annotations overlap, but are not

identical, is time expressions preceded by a preposition like “since”. The TimeML

annotation for “Since 1985” (with a DCT of 1998-03-01T14:11) only covers the year,

“1985”, resulting in the time interval [1985-01-01T00:00,1986-01-01T00:00). The SCATE

annotation represents the full expression and, consequently, produces the correct time

interval [1986-01-01T00:00,1998-03-01T14:11).

Another common case of disagreement is where TimeML failed to compose all pieces of a

complex expression. The TimeML annotation for “10:35 a.m. (0735 GMT) Friday”

annotates two separate intervals, the time and the day (and ignores “0735 GMT” entirely).

The SCATE annotation recognizes this as a description of a single time interval,

[1998-08-07T10:35, 1998-08-07T10:36).

TimeML and SCATE annotations also differ in how references to particular past periods are

interpreted. For example, TimeML assumes that “last year” and “a year ago” have identical

semantics, referring to the most recent calendar year, e.g., if the DCT is 1998-03-04, then

they both refer to the interval [1997-01-01T00:00,1998-01-01T00:00). SCATE has the same

semantics for “last year”, but recognizes that “a year ago” has different semantics: a period

centered at one year prior to the DCT. Under SCATE, “a year ago” refers to the interval

[1996-09-03T00:00,1997-09-03T00:00).

Beyond these differences in interpretation, we also observed that, while the SCATE corpus

annotates time expressions anywhere in the document (including in metadata), the

Laparra et al. Page 5

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

TimeBank TIMEX3 annotations are restricted to the main text of the documents. The second

row of Table 2 shows the evaluation when comparing overall text in the document, not just

the body text. Unsurprisingly, TimeML has a lower recall of the time intervals from the

SCATE annotations under this evaluation.

4.2 Types of SCATE annotations

Studying the training and development portion of the dataset, we noticed that the SCATE

annotations can be usefully divided into three categories: non-operators, explicit operators,

and implicit operators. We define non-operators as NUMBERS, PERIODS (e.g., three months),
explicit intervals (e.g., YEARS like 1989), and repeating intervals (DAY-OF-WEEKS like Friday,
MONTH-OF-YEARS like January, etc.). Non-operators are basically atomic; they can be

interpreted without having to refer to other annotations. Operators are not atomic; they can

only be interpreted with respect to other annotations they link to. For example, the THIS

operator in Figure 1 can only be interpreted by first interpreting the DAY-OF-WEEK non-

operator and the BETWEEN operator that it links to. We split operators into two types: explicit

and implicit. We define an operator as explicit if it does not overlap with any other

annotation. This occurs, for example, when the time connective since evokes the BETWEEN

operator in Figure 1. An operator is considered to be implicit if it overlaps with another

annotation. This occurs, for example, with the LAST operator in Figure 1, where March
implies last March, but there is no explicit signal in the text, and it must be inferred from

context.

We study how these annotation groups distribute in the AQUAINT and TimeBank

documents. Table 3 shows that non-operators are much more frequent than operators (both

explicit and implicit).

5 Models

We decompose the normalization of time expressions into two subtasks: a) time entity
identification which detects the spans of characters that belong to each time expression and

labels them with their corresponding time entity; and b) time entity composition that links

relevant entities together while respecting the entity type constraints imposed by the SCATE

schema. These two tasks are run sequentially using the output of the former as input to the

latter. Once identification and composition steps are completed we can use the final product,

i.e. semantic compositional of time entities, to feed the SCATE interpreter1 and encode time

intervals.

5.1 Time entity identification

Time entity identification is a type of sequence tagging task where each piece of a time

expression is assigned a label that identifies the time entity that it evokes. We express such

labels using the BIO tagging system, where B stands for the beginning of an annotation, I

for the inside, and O for outside any annotation. Differing somewhat from standard sequence

tagging tasks, the SCATE schema allows multiple annotations over the same span of text

1https://github.com/clulab/timenorm

Laparra et al. Page 6

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/clulab/timenorm

(e.g., “Saturdays” in Figure 1 is both a DAY-OF-WEEK and a THIS), so entity identification

models must be able to handle such multi-label classification.

5.1.1 Neural architectures—Recurrent neural networks (RNN) are the state-of-the-art

on sequence tagging tasks (Lample et al., 2016a; Graves et al., 2013; Plank et al., 2016)

thanks to their ability to maintain a memory of the sequence as they read it and make

predictions conditioned on long distance features, so we also adopt them here. We introduce

three RNN architectures that share a similar internal structure, but differ in how they

represent the output. They convert the input into features that feed an embedding layer. The

embedded feature vectors are then fed into two stacked bidirectional Gated Recurrent Units

(GRUs), and the second GRU followed by an activation function, outputs one BIO tag for

each input. We select GRU for our models as they can outperform another popular recurrent

unit LSTM (Long Short Term Memory), in terms of parameter updates and convergence in

CPU time with the same number of parameters (Chung et al., 2014).

Our 1-Sigmoid model (Figure 2) approaches the task as a multi-label classification problem,

with a set of sigmoids for each output that allow zero or more BIO labels to be predicted

simultaneously. This is the standard way of encoding multi-label classification problems for

neural networks, but in our experiments, we found that these models perform poorly since

they can overproduce labels for each input, e.g., 03 could be labeled with both DAY-OF-

MONTH and MONTH-OF-YEAR at the same time.

Our 2-Softmax model (Figure 3) splits the output space of labels into two sets: non-

operators and operators (as defined in Section 4.2). It is very unlikely that any piece of text

will be annotated with more than one non-operator or with more than one operator,2 though

it is common for text to be annotated with one non-operator and one operator (see Figure 1).

As a result, we can use two softmaxes, one for non-operators and one for operators, and the

2-Softmax model thus can produce 0, 1, or 2 labels per input. We share input and embedding

layers, but associate a separate set of stacked Bi-GRUs with each output category, as shown

in Figure 3.3

Our 3-Softmax further splits operators into explicit operators and implicit operators (again,

as defined in Section 4.2). We expect this to help the model since the learning task is very

different for these two cases: with explicit operators, the model just has to memorize which

phrases evoke which operators, while with implicit operators, the model has to learn to infer

an operator from context (verb tense, etc.). We use three softmaxes, one each for non-

operators, explicit operators, and implicit operators, and, as with 2-Softmax, we share input

and embedding layers, but associate a separate set of stacked Bi-GRUs with each output

category. The model looks similar to Figure 3, but with three output groups instead of two.

We feed three features as input to the RNNs:

2In the training data, only 4 of 1217 non-operators overlap with another non-operator, and only 6 of 406 operators overlap with
another operator. For example, a NYT said in an editorial on Saturday, April 25, Saturday is labeled as [DAY-OF-WEEK, LAST,
INTERSECTION] where the last two labels are operators.
3In preliminary experiments, we tried sharing GRU layers as well, but this generally resulted in worse performance.

Laparra et al. Page 7

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Text: The input word itself for the word-by-word model, or a the single input character for

the character-by-character model.

Unicode character categories: The category of each character as defined by the Unicode

standard.4 This encodes information like the presence of uppercase (Lu) or lowercase (Ll)

letters, punctuation (Po), digits (Nd), etc. For the word-by-word model, we concatenate the

character categories of all characters in the word (e.g., May becomes LULLLL).

Part-of-speech: The part-of-speech as determined by the Stanford POS tagger (Toutanova

et al., 2003). We expect this to be useful for, e.g., finding verb tense to help distinguish

between implicit LAST and NEXT operators. For the character-by-character model, we repeat

the word-level part-of-speech tag for each character in the word, and characters with no part-

of-speech (e.g., spaces) get no tag.

5.1.2 Input: words vs. characters—Identifying SCATE-style time entity is a

sequence tagging task, similar to named entity recognition (NER), so we take inspiration

from recent work in neural architectures for NER. The first neural NER models followed the

prior (non-neural) work in approaching NER as a word classification problem, applying

architectures such as sliding-window feedforward neural networks (Qi et al., 2009),

convolutional neural networks (CNNs) with conditional random field (CRF) layers

(Collobert et al., 2011), and LSTM with CRF layers and hand-crafted features (Huang et al.,

2015). More recently, character-level neural networks have also been proposed for NER,

including several which combine a CNN or LSTM for learning character-based

representations of words with an LSTM or LSTM-CRF for word-by-word labeling (Chiu

and Nichols, 2016; Lample et al., 2016b; Ma and Hovy, 2016), as well as character-by-

character sequence-to-sequence networks (Gillick et al., 2016; Kuru et al., 2016).

Based on these works, we consider two forms of input processing for our RNNs: word-by-

word vs. character-by-character. Several aspects of the time normalization problem make the

character-based approach especially appealing. First, many time phrases involve numbers

that must be interpreted semantically (e.g., a good model should learn that months cannot be

a number higher than 12), and digit-bydigit processing of numbers allows such

interpretations, while treating each number as a word would result in a sparse, intractable

learning problem. Second, word-based models assume that we know how to tokenize the

text into words, but at times present challenging formats such as overnight, where over
evokes a LAST operator and night is a PART-OF-DAY. Finally, character-based models can

ameliorate out-of-vocabulary (OOV) words, which are a common problem when training

sparse datasets. (Hybrid word-character models, such as the LSTM-CNNs-CRF (Ma and

Hovy, 2016) can address this last problem, but not the previous two.)

For our word-based model, we apply the NLTK Tokenizer (Bird et al., 2009) to each

sentence. We further tokenize with the regular expression “\d+|[^\d\W] + |\S” to break apart

alphanumeric expressions like 1620EDT. However, the tokenizer is unable to break-apart

4See http://unicode.org/notes/tn36/

Laparra et al. Page 8

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://unicode.org/notes/tn36/

expressions such as 19980206 and overnight. For our character-based model, no

tokenization is applied and every character (including whitespace characters) is fed as input.

5.2 Time entity composition

Once the entities of the time-expressions are identified, they must be composed in order to

obtain their semantic interpretation. This step of the analysis consists of two parts: linking

the entities that make up a time-expression together and completing the entities’ properties

with the proper values. For both cases, we set a simple set of rules that follow the constraints

imposed by the SCATE schema5.

5.2.1 Time entity linking—Algorithm 1 shows the process followed to obtain the links

between the time entities. First, we define an empty stack that will store the entities

belonging to the same time expression. Then, we iterate over the list of entities of a

document sorted by their starting character offsets (SORTBYSTART). For each of these entities

(entity1) and for each entity in the stack (entity2), we check if the guidelines specify a

possible link (LINKISVALID) between the types of entity1 and entity2. If such a link is

possible, and it has not already been filled by another annotation, we greedily make the link

(CREATELINK). When the distance in the number of characters between the entity and the

end of the stack is bigger than 10, we assume that the entities do not belong to the time

expression. Thus, we empty the stack.6

Algorithm 1

Linking time entities

 stack = ∅

 for entity1 in SORTBYSTART(entities) do

 if START(entity1) - END(stack) > 10 then stack = ∅

 end if

 for entity2 in stack do

 if LINKISVALID(entity1, entity2) then CREATELINK(entity1, entity2)

 end if

 end for

 PUSH(stack, entity1)

 end for

For example, our time entity identification model gets the YEAR, MONTH-OF-YEAR and DAY-

OF-MONTH for the time-expression 1992-12-23. Our time entity composition algorithm then

iterates over these entities. At the beginning the stack is empty, it just pushes the entity 1992
(YEAR) into the stack. For the entity 12 (MONTH-OF-YEAR) it checks if the guidelines define a

possible link between this entity type and the one currently in the stack (YEAR). In this case,

the guidelines establish that a YEAR can have a SUB-INTERVAL link to a SEASON-OF-YEAR, a

MONTH-OF-YEAR or WEEK-OF-YEAR. Thus, the algorithm creates a SUB-INTERVAL link between

5https://github.com/bethard/anafora-annotations/blob/master/.schema/timenorm-schema.xml
6The distance threshold was selected based on the performance on the development dataset.

Laparra et al. Page 9

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bethard/anafora-annotations/blob/master/.schema/timenorm-schema.xml

1992 and 12. The entity 12 is then pushed into the stack. This process is repeated for the

entity 23 (DAY-OF-MONTH) checking if there was a possible link to the entities in the stack

(1992, 12). The guidelines define a possible SUB-INTERVAL link between MONTH-OF-YEAR and

DAY-OF-MONTH, so a link is created here as well. Now, suppose that the following time

entity in the list is several words ahead of 23 so the character distance between both entities

is larger than 10. If that is the case the stack is empty and the process starts again to compose

a new time expression.

5.2.2 Property completion—The last step is to associate each time entity of a time-

expression with a set of properties that include information needed for its interpretation. Our

system decides the value of these properties as follows:

TYPE: The SCATE schema defines that some entities can only have specific values. For

example, a SEASON-OF-YEAR can only be SPRING, SUMMER, FALL or WINTER, a MONTH-OF-YEAR

can only be JANUARY, FEBRUARY, MARCH, etc. To complete this property we take the text span

of the time entity and normalize it to the values accepted in the schema. For example, if the

span of a MONTH-OF-YEAR entity was the numeric value 01 we would normalize it to

JANUARY, if its span was Sep. we would normalize it to SEPTEMBER, and so on.

VALUE: This property contains the value of a numerical entity, like DAY-OF-MONTH or HOUR-

OF-DAY. To complete it, we just take the text span of the entity and convert it to an integer. If

it is written in words instead of digits (e.g., nineteen instead of 19), we apply a simple

grammar7 to convert to an integer.

SEMANTICS: In news-style texts, it is common that expressions like last Friday, when the

DCT is a Friday, refer to the day as the DCT instead of the previous occurrence (as it would

in more standard usage of last). SCATE indicates this with the SEMANTICS property, where

the value INTERVAL-INCLUDED indicates that the current interval is included when calculating

the last or next occurrence. For the rest of the cases the value INTERVAL-NOT-INCLUDED is

used. In our system, when a LAST operator is found, if it is linked to a DAY-OF-WEEK (e.g.

Friday) that matches the DCT, we set the value of this property to INTERVAL-INCLUDED.

INTERVAL-TYPE: Operators like NEXT or LAST need an interval as reference in order to be

interpreted. Normally, this reference is the DCT. For example, next week refers to the week

following the DCT, and in such a case the value of the property INTERVAL-TYPE for the

operator NEXT would be DOCTIME. However, sometimes the operator is linked to an interval

that serves as reference by itself, for example, “by the year 2000”. In this cases the value of

the INTERVAL-TYPE is LINK. Our system sets the value of this property to LINK if the operator

is linked to a YEAR and DOCTIME otherwise. This is a very coarse heuristic; finding the

proper anchor for a time expression is a challenging open problem for which future research

is needed.

7https://github.com/ghewgill/text2num

Laparra et al. Page 10

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ghewgill/text2num

5.3 Automatically generated training data

Every document in the dataset starts with a document creation time. These time expressions

are quite particular; they occur in isolation and not within the context of a sentence and they

always yield a bounded interval. Thus their identification is a critical factor in an interval

based evaluation metric. However, document times appear in many different formats:

“Monday, July-24, 2017”, “07/24/17 09:52 AM”, “08-15-17 1337 PM”, etc. Many of these

formats are not covered in the training data, which is drawn from a small number of news

sources, each of which uses only a single format. We therefore designed a time generator to

randomly generate an extra 800 isolated training examples for a wide variety of such

expression formats. The generator covers 33 different formats8 which include variants

covering abbreviation, with/without delimiters, mixture of digits and strings, and different

sequences of time units.

6 Experiments

We train and evaluate our models on the SCATE corpus described in Section 4. As a

development dataset, 14 documents are taken as a random stratified sample from the

TempEval 2013 (TimeBank + AQUAINT) portion shown in Table 1, including broadcast

news documents (1 ABC, 1 CNN, 1 PRI, 1 VOA), and newswire documents (5 AP, 1 NYT, 4

WSJ). We use the interval-based evaluation metric described in Section 3, but also report

more traditional information extraction metrics (precision, recall, and F1) for the time entity

identification and composition steps. Let S be the set of items predicted by the system and H
is the set of items produced by the humans, precision (P), recall (R), and F1 are defined as:

P(S, H) = S ∩ H
S

R(S, H) = S ∩ H
H

F1(S, H) = 2 · P(S, H) · R(S, H)
P(S, H) + R(S, H) ⋅

For these calculations, each item is an annotation, and one annotation is considered equal to

another if it has the same character span (offsets), type, and properties (with the definition

applying recursively for properties that point to other annotations).

To make the experiments with different neural architectures comparable, we tuned the

parameters of all models to achieve the best performance on the development data. Due to

space constraints, we only list here the hyper-parameters for our best Char 3-Softmax: the

embedding size of the character-level text, word-level text, POS tag, and unicode character

category features are 128, 300, 32 and 64, respectively. To avoid overfitting, we used

8We use the common formats available in office suites, specifically, LibreOffice.

Laparra et al. Page 11

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dropout with probabilities 0.25, 0.15 and 0.15 for the 3 features, respectively; the sizes of the

first and second layer GRU units are set as 256 and 150. We trained the model with

RMSProp optimization on mini-batches of size 120, and followed standard

recommendations to leave the optimizer hyperparameter settings at their default values. Each

model is trained for at most 800 epochs, the longest training time for Char 3-Softmax model

is around 22 hours using 2x NVIDIA Kepler K20X GPU.

6.1 Model selection

We compare the different time entity identification models described in Section 5.1, training

them on the training data, and evaluating them on the development data. Among the epochs

of each model, we select the epoch based on the output(s) which the model is good at

predicting because based on its weakness, the model would yield unstable results in our

preliminary experiments. For example, for 3-Softmax models, our selections rely on the

performances of non-operators and implicit-operators. Table 4 shows the results of the

development phase.

First, we find that the character-based models outperform the word-based models.9 For

example, the best character-based model achieves the F1 of 81.7 (Char 3-Softmax),which is

significantly better than the best word-based model achieving the F1 of only 66.6 (p=0).10

Second, we find that Softmax models outperform Sigmoid models. For example, the Char 3-

Softmax model achives the F1 of 81.7, significantly better than 56.4 F1 of the Char 1-

Sigmoid model (p=0). Third, for both character- and word-based models, we find that 3-

Softmax significantly outperforms 2-Softmax: the Char 3-Softmax F1 of 81.7 is better than

the Char 2-Softmax F1 of 73.6 (p=0) and the Word 3-Softmax F1 of 66.6 is better than the

Word 2-Softmax F1 of 61.2 (p=0.0254). Additionally, we find that all models are better at

identifying non-operators than operators and that the explicit operators are the hardest to

solve. For example, the Char 3-Softmax model gets 92.4 F1 for non-operators, 36.1 F1 for

explicit operators and 79.1 F1 for implicit operators. Finally, we also train the best model,

Char 3-Softmax, using the generated annotations described in Section 5.3 and achieve 76.8

F1 (Char 3-Softmax extra), i.e., the model performs better without the extra data (p=0). This

is probably a result of overfitting due to the small variety of time formats in the training and

development data.

From this analysis on the development set, we select two variants of the Char 3-softmax

architecture for evaluation on the test set: Char 3-Softmax and Char 3-Softmax extra. These

models were then coupled with the rule-based linking system described in Section 5.2 to

produce a complete SCATE-style parsing system.

6.2 Model evaluation

We evaluate both Char 3-Softmax and Char 3-Softmax extra on the test set for identification

and composition tasks. Table 5 shows the results. On the identification task, Char 3-Softmax

extra is no worse than using the original dataset with the overall F1 61.5 vs. 61.3 (p=0.5899),

9We briefly explored using pre-trained word embeddings to try to improve the performance of the Word 1-Sigmoid model, but it
yielded a performance that was still worse than the character-based model, so we didn’t explore it further.
10We used a paired bootstrap resampling significance test.

Laparra et al. Page 12

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and using extra generated data the model is better at predicting non-operators and implicit

operators with higher precisions (p=0.0096), which is the key to produce correct bounded

time intervals.

To compare our approach with the state-of-the-art, we run HeidelTime on the test documents

and make use of the metric described in Section 3. This way, we can compare the intervals

produced by both systems no matter the annotation schema. Table 6 shows that our model

with additional randomly generated training data outperforms HeidelTime in terms of

Precision, with a significant difference of 12.6 percentage points (p=0.011), while

HeidelTime obtains a non-significant better performance in terms of Recall (p=0.1826).

Overall, our model gets 3.3 more percentage points than HeidelTime in terms of F1
(p=0.2485). Notice that, although the model trained without extra annotations is better in

time entity composition (see Table 5), it performs much worse at producing final intervals.

This is caused by the fact that this model fails to identify the non-operators that compound

dates in unseen formats (see Section 5.3).

However, evaluating HeidelTime in the SCATE annotations may not be totally fair.

HeidelTime was developed following the TimeML schema and, as we show in Section 4,

SCATE covers a wider set of time expressions. For this reason, we perform an additional

evaluation. First, we compare the annotations in the test set using our interval-based metric,

similar to the comparison reported in Table 2, and select those cases where TimeML and

SCATE match perfectly. Then, we remove the rest of the cases from the test set.

Consequently, we also remove the predictions given by the systems, both ours and

HeidelTime, for those instances. Finally, we run the interval scorer using the new

configuration. As can be seen in Table 7 all the models improve their performances.

However, our model still performs better when it is trained with the extra annotations.

The SCATE interpreter that encodes the time intervals needs the compositional graph of a

time-expression to have all its elements correct. Thus, failing in the identification of any

entity of a time-expression results in totally uninterpretable graphs. For example, in the

expression next year, if our model identifies year as a PERIOD instead of an INTERVAL it cannot

be linked to next because it violates the SCATE schema. The model can also fail in the

recognition of some time-entities, like summer in the expression last summer. This

identification errors are caused mainly by the sparse training data. As graphs containing

these errors produce unsolvable logical formulae, the interpreter cannot produce intervals

and hence the recall decreases. Within those intervals that are ultimately generated, the most

common mistake is to confuse the LAST and NEXT operators, and as a result an incorrectly

placed interval even with correctly identified non-operators. For example, if an October with

an implicit NEXT operator is instead given a LAST operator, instead of referring to

[2013-10-01T00:00,2013-11-01T00:00), it will refer to [2012-10-01T00:00,

2012-11-01T00:00). Missing implicit operators is also the main source of errors for

HeidelTime, which fails with complex compositional graphs. For example, that January day
in 2011 is annotated by HeidelTime as two different intervals, corresponding respectively to

January and 2011. As a consequence, HeidelTime predicts not one but two incorrect

intervals, affecting its precision.

Laparra et al. Page 13

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7 Discussion

As for the time entity identification task, the performance differences between development

and test dataset could be attributed to the annotation distributions of the datasets. For

example, there are 10 Season-Of-Year annotations in the test set while there are no such

annotations in the development dataset; the relative frequencies of the annotations Minute-

Of-Hour, Hour-Of-Day, Two-Digit-Year and Time-Zone in the test set are much lower, and

our models are good at predicting such annotations. Explicit operators are very lexically-

dependent, e.g. LAST corresponds to one word from the set {last, latest, previously, recently,

past, over, recent, earlier, the past, before}, and the majority of them appear once or twice in

the training and development sets.

Our experiments verify the advantages of character-based-models in predicting SCATE

annotations, which are in agreement with our explanations in Section 5.1.2: word-based-

models tend to fail to distinguish numbers from digit-based time expressions. It’s difficult

for word-based-models to catch some patterns of time expressions, such as 24th and 25th,
August and Aug., etc., while character-based models are robust to such variance. We ran an

experiment to see whether these benefits were unique to compositional annotations like

those of SCATE, or more generally to simply recognizing time expressions. We used the

TimeML annotations from AQUAINT and TimeBank (see Table 1) to train two multi-class

classifiers to identify TIMEX3 annotations. The models were similar to our Char 3-Softmax

and Word 3-Softmax models, using the same parameter settings, but with a single softmax

output layer to predict the four types of TIMEX3: DATE, TIME, DURATION, and SET. As shown

in Table 8,on the test set the word-based model significantly outperforms the character-based

model in terms of both time expressions (p=0.0428) and the subset of time expressions that

contain digits (p=0.0007). These results suggest that the reason character-based models are

more successful on the SCATE annotations is that SCATE breaks time expressions down

into meaningful sub-components. For example, TimeML would simply call Monday,
1992-05-04 a DATE, and call 15:00:00 GMT Saturday a TIME. SCATE would identify four

and five, respectively, different types of semantic entities in these expression; and each

SCATE entity would be either all letters or all digits. In TimeML, the model is faced with

difficult learning tasks, e.g., that sometimes a weekday name is part of a DATE and

sometimes it is part of a TIME, while in SCATE, a weekday name is always a DAY-OF-WEEK.

On the other hand, running the entity composition step with gold entity identification

achieves 72.6 in terms of F1. One of the main causes of errors in this step is the heuristic to

complete the INTERVAL-TYPE property. As we explain in Section 5.2, we implement a too

coarse set of rules for this case. Another source of errors is the distance of the 10 characters

we use to decide if the time entities belong to the same time expression. This condition

prevents the creation of some links, for example, the expression “Later” at the beginning of a

sentence typically refers to another time interval in a previous sentence, so the distance

between them is much longer.

Laparra et al. Page 14

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

8 Conclusion

We have presented the first model for time normalization trained on SCATE-style

annotations. The model outperforms the rule-based state-of-the-art, proving that describing

time expressions in terms of compositional time entities is suitable for machine learning

approaches. This broadens the research in time normalization beyond the more restricted

TimeML schema. We have shown that a character-based neural network architecture has

advantages for the task over a word-based system, and that a multi-output network performs

better than producing a single output. Furthermore, we have defined a new interval-based

evaluation metric that allows us to perform a comparison between annotations based on both

SCATE and TimeML schema, and found that SCATE provides a wider variety of time

expressions. Finally, we have seen that the sparse training set available induces model

overfitting and that the largest number of errors are committed in those cases that appear less

frequently in the annotations. This is more significant in the case of explicit operators

because they are very dependent on the lexicon. Improving performance on these cases is

our main goal for future work. According to the results presented in this work, it seems that

a solution would be to obtain a wider training set, so a promising research line is to extend

our approach to automatically generate new annotations.

9 Software

The code for the SCATE-style time normalization models introduced in this paper is

available at https://github.com/clulab/timenorm.

Acknowledgements

We thank the anonymous reviewers as well as the action editor, Mona Diab, for helpful comments on an earlier
draft of this paper. The work was funded by the THYME project (R01LM010090) from the National Library Of
Medicine, and used computing resources supported by the National Science Foundation under Grant No. 1228509.
The content is solely the responsibility of the authors and does not necessarily represent the official views of the
National Library Of Medicine, National Institutes of Health, or National Science Foundation.

References

Bethard Steven and Parker Jonathan. 2016 A semantically compositional annotation scheme for
timenormalization. In Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016), Paris, France, 5 European Language Resources Association (ELRA).

Bethard Steven. 2013 A synchronous con text free grammar for time normalization. In Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing, pages 821–826,
Seattle, Washington, USA, 10 Association for Computational Linguistics.

Bird Steven, Klein Ewan, and Loper Edward. 2009 Natural language processing with Python:
analyzing text with the natural language toolkit. O’Reilly Media, Inc.

Chiu Jason P. C. and Nichols Eric. 2016 Named Entity Recognition with Bidirectional LSTM-CNNs.
Transactions of the Association for Computational Linguistic, 4:357–370.

Chung Junyoung, Gulcehre Caglar, Cho KyungHyun, and Bengio Yoshua. 2014 Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555v1.

Collobert Ronan, Weston Jason, Bottou Léon, Karlen Michael, Kavukcuoglu Koray, and Kuksa Pavel.
2011 Natural language processing (almost) from scratch. The Journal of Machine Learning
Research, 12:2493–2537, 11.

Laparra et al. Page 15

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/clulab/timenorm

Fischer Frank and Strötgen Jannik. 2015 When Does (German) Literature Take Place? On the Analysis
of Temporal Expressions in Large Corpora. In Proceedings of DH 2015: Annual Conference of the
Alliance of Digital Humanities Organizations, volume 6, Sydney, Australia.

Gillick Dan, Brunk Cliff, Vinyals Oriol, and Subramanya Amarnag. 2016 Multilingual language
processing from bytes. In Knight Kevin, Nenkova Ani, and Rambow Owen, editors, NAACL HLT
2016, The 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016, pages
1296–1306. The Association for Computational Linguistics.

Graves Alex, Mohamed Abdel-rahman, and Hinton Geoffrey. 2013 Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 6645–6649. IEEE.

Han Benjamin and Lavie Alon. 2004 A framework for resolution of time in natural language. 3(1):11–
32, 3.

Huang Zhiheng, Xu Wei, and Yu Kai. 2015 Bidirectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Kuru Onur, Can Ozan Arkan, and Yuret Deniz. 2016 Charner: Character-level named entity
recognition. In COLING 2016, 26th International Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, pages
911–921.

Lample Guillaume, Ballesteros Miguel, Subramanian Sandeep, Kawakami Kazuya, and Dyer Chris.
2016a Neural architectures for named entity recognition. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 260–270. Association for Computational Linguistics.

Lample Guillaume, Ballesteros Miguel, Subramanian Sandeep, Kawakami Kazuya, and Dyer Chris.
2016b Neural architectures for named entity recognition. In NAACL HLT 2016, The 2016
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego California, USA, June 12-17, 2016, pages 260–270.

Lee Kenton, Artzi Yoav, Dodge Jesse, and Zettlemoyer Luke. 2014 Context-dependent semantic
parsing for time expressions. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1437–1447, Baltimore, Maryland, 6
Association for Computational Linguistics.

Lin Chen, Karlson Elizabeth W., Dligach Dmitriy, Ramirez Monica P., Miller Timothy A., Mo Huan,
Braggs Natalie S., Cagan Andrew, Gainer Vivian S., Denny Joshua C., and Savova Guergana K..
2015 Automatic identification of methotrexate-induced liver toxicity in patients with rheumatoid
arthritis from the electronic medical record. Journal of the American Medical Informatics
Association, 22(e1):e151–e161. [PubMed: 25344930]

Llorens Hector, Derczynski Leon, Gaizauskas Robert J., and Saquete Estela. 2012 TIMEN: An Open
Temporal Expression Normalisation Resource. In Language Resources and Evaluation
Conference, pages 3044–3051. European Language Resources Association (ELRA).

Ma Xuezhe and Hovy Eduard. 2016 End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(ACL 2016), volume 1 Association for Computational Linguistics.

Mazur Pawet and Dale Robert. 2010 Wikiwars: A new corpus for research on temporal expressions. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,
EMNLP ‘10, pages 913–922, Stroudsburg, PA, USA Association for Computational Linguistics.

Plank Barbara, Søgaard Anders, and Goldberg Yoav. 2016 Multilingual part-of-speech tagging with
bidirectional long short-term memory models and auxiliary loss. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
412–418, Berlin, Germany, 8 Association for Computational Linguistics.

Pustejovsky James, Castaño José, Ingria Robert, Saurí Roser, Gaizauskas Robert, Setzer Andrea, and
Katz Graham. 2003a TimeML: Robust Specification of Event and Temporal Expressions in Text.
In IWCS-5, Fifth International Workshop on Computational Semantics.

Pustejovsky James, Hanks Patrick, Sauri Roser, See Andrew, Gaizauskas Robert, Setzer Andrea,
Radev Dragomir, Sundheim Beth, Day David, Ferro Lisa, and Lazo Marcia. 2003b The TimeBank
corpus. In Proceedings of Corpus Linguistics 2003, Lancaster.

Laparra et al. Page 16

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pustejovsky James, Lee Kiyong, Bunt Harry, and Romary Laurent. 2010 ISO-TimeML: An
International Standard for Semantic Annotation. In Proceedings of the 7th International
Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta European
Language Resources Association (ELRA).

Qi Yanjun, Kavukcuoglu Koray, Collobert Ronan, Weston Jason, and Kuksa Pavel P.. 2009 Combining
labeled and unlabeled data with word-class distribution learning. In Proceedings of the 18th ACM
conference on Information and knowledge management, ACM, pages 1737–1740.

Schilder Frank. 2004 Extracting meaning from temporal nouns and temporal prepositions. ACM
Transactions on Asian Language Information Processing (TALIP) - Special Issue on Temporal
Information Processing, 3(1):33–50, 3.

Strötgen Jannik and Gertz Michael. 2013 Multilingual and cross-domain temporal tagging. Language
Resources and Evaluation, 47(2):269–298.

Strötgen Jannik and Gertz Michael. 2015 A baseline temporal tagger for all languages. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 541–547,
Lisbon, Portugal, 9 Association for Computational Linguistics.

Strötgen Jannik, Zell Julian, and Gertz Michael. 2013 Heideltime: Tuning English and developing
Spanish resources for TempEval-3. In Proceedings of the Seventh International Workshop on
Semantic Evaluation, SemEval ’13, pages 15–19. Association for Computational Linguistics.

Toutanova Kristina, Klein Dan, Manning Christopher D., and Singer Yoram. 2003 Feature-rich part-of-
speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Human Language
Technology - Volume 1, NAACL ’03 , pages 173–180, Stroudsburg, PA, USA Association for
Computational Linguistics.

UzZaman Naushad, Llorens Hector, Derczynski Leon, Allen James, Verhagen Marc, and Pustejovsky
James. 2013 SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and
Temporal Relations. In Second Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation
(SemEval 2013), pages 1–9, Atlanta, Georgia, USA, 6 Association for Computational Linguistics.

Verhagen Marc, Gaizauskas Robert, Schilder Frank, Hepple Mark, Katz Graham, and Pustejovsky
James. 2007 SemEval-2007 Task 15: TempEval Temporal Relation Identification. In Proceedings
of the 4th International Workshop on Semantic Evaluations, SemEval ’07, pages 75–80, Prague,
Czech Republic.

Verhagen Marc, Sauri Roser, Caselli Tommaso, and Pustejovsky James. 2010 SemEval-2010 Task 13:
TempEval-2. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 57–
62, Uppsala, Sweden, 7 Association for Computational Linguistics.

Vossen Piek, Agerri Rodrigo, Aldabe Itziar, Cybulska Agata, Marieke van Erp Antske Fokkens,
Laparra Egoitz, Minard Anne-Lyse, Alessio Palmero Aprosio German Rigau, Rospocher Marco,
and Segers Roxane. 2016 NewsReader: Using knowledge resources in a cross-lingual reading
machine to generate more knowledge from massive streams of news Special Issue Knowledge-
Based Systems, Elsevier.

Laparra et al. Page 17

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Annotation of the expression Saturdays since March 6 following the SCATE schema.

Laparra et al. Page 18

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Architecture of the 1-Sigmoid model. The input is May 25. In SCATE-style annotation, May
is a MONTH-OF-YEAR (a non-operator), with an implicit LAST (an operator) over the same

span, and 25 is a DAY-OF-MONTH. At the feature layer, M is an uppercase letter (Lu), a and y
are lowercase letters (L1), space is a separator (Zs), and May is a proper noun (NNP).

Laparra et al. Page 19

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
Architecture of the 2-Softmax model. The input is May. The SCATE annotations and

features are the same as in Figure 2.

Laparra et al. Page 20

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laparra et al. Page 21

Table 1:

Number of documents, TimeML TIMEX3 annotations and SCATE annotations for the subset of the TempEval

2013 corpus annotated with both schemas.

AQUAINT TimeBank Test

Documents 10 68 20

Sentences 251 1429 339

TimeML timex3 61 499 158

SCATE entities 333 1810 461

SCATE time exp. 114 715 209

SCATE bounded 67 403 93

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laparra et al. Page 22

Table 2:

Comparison of TimeML and SCATE annotations.

AQUAINT TimeBank

P R F1 P R F1

Body text 92.2 92.2 92.2 82.4 83.0 82.7

All text 92.2 67.1 77.7 82.4 71.2 76.4

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laparra et al. Page 23

Table 3:

Distribution of time entity annotations in AQUAINT+TimeBank.

Non-Op Exp-Op Imp-Op Total

1497 305 219 2021

74% 15% 11% 100%

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laparra et al. Page 24

Table 4:

Precision (P), recall (R), and F1 for the different neural network architectures on Time entity identification on

the development data.

Model P R F1

Word 1-Sigmoid 60.2 52.0 55.8

Char 1-Sigmoid 54.0 59.0 56.4

Word 2-Softmax 58.7 63.9 61.2

Char 2-Softmax 74.8 72.4 73.6

Word 3-Softmax 68.3 64.9 66.6

Char 3-Softmax 88.2 76.1 81.7

Char 3-Softmax extra 80.6 73.4 76.8

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laparra et al. Page 25

Table 5:

Results on the test set for Time entity identification (Ident) and Time entity composition (Comp) steps. For the

former we report the performances for each entity set: non-operators (Non-Op), explicit operators (Exp-Op)

and implicit operators (Imp-Op).

Char 3-Softmax Char 3-Soft. extra

P R F1 P R F1

Non-Op 79.2 63.2 70.3 87.4 63.2 73.4

Exp-Op 52.6 36.6 43.2 39.8 38.7 39.3

Imp-Op 53.3 47.1 50.0 65.4 50.0 56.7

Ident 70.0 54.5 61.3 69.4 55.3 61.5

Comp 59.7 46.5 52.3 57.7 46.0 51.2

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laparra et al. Page 26

Table 6:

Precision (P), recall (R), and F1 of our models on the test data producing bounded time intervals. For

comparison, we include the results obtained by HeidelTime.

Model P R F1

HeidelTime 70.9 76.8 73.7

Char 3-Softmax 73.8 62.4 67.6

Char 3-Softmax extra 82.7 71.0 76.4

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laparra et al. Page 27

Table 7:

Precision (P), recall (R), and F1 on bounded intervals on the TimeML/SCATE perfect overlapping test data.

Model P R F1

HeidelTime 70.7 80.2 75.1

Char 3-Softmax 74.3 64.2 68.9

Char 3-Softmax extra 83.3 74.1 78.4

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laparra et al. Page 28

Table 8:

Precision (P), recall (R), and F1 for character-based and word-based models in predicting TimeML TIMEX3

annotations on the TempEval 2013 test set. TIMEX3-Digits is the subset of annotations that contain digits.

TIMEX3 TIMEX3-Digits

P R F1 P R F1

Char 70.2 62.7 66.2 73.8 71.4 72.6

Word 81.3 69.0 74.7 86.2 79.4 82.6

Trans Assoc Comput Linguist. Author manuscript; available in PMC 2020 May 19.

	Abstract
	Introduction
	Background
	An interval-based evaluation metric for normalized times
	Data analysis
	TimeML vs. SCATE
	Types of SCATE annotations

	Models
	Time entity identification
	Neural architectures
	Text:
	Unicode character categories:
	Part-of-speech:

	Input: words vs. characters

	Time entity composition
	Time entity linking

	Algorithm 1
	Automatically generated training data

	Experiments
	Model selection
	Model evaluation

	Discussion
	Conclusion
	Software
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:
	Table 7:
	Table 8:

