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A B S T R A C T

SARS-COV-2 has recently emerged as a new public health threat. Herein, we report that the FDA-approved drug,
auranofin, inhibits SARS-COV-2 replication in human cells at low micro molar concentration. Treatment of cells
with auranofin resulted in a 95% reduction in the viral RNA at 48 h after infection. Auranofin treatment dra-
matically reduced the expression of SARS-COV-2-induced cytokines in human cells. These data indicate that
auranofin could be a useful drug to limit SARS-CoV-2 infection and associated lung injury due to its antiviral,
anti-inflammatory and anti-reactive oxygen species (ROS) properties. Further animal studies are warranted to
evaluate the safety and efficacy of auranofin for the management of SARS-COV-2 associated disease.

Gold-based compounds have shown promising activity against a
wide range of clinical conditions and microorganism infections.
Auranofin, a gold-containing triethyl phosphine, is an FDA-approved
drug for the treatment of rheumatoid arthritis since 1985 (Roder and
Thomson, 2015). It has been investigated for potential therapeutic
application in a number of other diseases including cancer, neurode-
generative disorders, HIV/AIDS, parasitic infections and bacterial in-
fections (Roder and Thomson, 2015; Harbut et al., 2015). Auranofin
was approved by FDA for phase II clinical trials for cancer therapy (Hou
et al., 2018; Oh et al., 2017; Rigobello et al., 2009). Oral auranofin was
effective in rodent models of various parasitic infections (Leitsch, 2017;
Capparelli et al., 2017). A preclinical study showed that auranofin
significantly reduces HIV load in combination with antiretroviral
therapy (Lewis et al., 2011). A clinical trial is ongoing to develop
auranofin as a drug candidate to reduce the latent viral reservoir in
patients with HIV infection utilizing the role of auranofin in redox-
sensitive cell death pathways (Diaz et al., 2019; Chirullo et al., 2013).

The mechanism of action of auranofin involves the inhibition of
redox enzymes such as thioredoxin reductase, induction of endoplasmic
reticulum (ER) stress and subsequent activation of the unfolded protein
response (UPR) (Harbut et al., 2015; May et al., 2018; Wiederhold
et al., 2017; Thangamani et al., 2016). Inhibition of these redox en-
zymes leads to cellular oxidative stress and intrinsic apoptosis (Lugea
et al., 2017; Hetz, 2012). In addition, auranofin is an anti-inflammatory
drug that reduces cytokines production and stimulate cell-mediated

immunity (Walz et al., 1983). It has been reported that auranofin in-
terferes with the Interleukin 6 (IL-6) signaling by inhibiting phos-
phorylation of JAK1 and STAT3 (Han et al., 2008; Kim et al., 2007). The
dual inhibition of inflammatory pathways and thiol redox enzymes by
auranofin makes it an attractive candidate for cancer therapy and
treating microbial infections.

Coronaviruses are a family of enveloped viruses with positive sense,
single-stranded RNA genomes (Rothan and Byrareddy, 2020). SARS-
CoV-2, the causative agent of COVID-19, is closely related to severe
acute respiratory syndrome coronavirus (SARS-CoV-1) (Rothan and
Byrareddy, 2020; Mehta et al., 2020). It is known that ER stress and
UPR activation contribute significantly to the viral replication and pa-
thogenesis during a coronavirus infection (Fung and Liu, 2014). Infec-
tion with SARS-COV-1 increases the expression of the ER protein
folding chaperons GRP78, GRP94 and other ER stress related genes to
maintain protein folding (Tang et al., 2005). Cells overexpressing the
SARS-COV spike protein and other viral proteins exhibit high levels of
UPR activation (Siu et al., 2014; Sung et al., 2009). Thus, inhibition of
redox enzymes such as thioredoxin reductase and induction of ER stress
by auranofin could significantly affect SARS-COV-2 protein synthesis
(Rothan and Kumar, 2019).

In addition, SARS-COV-2 infection causes acute inflammation and
neutrophilia that leads to a cytokine storm with over expression of IL-6,
TNF-alpha, monocyte chemoattractant protein (MCP-1) and reactive
oxygen species (ROS) (Mehta et al., 2020). The severe COVID-19 illness
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represents a devastating inflammatory lung disorder due to cytokines
storm that is associated with multiple organ dysfunction leading to high
mortality (Mehta et al., 2020; Sarzi-Puttini et al., 2020). Taken to-
gether, these studies suggest that auranofin could mitigate SARS-COV-2
infection and associated lung damage due to its anti-viral, anti-in-
flammatory and anti-ROS properties.

We investigated the anti-viral activity of auranofin against SARS-
CoV-2 and its effect on virus-induced inflammation in human cells. We
infected Huh7 cells with SARS-CoV-2 (USA-WA1/2020) at a multi-
plicity of infection (MOI) of 1 for 2 h, followed by the addition of 4 μM
of auranofin. DMSO (0.1%) was used as control (the solvent was used to
prepare drug stock). We used Huh7 cells in this study as these cells are
highly permissive for SARS-COV-2 replication. Cell culture super-
natants and cell lysates were collected at 24 and 48 h after infection.
Virus RNA copies were measured by RT-PCR using two separate primers
specific for the viral N1 region and N2 region (Rothan et al., 2019;

Kumar et al., 2017). As depicted in Fig. 1, treatment of cells with
auranofin resulted in a 70% reduction in the viral RNA in the super-
natants compared to the DMSO at 24 h after infection. At 48 h, there
was an 85% reduction in the viral RNA in the supernatants compared to
the DMSO. Similarly, the levels of intracellular viral RNA decreased by
85% at 24 h and 95% at 48 h in auranofin-treated cells compared to the
DMSO-treated cells. Both set of primers showed nearly identical results.
We next assayed virus titers in cell culture supernatants by plaque
assay. Treatment with auranofin significantly reduced SARS-COV-2
infectivity titers in cell culture supernatants at 48 h after infection
(Fig. 1).

To determine the effective concentration of auranofin that inhibits
50% of viral replication (EC50), we treated SARS-COV-2 infected Huh7
cells with serial dilutions of auranofin. Supernatants and cell lysates
were collected at 48 h after infection and viral RNA was quantified by
RT-PCR. The data were plotted in graphs using non-linear regression

Fig. 1. Auranofin inhibits replication of
SARS-COV-2 in human cells. Huh7 cells were
infected with SARS-COV-2 at a multiplicity of
infection (MOI) of 1 for 2 h and treated with
4 μM of auranofin or with 0.1% DMSO. Cell
pellets and culture supernatants were collected
at 24 and 48 h after infection and viral RNA
levels were measured by RT-PCR using primers
and probe targeting the SARS-COV-2 N1 region
and the SARS-COV-2 N2 region. The cellular
RNA extracted from infected cells was quanti-
fied, normalized and viral RNA levels per ug of
total cellular RNA were calculated. The results
were identical for both set of primers showing
dramatic reduction in viral RNA at both 24 and
48 h. SARS-COV-2 infectivity titers were mea-
sured in cell culture supernatants at 48 h after
infection by plaque assay. Data represent the
mean ± SEM, representing two independent
experiments conducted in duplicate, t-test
p < 0.001.
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model (GraphPad software). At 48 h, there was a dose-dependent re-
duction in viral RNA levels in the auranofin-treated cells. Fig. 2 re-
presents the EC50 values of auranofin treatment against SARS-CoV-2
infected Huh7 cells. Auranofin inhibited virus replication in the in-
fected cells at EC50 of approximately 1.4 μM. It is important to note that
in this study, we used 20 to 100-times more virus dose (MOI of 1) to
infect the cells compared to the recently published reports on anti-viral
activities of chloroquine, hydroxychloroquine and remdesvir against
SARS-COV-2 in vitro (Wang et al., 2020; Liu et al., 2020).

To assess the effect of auranofin on inflammatory response during
SARS-COV-2 infection, we measured the levels of key cytokines in
auranofin and DMSO-treated cells at 24 and 48 h after infection
(Natekar et al., 2019). SARS-COV-2 infection induces a strong up-reg-
ulation of IL-6, IL-1β, TNFα and NF-kB in Huh7 cells (Fig. 3). Treatment
with auranofin dramatically reduced the expression of SARS-COV-2-
induced cytokines in Huh7 cells. SARS-COV-2 infection resulted in a
200-fold increase in the mRNA expression of IL-6 at 48 h after infection
compared to corresponding mock-infected cells. In contrast, there was
only a 2-fold increase in expression of IL-6 in auranofin-treated cells.
TNF-α levels increased by 90-fold in the DMSO-treated cells at 48 h
after infection, but this increase was absent in the auranofin-treated
cells. Similarly, no increase in the expression of IL-1β and NF-kB was
observed in the auranofin-treated cells.

Taken together these results demonstrate that auranofin inhibits
replication of SARS-COV-2 in human cells at low micro molar con-
centration. We also demonstrate that auranofin treatment resulted in
significant reduction in the expression of cytokines induced by virus
infection. These data indicate that auranofin could be a useful drug to
limit SARS-CoV-2 infection and associated lung injury. Further animal
studies are warranted to evaluate the safety and efficacy of auranofin
for the management of SARS-COV-2 associated disease.

1. Methods

1.1. SARS-COV-2 infection and drug treatment

In this study, we used a novel SARS-COV-2 (USA-WA1/2020) iso-
lated from an oropharyngeal swab from a patient in Washington, USA

(BEI NR-52281). Virus strain was amplified once in Vero E6 cells and
had titers of 5 × 106 plaque-forming units (PFU)/mL. Huh7 cells
(human liver cell line) were grown in DMEM (Gibco) supplemented
with 5% heat-inactivated fetal bovine serum. Cells were infected with
SARS-COV-2 or PBS (Mock) at a multiplicity of infection (MOI) of 1 for
2 h (Natekar et al., 2019; Azouz et al., 2019; Kim et al., 2018; Krause
et al., 2019). Cell were washed twice with PBS and media containing
different concentrations of auranofin (0.1–10 μM, Sigma) or DMSO
(0.1%, Sigma) was added to cells. Supernatants and cell lysates were
harvested at 24 and 48 h after infection. The cytotoxicity of auranofin
in Huh7 cells was measured using trypan blue method as described
previously (Varghese and Busselberg, 2014). Briefly, Huh7 cells were
treated with different concentrations of auranofin (0.1–10 μM) for 48 h
and percentage cell numbers were quantified using trypan blue.

1.2. Virus quantification

Virus infectivity titers were measured in cell culture supernatants by
plaque formation assay using Vero cells as we described previously
(Natekar et al., 2019). Virus RNA levels were analyzed in the super-
natant and cell lysates by quantitative reverse transcription-polymerase
chain reaction (qRT-PCR). RNA from cell culture supernatants was
extracted using a Viral RNA Mini Kit (Qiagen) and RNA from cell ly-
sates was extracted using a RNeasy Mini Kit (Qiagen) as described
previously (Natekar et al., 2019). The cellular RNA extracted from in-
fected cells was quantified, normalized and viral RNA levels per ug of
total cellular RNA were calculated. qRT-PCR was used to measure viral
RNA levels using previously published primers and probes specific for
the SARS-COV-2. Forward (5′-GACCCCAAAATC AGCGAAAT-3′), re-
verse (5′-TCTGGTTACTGCCAGTTGAATCTG-3′), probe, (5′-FAM-ACCC
CGCATTACGTTTGGTGGACC-BHQ1-3′) targeting the SARS-COV-2 N1
region and Forward (5′-TTACAAACATTGGCCGCAAA-3′), reverse (
5′-GCGCGACATTCCGAAGAA3′), probe, (5′-FAM-ACAATTTGCCCCCA
GCGCTTCAG-BHQ1-3’) targeting the SARS-COV-2 N2 region (In-
tegrated DNA Technologies). Viral RNA copies were determined after
comparison with a standard curve produced using serial 10-fold dilu-
tions of SARS-COV-2 RNA (Kumar et al., 2017; Kim et al., 2018).

Fig. 2. Dose-dependent reduction in SARS-COV-2
RNA in the auranofin-treated cells: The SARS-
COV-2 infected Huh7 cells were treated with serial
dilutions of auranofin (0.1–10 μM). Viral RNA in the
cell pellets and culture supernatants were quantified
by RT-PCR using primers and probe targeting the
SARS-COV-2 N1. The data were plotted in graphs
using non-linear regression model (GraphPad soft-
ware). Auranofin inhibited virus replication in the
infected cells at EC50 of approximately 1.4 μM. The
cytotoxic concentration of 50% was approximately
5.7 μM. Data represent two independent experiments
conducted in duplicate.

H.A. Rothan, et al. Virology 547 (2020) 7–11

9



1.3. Cytokine analysis

For mRNA analysis of IL-6, IL-1β, TNFα and NF-kB, cDNA was
prepared from RNA isolated from the cell lysates using a iScript™ cDNA
Synthesis Kit (Bio-Rad, Hercules, CA, USA), and qRT-PCR was con-
ducted as described previously (Natekar et al., 2019). The fold change
in infected cells compared to corresponding controls was calculated
after normalizing to the GAPDH gene. The primer sequences used for
qRT-PCR are listed in Table 1.
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