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Abstract

High uncertainty about future urbanization and flood risk conditions limits the ability to increase 

resiliency in traditional scenario-based urban planning. While scenario planning integrating urban 

growth prediction modeling is becoming more common, these models have not been effectively 

linked with future flood plain changes due to sea level rise. This study advances scenario planning 

by integrating urban growth prediction models with flood risk scenarios. The Land Transformation 

Model, a land change prediction model using a GIS based artificial neural network, is used to 

predict future urban growth scenarios for Tampa, Florida, USA, and future flood risks are then 

delineated based on the current 100-year floodplain using NOAA level rise scenarios. A multi-

level evaluation using three urban prediction scenarios (business as usual, growth as planned, and 

resilient growth) and three sea level rise scenarios (low, high, and extreme) is conducted to 

determine how prepared Tampa’s current land use plan is in handling increasing resilient 

development in lieu of sea level rise. Results show that the current land use plan (growth as 

planned) decreases flood risk at the city scale but not always at the neighborhood scale, when 

compared to no growth regulations (business as usual). However, flood risk when growing 

according to the current plan is significantly higher when compared to all future growth residing 

outside of the 100-year floodplain (resilient growth). Understanding the potential effects of sea 

level rise depends on understanding the probabilities of future development options and extreme 

climate conditions.
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1. Introduction

As the built environment, population locations, and technology rapidly change, the future 

becomes more complex and unpredictable (Kok et al., 2007; Rotmans et al., 2000). High 

uncertainty in both flood risk and urban growth make planning for future urbanization 

difficult. Observed temperature increases and sea level rise have created unprecedented 

situations which must now be addressed (Pachauri et al., 2014; Newman et al., 2020). The 

National Oceanic and Atmospheric Administration (NOAA) reports the global mean sea 

level will rise between 0.2 meters and 2.0 meters by 2100 (Parris et al., 2012). 

Simultaneously, the United Nations (2017b) reports that the global population will increase 

by 29% between 2017 and 2050 (7.6 billion). Sea level rise due to climate change makes 

coastal populations more susceptible to flood risks while urban expansion and land use 

alterations due to population growth can worsen climate conditions and place more people in 

hazard zones.

Worldwide, more than 600 million people live in coastal regions currently lower than 10 

meters above sea level, and nearly 2.4 billion people live within 100km of the coastline 

(United Nations, 2017a). In the U.S., 254 counties (8%) out of 3,142 are located on the 

coast. However, 39% (123.3 million people) of the county’s total population live in coastal 

counties, and 52% (163.8 million people) live in coastal watershed counties (Wilson & 

Fischetti, 2010). Shoreline county populations have grown steadily since 1970 and are 

projected to continue do so (Crossett et al., 2013).

Land use change. the result of interaction between human activity and natural resources, 

plays a pivotal role in preparing the built environment for the future uncertainty through 

planning processes (Agarwal et al., 2002). Land change modeling (LCM) is a planning 

support system integrating future land use prediction models into the planning process 

(Berke et al., 2006). LCM creates the opportunity to mold uncertain futures into more 

succinctly determined conditions, when coupled with scenario planning (Harwood, 2007). 

Traditional “predict-and-plan” approaches allow for only singular growth trajectories and 

fail to adequately address the future complexities (Quay, 2010; Van der Heijden, 2011). 

Through better understanding of historic land development processes, LCM can be used to 

predict accurate future urban growth scenarios supporting urban planning for potential future 

flood risk mitigation. Over the past few decades, urban LCM has significantly advanced, 

addressing urbanization issues and their impacts in multiple related and distinct fields 

(Güneralp, 2011).

Scenario planning, a flexible approach to making long term plans based on options for future 

growth (Berke et al., 2006; Masterson et al., 2019), has been actively integrated with LCM, 

but most LCM studies do not integrate urban growth predictions with future sea level rise 

projects, fully incorporate the existing arsenal of model calibration methods, explore the 

possibilities of extreme change possibilities, implement multi-scalar analytics into their 

evaluations, or gauge the successfulness of city growth plans. This study advances LCM 

research using scenario planning by analyzing the effectiveness of a current land use plan 

and comparing the plan with predicted growth options. Using the Land Transformation 

Model (LTM), a popular and proven accurate LCM (Pontius et al., 2008), we predict 
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potential future urban growth and flood risk scenarios in Tampa, Florida, and assess future 

urban flood exposure at city and neighborhood levels.

2. Literature Review

2.1. Defining Scenario Planning

As Van der Heijden et al. (2002, p.277) posits, “It is not simply what you know that matters, 

but how you react to what you do not know.” Scenario planning is a decision-making 

process which identifies and plans for various future options (Van der Heijden, 2011); it 

helps stakeholders (e.g. agencies, local officials, developers, land owners, general public) to 

make better decisions for possible future conditions by comparing and assessing different 

and plausible stories (FHWA, 2011). Ringland and Schwartz (1998, p.2) define scenario 

planning as the “part of strategic planning which relates to the tools and technologies for 

managing the uncertainties of the future.”

2.2. Scenarios in Urban Planning

In the field of urban planning, Quay’s (2010) “predict and plan” approach is used to predict 

future populations or employment trends to arrange future necessary infrastructure. In both 

land use and transportation planning, a single preferable future state/trend (e.g. population 

estimation) has been used as a standard to forecast future urban change; this approach works 

well when society and the environment are stable and predictable (Chakraborty et al., 2011; 

Quay,2010). However, high uncertainty and complexity due to climate change and 

population relocation dynamics can decrease accuracies in singular prediction approaches 

(Van der Heijden,2011).

In urban planning, scenarios have been widely utilized for land use, transportation, 

economic development, environmental systems, resilience, and other fields (Goodspeed, 

2017). Researchers have made significant efforts in improving scenario development 

processes, tools, and evaluation. Postma and Liebl (2005) specified a conventional scenario 

planning approach, identifying a set of common predeterminants and unknowns and ranking 

levels of impacts and levels of uncertainties for unknowns (Van der Heijden et al., 2002). 

They suggested methodological adaptations for future scenario construction through 

considering and weighting uncertain or unique factors. Couclelis (2005) suggested that this 

could be created through better synergies with computer techniques in land-use models.

Further, Hopkins and Zapata (2007), when planning a three-county metropolitan area, 

promoted what they referred to as contingent scenarios – an approach to investigating a 

compendium of plans and comparing them with sustainable forecasting tools. Quay (2010) 

posited that anticipatory planning could be used as a model to combine future predictions 

and analyses to explore broader ranges of possible scenarios. However, to increase 

accuracies and probabilities in broader scenario development, a broader array of driving 

forces must also be utilized. Chakraborty et al. (2011) promoted an approach for increasing 

accuracies through largescale scenario analysis which adopted both internal (controllable) 

and external (uncertain) driving forces behind prediction models. Through such an approach, 

both robust plans covering future predicted scenarios as well as contingency plans 
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supporting specific future were created and analyzed. Recently, Goodspeed (2017) proposed 

adding additional factors for urban scenario planning, including psychological, institutional, 

and system-related drivers and outcomes. However, though scholar’s efforts in developing 

scenarios in urban planning, there are still some deficiencies in considering uncertainties, 

predicting for and assigning impacts of only a single preferred scenario/plan, and an 

unwillingness to predict for and entertain extreme circumstances (Chakraborty & McMillan, 

2015; Chakraborty et al., 2011).

2.3. Urban Growth Scenarios and Sea Level Rise

LCM has been shown to be an effective tool to develop and evaluate future urban growth 

scenarios. LCM can project future land change and the outcome of natural and human 

systems based on relationships among historic land cover and explanatory factors to estimate 

the mostlikely patterns (Brown et al., 2013). Many LCM studies have examined forecasted 

urban growth scenarios and their subsequent impacts to identify optimal future growth 

directions. However, scenarios have been limited primarily to typologies which compare a 

business as usual (same growth pattern as previous patterns) output (Shi et al., 2017) to 

scenarios which only offer alternatives for urban growth which do not fully encompass the 

broader options and possible extreme circumstances related to climate change (Song et al., 

2017; Goodarzi et al., 2017; Shi et al., 2017; Te Linde et al., 2011; Liu et al., 2011).

Only a handful of studies have estimated climate change/sea-level rise (SLR) impacts on 

future urban growth in LCM studies (De Moel et al., 2011; Song et al., 2017; Te Linde et al., 

2011; Zhao et al. 2017). When examining flood risk, SLR scenarios (Song et al., 2017), 

riverflood probabilities (Te Linde et al., 2011), or existing flood risk maps (De Moel et al., 

2011) have been examined using multiple growth scenarios according to site conditions. For 

instance, Zhao et al. (2017) examined the efficacy of land use adaptation strategies by 

comparing two growth scenarios (baseline and adaptation) with low/medium/high SLR 

scenarios by 2030 and 2080. Song et al. (2017) assessed flood damage area using different 

urban growth density scenarios (historic growth, urban sprawl, and compact growth) in the 

500-year floodplain under two SLR scenarios (0.2m and 0.9m). Te Linde et al. (2011) 

predicted potential flood damage using two socio-economic growth scenarios (high/low 

economic and population growth) with river flood probability by 2030. De Moel et al. 

(2011) compared socio-economic growth scenarios in 2040 and 2100 with existing 

maximum flood inundation capabilities. The previously identified articles utilized different 

flood risks due to available data or particular site conditions. However, for scenario analyses, 

each existing study only estimated flood damage areas within a single study scale (e.g. 

country, watershed, or city) at to identify a preferred growth scenario. Few studies have 

actually employed urban growth and flood risk scenarios.

2.4. Literature Gaps and Research Question

This research adds several contributions to the existing computational literature involving 

prediction modeling. The literature review revealed several needs accolated with current 

LCM research including 1) ranking levels of variable influence through the consideration of 

factors (Postma and Liebl, 2005), 2) better synergies with computer techniques in land-use 

models (Couclelis, 2005), 3) a need to better investigate and evaluate the successfulness of 
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existing plans (Hopkins and Zapata, 2007), and 4) the need to explore broader ranges of 

possible scenarios based on extreme circumstances due to climate changes (Quay, 2010). 

This study fills these needs by 1) ranking the influence of driving factors utilized to predict 

through drop one experiments, 2) integrating and analyzing LCM scenarios with SLR 

scenarios, a rare coupling in the current literature, 3) evaluating the successes and drawbacks 

of the current comprehensive plan for Tampa through flood risk evaluation rather than 

simply analyzing whether the plan’s goals were accomplished or through post-occupancy 

evaluation measures, and 4) forecasting extreme urban growth options (such as no growth in 

the future 100 year floodplain) and linking these forecasts with extreme SLR projections.

Methodologically, our approach advances gaps in existing prediction modeling literature, 

also in a myriad of ways. First, we combine 5 different calibration methods to ensure model 

accuracy (PCM, Kappa, OA, AUC, and drop-one experiments); most research primary relies 

on Kappa statistics and PCM for validation (Pontius, 2011). Further, we uniquely calibrate 

the model by first predicting for existing circumstances (for the year 2011) and comparing 

the prediction outputs with the urban growth circumstances for 2011 (expanded upon later). 

Second, we use both municipal and local scaled analytics to assess impact. Current research 

relies primarily on a single scale, mostly only city or regional. Finally, this research 

incorporates 15 different driving forces to predict urban growth. The average amount of 

driving factors utilized in the current literature is only around seven variables. As far as we 

know, this research is the most comprehensive approach to integrate urban growth and SLR 

scenarios and fills several gaps in the current research.

The research asks, how can combining urban growth predictions into scenario analyses help 

inform preparedness for flood risks due to climate change in urban planning? To answer this, 

we determine the effectiveness of the current land use plan by comparing it to other urban 

growth options when considering future flood risks. The research articulates and illustrates a 

scenario development process, coupling both urban growth and flood risk scenarios 

(including SLR), and suggests two new types of growth scenarios (planned and resilient 

urban growth) to examine each scenario’s efficacy to future flood risks at multiple scales 

using Tampa, FL, USA as a study area.

3. Methods

Based on the literature, we developed a process for analyzing the impact of climate change 

on three future urban growth scenarios: business as usual (BU), growth as planned (GP), and 

resilient growth (RG) (each explained in detail later). As Fig. 1 illustrates, the research 

process is divided into two parts: scenario making and impact analysis. Scenario making 

comprises 1)the prediction of urban growth scenarios using the LTM, and 2) delineation of 

future flood risks based on sea level rise scenarios using Geographic Information Systems 

(GIS). Then, impacts are evaluated using area of predicted urban growth exposed to flood 

risks at both city and neighborhood levels.

3.1. Scenario Making and Impact Analysis

3.1.1. Exclusionary Layers—As stated, the urban growth scenarios in this research 

employ the three categories: business as usual (BU), growth as planned (GP), and resilient 
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growth (RG). The future urban growth in the BU scenario is natural growth without 

development regulations. It is based on the premise if new development occurs according to 

current development patterns. In the GP scenario, the growth projection follows the current 

land use plan for Tampa, reflecting how the city government and/or community prefer to 

develop. The RG scenario is an extreme scenario where no development occurs within the 

future 100-year flood plain. To restrict urban growth predictions into specific areas, the LTM 

uses exclusionary layers (Kim & Newman 2019). This approach creates the ability to 

controlling land development according to spatial rules. An exclusionary layer includes 

areas where no development will occur during an LCM, allowing for the exclusion of future 

areas for urban growth when predicting.

In this research, the BU scenario employs minimum exclusions including existing built 

parcels and water surfaces. It is assumed that, if a building already exists on a surface, 

another building will not occur on the same spot, although growth could occur around such 

an area; it is also assumed that development will not occur within a current warmer body, but 

could occur tangentially. The GP’s exclusionary layers includes preservation areas (e.g. 

environmentally sensitive areas) according to the land use plan as well as those include 

within the BU scenario. Finally, the RG incorporates the BU and GP’s exclusionary layers 

and also adds future flood risk zones an exclusionary layer.

3.1.2. Sea Level Rise Projection—For projecting the SLR scenarios, NOAA provides 

future potential sea levels with relative sea level (RSL) projections and different heights of 

the sea surfaces at different locations in the U.S., based on historic sea level changes (Parris 

et al., 2012). NOAA (2017) includes six future sea level scenario projections, each with a 95 

% confidence level: low, intermediate low, intermediate, intermediate high, high, and 

extreme SLR options (Parris et al., 2012). The low scenario is a linear estimation based on 

the historical SLR tide records since 1900, showing a 1.7mm increase per year, on average. 

The intermediate low (IL) scenario is an optimistic scenario estimating minimum ice sheet 

melting and ocean warming and is based on more recent observations. The high (HI) 

scenario calculates maximum glacier and ice sheet loss and is a standard for highly 

vulnerable facilities such as power plants and high-risk industrial facilitates. The extreme 

(EX) scenario combines extreme weather and climate patterns to project the worstcase 

scenario (Parris et al., 2012). SLR records for St. Petersburg, FL were used for this research. 

NOAA’s projection shows that SLR by 2040 for St. Petersburg vary from 0.18 meters (low) 

to 0.62m (EX). This study uses the IL scenario (+0.22m) as a primary risk, the HI scenario 

(+0.54m) as a less likely, but probable risk, and the EX (+0.62m) as worst case, but slightly 

possible, risk for SLR. The use of these scenarios has been shown to be a highly effective 

range of multiple future conditions with the high prediction confidence based on local SLR 

records (Arkema et al., 2013; Parris et al., 2012).

SLR projections are developed based on the National Flood Insurance Program’s 100-year 

floodplain from the Flood Insurance Rate Maps. The 100-year floodplain signifies a 1% 

chance of flood in any given year. SLR scenarios were delineated by using a modified 

bathtub method, considering sea level height and hydrologic connectivity (Marcy et al., 

2011), as seen in Berke et al.’s (2015) hazard mapping. As Fig. 1 shows, the urban growth 

and SLR scenarios combine to create nine potential future options. The BU and IL scenario 
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combinations indicate urban growth with no regulation and intermediate- low flood by 2040. 

The GP and HI scenario combination include future urban areas following the land use plan 

with SLR by 2040 according to NOAA’s high flood risk. The RG and EX scenario 

combination includes no future development under the future 100-year flood plain with an 

extreme SLR 2040 scenario. The impact analysis is based on flood exposure calculations at 

both city and neighborhood scales. The flood exposure calculation compares the existing 

urban area and the predicted future urban area through urban growth scenarios at a city and 

neighborhood levels.

3.1.3. Urban Flood Exposure at Multi-Scales—We also calculate urban flood 

exposure at both city and neighborhood levels. At the city level, existing urban area, 

predicted future urban growth scenarios, and future flood risk scenarios are calculated. The 

results show how each urban growth scenario (BU, GP, EX) is differently impacted by each 

SLR scenario (IL, HI, and EX). At the neighborhood level, the total tally of neighborhoods 

exposed to future flood risk and the total area under future flood risk by different urban 

growth scenarios are compared.

3.2. Urban Growth Prediction using the Land Transformation Model

The LTM is a tool to predict future land uses which examines relationships between driving 

factors of urban growth and land use changes through GIS and a machine learning process 

known as an artificial neural network (ANN) (Pijanowski et al., 2002). The LTM shows one 

of the highest current performances among some of the most used prediction models 

(Pontius et al., 2008). Its approach identifies non-linear relationships using a multi- layered 

ANN and includes input, hidden, and output layers. The LTM has the capability to predict 

future urban land change while integrating physical, socio-economic, and other growth-

related variables through spatial transition rules (Pijanowski et al., 2002).

As Fig.2 shows, the LTM process incorporated 15 variables to predict future urban growth; 

performance and calibration methods were calculated to ensure accuracy of the model. 

Rasterized predictor variables linked to a geographical location (such as proximity and 

density data), referred to as driving factors, were inputted with rasterized historic land cover 

data sets for two the years 2001 and 2011 (referred to as base maps). The LTM literature 

recommends 250,000 training cycles, while 4,000 cycles are the minimum, to stabilize error 

levels (Pijanowski et al., 2002). More than 250,000 training cycles do not typically show 

much greater prediction accuracy (Lee et al., 2017; Pijanowski et al., 2005). Thus, this study 

used 250,000 training cycles. To better validate the model before predicting for future 

circumstances, after computing the output of expected change between 2001 and 2011, we 

compared this output to the actual land use between 2001 and 2011. To validate the model, 

we used four accuracy metrics including percent correct metric (PCM), kappa coefficient 

(Kappa), overall agreement (OA), and area under curve (AUC) of receiver operating 

characteristic (ROC). We also confirmed each driver’s prediction capability and contribution 

with drop-one tests (Brown et al., 2013). All accuracy metrics concluded that the model was 

valid and the drop one tests confirmed the utilized drivers. Then, the future urban growth 

forecast for each scenario was forecasted and the same metrics were used to validate each 

scenario.
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The 15 driving factors untiled in the LTM are proven contributors to urban growth in the 

literature and include slope (Berke et al., 2006), land value (Alonso, 1964), population 

density (Losiri, 2016), population increase (Veldkamp & Fresco, 1996), poverty (Hu & Lo, 

2007), employment (Amano et al., 1988), proximity to roads (Daniels, 1999), watersurface, 

waterfront, parks (Correll et al., 1978), existing urban (Jafari et al., 2016), residence (Zhao et 

al., 2017), commercial (Munshi et al., 2014), central business district (Al-sharif & Pradhan, 

2016), and public schools (Ku 2016). All driving factors were obtained from open-source 

data. Proximity variables were obtained from the City of Tampa Geo Hub and the U.S. 

Geological Survey, land value from the Hillsborough Appraisal District, and socio-economic 

data from the U.S. Census Bureau.

As noted, each driving factor’s contribution to the model are proven by the calibration 

approaches statistical outputs as well as the drop-one experiment (Brown et al., 2013) (see 

Table 1 in Appendix). As noted, this research uses the four most common types of spatial 

statistical measures to validate spatial patterns: PCM, Kappa, OA, and AUC. PCM is the 

percentage of the cells correctly predicted to change divided by the total cells actually 

changed during the study period (Pijanowski et al., 2005; Pijanowski et al., 2014). Kappa is 

a widely used index in accuracy assessment and designates the proportion of agreement 

removing expected chance agreement (Cohen, 1960). However, because of limitations in 

only using the Kappa index (Pontius, 2000), this study also employs Overall Agreement 

(OA) and Area Under Curve (AUC, also known as ROC) calibration methods. Quantity 

disagreement is the difference in changed cell numbers without considering location, and 

allocation disagreement is the spatial difference in transition (Lee & Newman, 2017; Pontius 

& Millones, 2011). OA can be drawn by removing the quantity disagreement and allocation 

disagreement. Receiver Operating Characteristics (ROC) is a two-dimensional graph, 

plotting the true positive rate (sensitivity) on the Y axis and the false positive rate on the X 

axis, with 1 – the true negative rate (specificity), and it explains relative tradeoffs (Fawcett, 

2006; Streiner & Cairney, 2007). AUC is the areas under ROC. The outputs from these 

calibration methods are explained in the results section.

3.3. Study Area

To select a case site, we used three prerequisites: the city 1) must have a comprehensive 

plan, 2) must be growing in population, and 3) must be coastal/flood-vulnerable. Like other 

cities in Florida, Tampa has a strong local comprehensive plan (Brody, 2001). As illustrated 

in Fig. 3, Tampa is located on the western coast of Florida in Hillsborough County. Southern 

Tampa is enclosed by three Bays; Tampa Bay, Old Tampa Bay and Hillsborough Bay. The 

climate is humid subtropical with a large amount of summer rainfall and hot temperatures 

due to the oceanic location. Due to its climate and geographic location, Tampa is ranked the 

most vulnerable U.S. city to hurricanes (Climate Central, 2012). The area is 170 square 

miles (440km2) and the land elevations vary from sea level along the coastline to 55ft 

(16.7m). It is the third largest city in Florida with a population of 304,200 people in 2000, 

and 336,800 in 2010. The city’s population has grown steadily, and is projected to grow in 

the future to 481,128 in 2040 (Hillsborough County, 2016). Due to the shallowness of 

Tampa Bay and the city’s flat terrain, SLR will make more residents susceptible to increased 

flood risk.
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4. Results

4.1. Model Validity

The LTM output showed that there was a change of 8,917 pixels of urban growth between 

2001 and 2011, indicating a change of approximately 32,600 people. The future urban 

growth scenarios project a change of 48,395 pixels (30×30m), corresponding to a 176,928 

population change between 2001 and 2040. The forecasted pixel numbers are the same for 

all scenarios, but the locations of the pixels are different based on the different exclusionary 

layers utilized for each scenario. As illustrated in Fig. 4, the total existing urban (light gray) 

in 2011 was 172.8km2 (57% of the total Tampa area), the increased urban area (black) 

between 2011 and 2040 is 35.6km2 (12%), and the rest of the area (white) within the Tampa 

boundary was 96.3km2 (31%) was used for agriculture, wetlands, forests, water, and other 

uses.

The drop-one experiment runs the prediction model a series of times, with one driving factor 

missing. This is done until each driving factor has been removed for the model to see if the 

PCM increases if a variable is removed. If this occurs, it can be assumed that the removed 

variables decrease the accuracy of the model. As the drop-one test result shows (see Table 1 

in Appendix), each variable used in the model positively contributes to the prediction 

capability and accuracy. This is indicated by the PCM values of each drop-one test being 

below the PCM value of the full 15 variable model. For the accuracy result of the full model, 

the PCM is 52%, and the kappa coefficient is 48%. All values are within acceptable and 

good ranges in prediction (Newman et al., 2016), justifying this as a proper model. The 

highest Kappa Statistic and PCM value from each 1,000th training cycle in each model 

varies from the 30,000th to 250,000th cycle. The distance to roads and distance to parks 

showed to be the most influential determinants in changing land cover. The next strongest 

factors are distance to existing land use, commercial, public schools, and residential. Though 

population density and land value have prediction capability, they appear to be less 

influential than other determinants in this model.

The model accuracy outputs (see Table 2 in Appendix) are measured to validate the accuracy 

of the prediction model. The BU scenario has a PCM of 52%, a Kappa of 48%, an OA of 

93%, and an AUC of 74%; the GP scenario has a PCM of 55%, a Kappa of 5 0%, an OA of 

91%, and an AUC of 75%; and the RG scenario has a PCM of 68%, a Kappa of 63%, an OA 

of 91%, and an AUC of 82%. All measures in each scenario show an acceptable or good 

level of prediction (Lee & Newman, 2017; Newman et al. 2016). When comparing the 

prediction accuracy values of each scenario, the results show that RG is the most accurate, 

and GP is more accurate than BU. In the fixed variable prediction, the total pixel numbers 

influence the prediction performance. In this approach, the rule is the more pixels, the less 

accurate, but, all are acceptable models.

4.2. Prediction Outputs: Future Urban Growth and Flood Risk

The prediction result (see Fig.4) shows different development patterns for each scenario. 

Future urban growth in the BU scenario is primarily located in northern Tampa (19.3km2) 

with some development in the central (11.8km2) and south regions (4.5km2) of Tampa. The 
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urban growth in the GP scenario involves evenly distributed development including 

12.3km2, 16.0km2, and 7.2km2 in the north, central, and southern regions, respectively. 

Urban growth in the RG scenario, however, focuses primarily on the central (17.5km2) and 

north Tampa regions (15.6km2).

For the SLR projection (see Fig. 4 and Fig. 2 in Appendix), the current 100-year floodplain 

covers 90.9km2, or 30% of Tampa’s area. The intermediate- low SLR scenario (0.22m) will 

enlarge the floodplain to occupy 108.5km2 of Tampa (36%). The 0.54m SLR (high scenario) 

and the 0.62m SLR (extreme scenario) would expand the floodplain coverage to 113.4km2 

(37%) and 114.4km2 (38%), respectively.

4.3. City Scaled Urban Flood Exposure

Urban flood exposure is calculated by overlapping existing urban and projected future urban 

scenarios with the projected future flood risk zones. In the existing urban exposure to future 

flood risk scenarios (the upper left in Fig. 4), as the sea level rises, more urban areas will be 

vulnerable to flood risk. In the inter-low (IL) SLR scenario at 47.3km2, 27% of the total 

existing urban area would be susceptible to flood risk. In the high (HI) and extreme (EX) 

SLR scenarios at 51.0km2 and 51.8km2 of existing urban areas would be vulnerable to 

future flood risks. Fig. 4 shows that a large number of urban areas are under the current 100-

year floodplain. More than 20% of existing urban areas are under the current floodplain, and 

future urban development would occur in the current flood zone, 30% of future urban 

development in BU and 22% in GP.

Fig. 4 also shows three urban growth scenarios (BU, GP, and RG) under different future 

floodplain scenarios; IL, HI and EX SLRs. Under the IL (+0.22m) SLR scenario, 11.9km2 

of BU and 9.5km2 of GP would be endangered by flood risk. RG would be free from 

flooding due to new development oly outside the floodplain. Under the HI (+0.54m) and EX 

(+0.62m) SLR scenarios, areas vulnerable to flooding would increase 12.4km2 and 12.5km2 

in BU, and 10.0km2 and 10.1km2 in GP. In the EX SLR case, more future urban areas would 

be under the sea level rise floodplain by 2040: 0.6km2 in BU and 0.3km2 in GP. In all SLR 

scenarios, the RG scenario is safer from future flood risk. Similar to the existing urban case, 

the higher the sea level rises, the more future urban areas are exposed to flood risk, except 

RG.

Since Tampa’s geography ranges from 0 to 55 feet above sea level (Hillsborough County, 

2016), a small change in the SLR can affect large areas of land. Existing urban areas would 

increase from 47.4km2 in the IL scenario to 51.8km2 in the EX one. BU’s flood vulnerable 

urban area would enlarge from 11.9km2 in the IL scenario to 12.5km2 in the EX scenario. 

GP would be relatively smaller, with only 9.5km2 in the IL scenario and 10.1km2 in the EX 

scenario. RG is safer from all the SLR impacts. In the result between the HI and EX 

scenarios, the number of urban areas exposed to flood risks are not much different because 

the gap in the sea levels is small (+0.08m) between the scenarios.

Overall, in regards to flood risk reduction of future urban areas, the GP scenario shows to be 

better than BU, but much worse than RG. The number of flood vulnerable areas in the GP 
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scenario is less than those of BU in all flood risk scenarios. However, the gap between the 

areas in BU and GP is not as obvious compared to that of GP and RG in all SLR scenarios.

4.4. Urban Flood Exposure at a Neighborhood Scale

The neighborhood scaled analysis examines how much future urban area in each 

neighborhood would be under future flood risks by comparing BU and GP, since RG lowers 

flood risk across all SLR scenarios. So, due to RG’s floodplain free design, it is excluded 

from the comparison. For flood risk, this section uses a fixed HI SLR scenario to compare 

urban flood exposure in the BU and GP scenarios.

The results of potential flood impacted urban areas by neighborhood (see Table 3 in 

Appendix) indicate that 71 out of 127 neighborhoods are in existing urban areas. In the 

existing urban areas, two neighborhoods (#103 and #68) are the most vulnerable, with the 

largest amount of impacted areas (7.6km2 in #103 and 6.3km2 in #68). In the future urban 

scenarios, 55 neighborhoods in BU and 58 in GP would be exposed to flood risks. In BU, 

future flood risks would impact more than 1km2 of new development in four neighborhoods 

(#13, #40, #68, and #113). In the GP scenario, future flood risks would impact more than 

0.6km2 in three neighborhoods (#28, #68, and #113). Neighborhood #68 is the most 

vulnerable to floods in both existing and future urban scenarios.

In the urban flood exposure comparison within a neighborhood between BU and GP (see 

Table 3 in Appendix), as Fig. 5 illustrates, 27 neighborhoods in the BU scenario have a 

larger number of urban areas exposed to floods than does the GP scenario. However, 30 

neighborhoods in GP have a larger number of urban areas exposed to floods than does BU. 

This suggests that, when future urban development follows a land use plan (GP), the 30 

neighborhoods (see the right map in Fig. 5) would have a larger amount of area under flood 

risk zones than urban development without a plan (BU).

At the city level, a large number of existing urban areas are under the current 100-year 

floodplain, 21% of the existing urban areas (36.5km2). This would be enlarged by up to 

51.8km2 (or 30%) in the extreme SLR scenario. Out of the total future urban development of 

35.6km2 by 2040, 10.7km2 (30% of future urban areas) in BU and 7.9km2 (22%) in GP are 

projected to be developed in the current 100 year floodplain, with 12.5km2 (35%) in BU and 

10.1km2 (29%) in GP under the future extreme SLR scenario. In the comparison of total 

urban flood exposure, existing urban areas are problematic, and urban growth as with no 

plan (BU) would cause more floodplain development than growth as planned (GP). When 

examining the results of the city level analysis, GP is better than BU in all the SLR 

scenarios, the total urban area exposed to flood risks in GP is less than in BU.

The neighborhood level analysis shows opposing results. There are 71 neighborhoods 

comprising the existing urban area, and more than 50 neighborhoods with future urban 

predicted growth (55 neighborhoods in BU and 58 in GP) would be impacted by future HI 

SLR risk. More neighborhoods in GP would be vulnerable to floods than in BU due to 

predicted floodplain development. Further, when comparing BU and GP, more numbers of 

neighborhoods in GP would have larger areas vulnerable to flood than in BU. Corollary, 30 

neighborhoods in GP have larger areas of predicted development in high risk flood zones 
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than in BU, but the 27 in BU have larger urban areas exposed to flood risks than in GP. 

Thus, planned urban growth in Tampa would be better to minimize potential flood damage at 

a city level than a growth with no plan, but it could be worse for some neighborhoods.

5. Discussion and Limitations

This research sought to determine how combining urban growth predictions into scenario 

analyses can help inform preparedness for climate change in urban planning. The results 

showed that urban growth scenarios forecast different growth patterns and flood risks will 

increase in response to rising sea-levels. The analyses indicate that regional solutions can 

sometimes have negative implications at the neighborhood scale. To address this 

circumstance, when making or updating comprehensive plans, planners and local 

stakeholders should work together to make better decisions by examining plausible scenarios 

and identifying their impacts. The findings reveal several impacts that provide a basis for a 

series of recommendations for future climate adaptation planning.

First, both context and local scaled analyses should be employed across each scenario 

created. Results in Tampa show that the area of future urban flood risk differs by scenario, 

and impacts differ depending on the scale of analysis. The current land use plan (GP) works 

well at the city level, but not as strong at the neighborhood level when compared to no 

growth regulations (BU), but much worse when compared to all future growth residing 

outside of the flood risk (RG). Through the scenario-based approach, the possibility to 

reduce potential flood damage in the current land use plan and its related policies can be 

exposed. Regarding the results of the multi-scaled analyses, some neighborhoods seem to be 

sacrificed (in regard to increased flood risk) for the greater good. Despite the fact that land 

use plan is primarily defined the use of ESA zones, the total urban flood exposure of the 

land use plan (GP) is still less than without a plan (BU). However, at a neighborhood level, 

more neighborhoods will be endangered by GP than BU. Thus, some neighborhoods would 

become more vulnerable to flooding due to the current plan. Once the current plan is fully 

implemented, local-level strategies (e.g. green infrastructure, storm-water management, etc.) 

(Ahiablame et al., 2012) to decrease potential flood risk should be prepared (especially for 

the flood-vulnerable neighborhoods) through local/community engagement. Planners should 

make decisions at multi-scales based on feedback from different scales (Agarwal et al., 

2002; Demuzere et al., 2014).

Second, the suggested method in this research can be utilized to analyze/interpret the 

effectiveness of current land use plans and policies. For example, our findings show that the 

ESA land uses and their related development restriction policies help to decrease floodplain 

development. However, ESAs may force more floodplain development in areas outside of 

ESA overlays, which can result in future development in flood risk areas when considering 

SLR. The allowance of development within the future floodplain will endanger more people 

and assets. In Tampa, floodplain development is allowed by following current building codes 

and controlling the base flood elevation (BFE). This approach is based on the 100-year 

floodplain elevation under ENV Policy 2.1.3 and CM Policy 1.3.4 (Hillsborough County, 

2016). However, due to changing climate patterns and increasing impervious surfaces due to 

new development and as shown in this research, the BFE standard may not always guarantee 
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safety; this creates a false sense of security from flood risk (Tobin, 1995) which, then, can 

encourage increased floodplain development. The best way to minimize flood damage, of 

course, is to restrict floodplain development with land use management and policies. As a 

strong flood adaptation tool, land use regulations can guide future development locations 

outside current and future flood risk areas (Berke et al., 2015). Considering the forecasted 

urban flood exposure and future SLR impacts, better development regulations (e.g. 

restricting floodplain development, building codes) should be prepared before a flood 

disaster event occurs. During the planning process, the suggested scenario planning method 

in this research can be utilized to visualize where future urban will grow and how much area 

will be endangered by future SLR scenarios, should growth occur as predicted.

Thirdly, to help address uncertainties associated with a changing climate, future scenarios 

should continue to incorporate extreme growth prediction and SLR circumstances instead of 

being so reliant upon conservative outputs. In the case of Tampa, in this research, as a land 

use plan evaluation tool, the results show locations that are most vulnerable to future flood 

risk at multiple scales in different urban growth and SLR scenarios. Based on the results, 

planners can prepare for robust and contingent strategies (Chakraborty et al., 2011) for the 

entire city as well as specific neighborhoods (Goodspeed, 2019). This process can also be 

used during the plan making stage. As noted, especially in Florida, comprehensive plans are 

legally binding (Brody, 2001), so a GP scenario would be the most probable urban future. 

RG is the most desirable urban future in regards to sustainability, but may be difficult to 

tully realize due to planning priorities or stakeholders’ rights of properties. For the flood risk 

scenarios, with a 95% confidence interval, NOAA’s SLR prediction IL, HI and EX 

conditions were employed for a broader potential range of increased future flood risk. If 

there are other types of more plausible or extreme conditions (e.g. between/beyond GP and 

RG, more than EX), they should be included to take full advantage of scenario planning.

There are some limitations in prediction accuracy and impact evaluation that can be 

improved upon in future studies and advancements in prediction accuracy and impact 

assessments. First, future urban growth prediction has more room to raise its accuracy. In 

this study, the performance of urban growth prediction by LTM was tested with four 

different measures such as PCM, Kappa, OA, and AUC, showing a good range of prediction 

accuracy. Also, this study justified 15 driving factors contributing to Tampa’s urban growth 

using drop-one tests (Brown et al., 2013). However, employing more influential drivers and 

multi-year land cover (e.g. land cover 2021) comparisons would enable the ability to predict 

with higher accuracy. Second, future flood risks were not fully represented through only 

adding SLR scenarios to the current 100-year floodplain using the bathtub approach. To 

increase plausibility, future research should consider increases in impervious surfaces 

impacting hydrology and a new floodplain integrating future run-off and peak flows (Gori et 

al., 2019). When open space land uses are converted to urban land uses, flood risk can 

increase due to increased floodplain areas and impervious surfaces. Moreover, as climate 

changes, rainfall patterns become severe, exceeding a 100-year rainfall. It is necessary to 

develop a more accurate flood risk delineation approach since the current 100-year 

floodplain does not capture dynamic conditions extremely effectively (Blessing et al., 2017). 

Third, to increase accuracy in the impact evaluation, planning policies need to be assessed 

and updated to determine how plan policies prepare for future flood risks. The results of this 
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study also estimate future urban growth areas and urban flood exposure. This does not mean 

that all the flood vulnerable areas will be flooded nor all predicted areas will be developed. 

The probability of both occurrences is simply higher in these areas. Proper preparation (e.g. 

protection plan, policies) can reduce/eliminate future flood damage to create more resilient 

communities. Lastly, incorporating vulnerability assessment, “the characteristics of a person 

or group and their situation that influence their capacity to anticipate, cope with, resist and 

recover from the impact of a natural hazard (Winser et al., 2004, p.11),” can help understand 

actual flooding conditions. Vulnerability is based on an asset’s exposure, sensitivity, and 

adaptive capacity to a hazard event (Cutter 1996). If an exposed asset is highly sensitive to 

the harmful impacts of a hazard event, with a low adaptive capacity, the asset is considered 

vulnerable (Marin County, 2017). The same risk can impact areas differently depending on 

the personal/asset’s adaptive capacity. To be a more accurate assessment, adding to the 

future urban prediction and flood exposure of this study, physical/social vulnerability should 

be considered.

6. Conclusion

The process identified in this paper facilitates the aggregation of multiple sources of SLR 

and urban growth data, allowing for the creation of prediction maps which estimate the 

probability of growth occurrence by scenario, given a sea-level rise event. Understanding the 

potential effects of SLR depends on understanding the probabilities of future development 

options and extreme climate conditions. The framework presented in this research provides a 

pathway towards creating useful tools for decision makers with the capabilities to operate 

LCM and integrate their outputs into scenario-based urban planning. If future plans are 

created, based on this or similar processes, decision makers should aim to create more 

accurate growth and sea-level rise prediction methods and begin analyze outputs versus 

actual growth impacts to confirm specifcs of the approach. Relatedly, creating future 

scenarios with potential users of the information, through a co-creation or participatory 

process would allow the capabilities to test scenarios grounded in the realities of the place 

under investigation.
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Appendix

Table 1

Drop-one test with 15 driving factors.

Excluded input factors Highest training probability PCM Kappa Influence

Population Density 200,000 th 51.50 0.48

Land Value 90,000 th 51.28 0.47

Population Increase 250,000 th 50.43 0.46

Distance to Waterfront (sea) 100,000 th 50.30 0.46

Central Business District 80,000 th 50.26 0.46

Poverty 200,000 th 49.73 0.46

Distance to Water Surface 80,000 th 49.69 0.46

Slope 30,000 th 49.48 0.45

Employment No. 200,000 th 49.25 0.45

Distance to Existing Urban 100,000 th 49.12 0.45

Distance to Residence 150,000 th 48.95 0.45

Distance to Public School 250,000 th 48.58 0.44

Distance to Commercial 250,000 th 48.49 0.44

Distance to Park 90,000 th 48.13 0.44

Distance to Roads 90,000 th 47.92 0.44

Full Model (15) 200,000 th 52.19 0.48 -

Table 2

Prediction accuracy for urban growth scenarios.

PCM Kappa OA AUC

Business as Usual (BU)
in the 200,000th cycle 52.19 0.48 92.85 0.74

Growth as Plan (GP)
in the 40,000th cycle 55.04 0.50 90.93 0.75

Resilient Growth (RG)
in the 150,000th cycle 67.63 0.63 91.24 0.82

PCM = percent correct metric, Kappa = kappa coefficient, OA = overall agreement, and AUC = area under the ROC curve

Table 3

Existing and future urban (BU and GP) flood exposure under the future floodplain.

NH
No.

Existing Urban
Flood Exposur e

BU Urban
Flood Exposur e

GP Urban
Flood Exposur e

1 0.000 0.000 0.000

2 0.000 0.000 0.000

3 0.000 0.000 0.000
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NH
No.

Existing Urban
Flood Exposur e

BU Urban
Flood Exposur e

GP Urban
Flood Exposur e

4 0.000 0.000 0.000

5 0.000 0.000 0.000

6 0.002 0.000 0.000

7 0.122 0.000 0.002

8 0.000 0.000 0.000

9 0.000 0.000 0.000

10 0.129 0.120 0.075

11 0.181 0.015 0.018

12 0.000 0.000 0.000

13 0.122 1.290 0.162

14 0.000 0.000 0.000

15 0.008 0.000 0.024

16 0.072 0.000 0.000

17 0.000 0.000 0.000

18 0.215 0.004 0.001

19 0.274 0.018 0.059

20 0.000 0.000 0.000

21 0.000 0.000 0.000

22 0.048 0.001 0.022

23 0.050 0.000 0.000

24 0.000 0.000 0.000

25 0.209 0.000 0.134

26 0.066 0.000 0.000

27 0.000 0.000 0.000

28 2.038 0.862 0.632

29 0.000 0.000 0.000

30 0.000 0.000 0.000

31 0.000 0.000 0.000

32 0.120 0.001 0.015

33 0.023 0.000 0.004

34 0.009 0.000 0200

35 0.000 0.000 0.000

36 0.000 0.000 0.000

37 0.000 0.000 0.000

38 0.080 0.152 0.103

39 0.226 0.021 0.150

40 0.244 1.231 0.432

41 0.000 0.000 0.000

42 0.000 0.000 0.000

43 0.000 0.000 0.000

44 0.042 0.000 0.005

45 0.000 0.000 0.000
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NH
No.

Existing Urban
Flood Exposur e

BU Urban
Flood Exposur e

GP Urban
Flood Exposur e

46 0.162 0.085 0.016

47 0.000 0.000 0.000

48 0.000 0.000 0.000

49 0.000 0.000 0.000

50 0.058 0.002 0.087

51 0.006 0.000 0.000

52 0.000 0.000 0.000

53 0.060 0.100 0.017

54 0.043 0.118 0.041

55 0.000 0.000 0.000

56 0.000 0.000 0.000

57 0.232 0.045 0.000

58 0.344 0.024 0.020

59 0.000 0.000 0.000

60 0.000 0.000 0.000

61 0.000 0.000 0.000

62 0.000 0.000 0.000

63 0.000 0.000 0.000

64 0.180 0.001 0.001

65 0.000 0.000 0.000

66 1.256 0.000 0.000

67 1.803 0.478 0.513

68 6.273 1.128 0.867

69 0.292 0.002 0.107

70 0.000 0.000 0.000

71 0.026 0.663 0.002

72 0.000 0.000 0.000

73 0.000 0.000 0.000

74 0.000 0.000 0.000

75 0.000 0.000 0.000

76 0.000 0.000 0.000

77 0.130 0.000 0.000

78 0.000 0.000 0.000

79 0.000 0.000 0.000

80 0.000 0.000 0.000

81 0.723 0.053 0.053

82 0.301 0.003 0.223

83 0.484 0.042 0.055

84 1.404 0.134 0.175

85 0.000 0.000 0.000

86 0.000 0.000 0.000

87 0.970 0.215 0.247

Kim and Newman Page 17

Comput Environ Urban Syst. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NH
No.

Existing Urban
Flood Exposur e

BU Urban
Flood Exposur e

GP Urban
Flood Exposur e

88 0.139 0.322 0.011

89 0.070 0.077 0.378

90 0.610 0.011 0.081

91 0.000 0.000 0.000

92 0.775 0.069 0.091

93 0.000 0.000 0.000

94 0.606 0.002 0.002

95 2.155 0.106 0.463

96 0.326 0.061 0.030

97 0.892 0.534 0.516

98 0.497 0.027 0.247

99 0.286 0.019 0.007

100 0.785 0.230 0.227

101 0.014 0214 0.231

102 0.440 0.035 0.035

103 7.642 0.004 0.006

104 2.536 0.247 0.205

105 1.456 0.194 0.313

106 0.026 0.007 0.000

107 1.564 0.177 0.361

108 2.131 0.236 0.348

109 1.116 0.252 0.176

110 0.850 0.399 0.351

111 1.903 0.075 0.206

112 0.100 0.158 0.135

113 0.492 1.640 0.641

114 0.096 0.098 0.016

115 0.210 0.039 0.109

116 0.000 0.000 0.000

117 0.033 0.000 0.039

118 0.000 0.000 0.000

119 0.000 0.000 0.000

120 0.000 0.000 0.000

121 1.494 0.570 0.506

122 0.000 0.000 0.000

123 0.012 0.000 0.000

124 0.000 0.000 0.000

125 0.000 0.000 0.000

126 1.161 0.000 0.000

127 0.309 0.000 0.000

Tot
al

51.0 12.4 10.0
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NH: Neighborhood, Unit km2

a neighborhood where urban flood exposure in BU is larger than in GP

a neighborhood where urban flood exposure in GP is larger than in BU
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Fig. 1. 
Future urban growth scenarios in Tampa, 2040.
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Fig. 2. 
Future flood risk scenario based on the 100-year floodplain and sea level rise scenarios in 

2040.
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Highlights

• Increasing future uncertainty calls for a better scenario planning approach 

rather than traditional predict-and-plan.

• Scenario planning has not been effectively linked to land change modeling.

• Integrating sea level rise and predictions into scenarios increased flood 

preparedness.

• A regional solution can result in adverse effects at the neighborhood scale.
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Fig. 1. 
Research process showing the matrix integrating future urban growth and sea-level rise 

scenarios, creating nine different future scenarios.
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Fig. 2. 
The LTM prediction modeling process showing driving factors, base maps, output 

comparison, and forecasted urban growth scenarios.
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Fig. 3. 
Location of Tampa, Florida.
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Fig. 4. 
Flood exposure of existing urban and future urban growth scenarios.
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Fig. 5. 
Comparing future urban (business as usual and growth as plan) flood exposure under the 

high SLR. The choropleth maps indicate urban areas exposed to flood risks in BU (left) and 

GP (right). A total of 127 neighborhoods in Tampa are identified by census tracts, 

numbering from #1 to #127. On the maps, tracts with numbers show where urban flood 

exposure in BU is larger than in GP, and where GP is larger than in BU.
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