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Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative
pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by
two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of
PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to
activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous sub-
stitutions in each two-component system, we identified the domains that are critical for polymyxin resis-
tance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP
(present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and
DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of
the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of
new strategies to minimize resistance emergence.
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Multidrug-resistant Gram-negative pathogens are a significant threat to human health globally [1]. The WHO
prioritized Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacteriaceae as ‘critical’ pathogens that
urgently require novel antimicrobial treatments [1,2]. Polymyxins (i.e., polymyxin B and colistin) are the last-line
antibiotics used to treat infections caused by these Gram-negative ‘superbugs’ [3]. Polymyxins are a group of cationic
lipopeptides that act via initial electrostatic and hydrophobic interactions with lipid A of lipopolysaccharides (LPS)
in the Gram-negative bacterial outer membrane (OM) [4]. Specifically, the positively charged L-α,γ-diaminobutyric
acid residues of polymyxins bind to the negatively charged phosphate groups of lipid A [5], followed by the
replacement of cationic ions (e.g., Ca2+ and Mg2+) that bridge and stabilize the neighboring LPS molecules in the
outer leaflet of the OM. The fatty acyl tails of polymyxins then insert into the destabilized LPS leaflet, resulting
in OM disorganization and eventually cell death [6]. However, the exact mechanisms by which polymyxins kill
bacteria remain unknown.

Gram-negative bacteria develop polymyxin resistance via multifaceted mechanisms, including lipid A modi-
fications [3,7,8], LPS loss [9], efflux pump [3] and capsule formation [10]. Lipid A modifications with positively
charged moieties reduce the negative charge on the bacterial surface, thereby decreasing the ability of polymyxins
to bind and disorganize the OM [3]. These modifications include the addition of 4-amino-4-deoxy-L-arabinose
(L-Ara4N, mediated by arnBCADTEF-ugd operon), phosphoethanolamine (pEtN, mediated by chromosomally
encoded eptA or plasmid-borne mcr) and/or galactosamine (naxD) [7,11,12]. Additionally, in A. baumannii LPS
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Figure 1. Schematic overview of PmrAB and PhoPQ regulons related to polymyxin resistance.

loss due to nonsynonymous mutations or transposon insertions in lipid A biosynthesis genes lpxACD can lead to
polymyxin resistance [9]. In Klebsiella pneumoniae, polymyxin activity can be attenuated due to interaction with the
anionic capsule polysaccharides [10].

Two major two-component systems (TCSs), PmrAB and PhoPQ, play crucial roles in regulating the expression
of genes for lipid A modifications in Gram-negative bacteria (Figure 1) [13]. A prototypical TCS comprises a
histidine kinase (HK) and a cognate response regulator (RR), and responds to environmental stimuli generally
through five steps [14,15]: detection of environmental stimuli by HK; autophosphorylation of HK; phosphorylation
of RR catalyzed by HK; altered transcription of RR-regulated genes; dephosphorylation of RR. Previous studies
have identified a large number of indels and nonsynonymous substitutions in PmrAB or PhoPQ resulting in the
constitutive expression of lipid A modification genes and, consequently, polymyxin resistance [16]. However, not all
nonsynonymous substitutions could alter bacterial susceptibility to polymyxins. Here, we conducted comprehensive
bioinformatics analyses to infer the domain preference of resistance-conferring mutations in PmrAB and PhoPQ.
Our results provide important mechanistic information for better understanding polymyxin resistance.

PmrAB
PmrAB is one of the major regulators of lipid A modifications in Escherichia coli, Salmonella enterica, K. pneumoniae,
Yersinia pestis, Citrobacter rodentium, P. aeruginosa and A. baumannii [17]. In general, external signals (e.g., high Fe3+,
high Al3+ and low pH) trigger the autophosphorylation of PmrB at a conserved histidine residue (e.g., His152
in E. coli MG1655) in its cytoplasmic domain, followed by the transfer of the phosphoryl group to a conserved
aspartate residue of PmrA (e.g., Asp51 in E. coli MG1655). The active form, activated PmrA (PmrA-P), then binds
to the promoter regions of the lipid A modification genes (e.g., arnBCADTEF-ugd, eptA and naxD), and induce
their transcription [18,19].

PmrB
Sequence conservation of PmrB across different bacterial species

The available tertiary structures of PmrAB were collected from the Protein Data Bank (Table 1) [20]. Due to a lack
of PmrB structure, we used Simple Modular Architecture Research Tool as a structural analysis surrogate to identify
the four major domains of PmrB in E. coli MG1655 (Figure 2) [21]: a transmembrane sensor domain (15–88 amino
acids [aa]), an HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase)
linker domain (89–141 aa), a DHp (dimerization and histidine phosphotransfer) domain (142–202 aa) and a
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Table 1. Currently available structures of PhoPQ and PmrAB.
Protein Domain Strain Method Resolution (Å) PDB ID Ref.

PhoQ Sensor domain E. coli K12 X-ray diffraction 2.5 3BQ8 [22]

Sensor domain S. typhimurium LT2 X-ray diffraction 2.4 1YAX [23]

Periplasmic domain S. typhimurium LT2 X-ray diffraction 1.9 4UEY [24]

Catalytic domain S. typhimurium LT2 X-ray diffraction 1.9 3CGZ [25]

Catalytic domain E. coli K12 X-ray diffraction 1.6 1ID0 [26]

PhoP Receiver domain E. coli K12 X-ray diffraction 2.54 2PKX [27]

PmrB No available protein
structure

PmrA Full length with DNA
complex

K. pneumoniae JM45 X-ray diffraction 3.2 4S04 [28]

Receiver domain K. pneumoniae† X-ray diffraction 1.7 3W9S [29]

†Strain name was not provided in [29].
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Figure 2. Multiple sequence alignment of PmrB across seven Gram-negative bacteria. The conservation of amino acid residues is
indicated by the darkness of the dark blue color. Mutations conferring polymyxin resistance are shown with red boxes and mutations that
do not cause polymyxin resistance are shown with yellow boxes.

CA (catalytic and ATP-binding) domain (249–357 aa). The DHp and CA domains are connected by a short,
unstructured linker (203–248 aa).

Multiple sequence alignment (MSA) of PmrB sequences from seven key Gram-negative bacteria (one represen-
tative strain for each species; Figure 2) showed an identity of 44.4 ± 21.5% using Clustal Omega [30] and SIAS
(http://bio.med.ucm.es/Tools/sias.html). Notably, 26 residues (143-ERLFTADVAHELRTPLAGVRLHLELL-168
in E. coli MG1655) in the vicinity of the histidine acceptor site (His152 in E. coli MG1655) are highly conserved
across the seven bacterial species, indicating its critical role in kinase function. The transmembrane sensor domain
is relatively less conserved (Figure 2). PmrB from all seven bacterial species share a similar secondary structural
element of two transmembrane helices. However, PmrB of P. aeruginosa and A. baumannii (both belonging to pseu-
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domonadales) contain longer periplasmic regions (185 and 174 aa in P. aeruginosa and A. baumannii, respectively)
between the two transmembrane helices compared with other bacteria (e.g., 88 aa in E. coli).

PmrB mutations

It has been reported that at least 70 nonsynonymous substitutions in PmrB are related to the acquisition of
polymyxin resistance (Table 2 & Figure 2); 50 out of 70 (71%) occurred in the HAMP linker and DHp domains.
The HAMP linker domain transduces signals from the transmembrane domain to the CA domain by direct
interactions; thus, specific conformational changes (e.g., rotation and helical tilt movements) in the HAMP linker
domain can disturb signal transduction, promoting the phosphorylation of the kinase [31–34]. Mutations in the
HAMP linker can result in signal transduction through the loss of domain symmetry, subsequently promoting
activity of PmrAB and expression of lipid A modification genes, thereby conferring polymyxin resistance [35]. For
example, a clinical isolate of K. pneumoniae with an increased colistin MIC of 64 mg/l harbored a P95L mutation
(Table 2) in the HAMP linker domain of PmrB [36]. The DHp domain constitutes a large portion of the HK dimer
interface and has multiple functions including autokinase, phosphotransferase and phosphatase activities [13]. The
DHp domain of PmrB also harbors a binding site to interact with the cognate RR PmrA. Mutations in the PmrB
DHp domain, therefore, can affect these activities via conformational changes. Abraham et al. [37] reported that
an M292T substitution in the PmrB DHp domain resulted in a 16-fold increase in polymyxin B MIC (from 0.5
to 8 mg/l) in P. aeruginosa. The transmembrane domain senses specific physiological signals (e.g., high Fe3+ and
high Al3+) and subsequently enhances the phosphorylation of PmrB via conformational changes. Mutations in the
transmembrane domain can cause these conformational changes even in the absence of these environmental signals,
thereby constitutively promoting the phosphorylation of PmrB [38]. For example, an L10P mutation in PmrB of
an E. coli clinical isolate resulted in an 83-fold upregulation of the lipid A modification gene arnT compared
with its wild type, irrespective of polymyxin treatment [39]. Additionally, mutations in the transmembrane and CA
domains can also influence activity of PmrB. Additionally, five PmrB mutations conferring polymyxin resistance
were reported in the CA domain in E. coli, S. enterica, P. aeruginosa and A. baumannii (Table 2). These mutations
are assumed to enhance the capture of a phosphate group from ATP [13], thus promoting the autophosphorylation
of PmrB and conferring polymyxin resistance.

It should be noted that mutations in PmrB do not always cause resistance to polymyxins (Table 3). For example, an
R231L substitution in DHp domain of PmrB was identified in a susceptible A. baumannii strain with a polymyxin
B MIC of 2 mg/l (the MIC of the wild type is 0.5 mg/l) [63], suggesting that PmrB mutations do not necessarily
lead to polymyxin resistance (MIC ≥2 mg/l as defined by the EUCAST guideline [70]). The lack of structural
information of PmrB poses a significant challenge for mechanistic interpretations of polymyxin resistance. Hence,
comprehensive characterization of conformational differences between the mutant and wild-type PmrB is essential
for better understanding the role of PmrB in polymyxin resistance.

PmrA
Sequence conservation of PmrA across different bacterial species

PmrA has two major domains: an N-terminal receiver domain and a C-terminal DNA-binding domain [28]. The
receiver domain is responsible for sensing the activation of PmrB and promoting the DNA-binding domain residues
to recognize the DNA-binding site, thereby bind to and activate the transcription of the targeted genes [29]. Our
MSA results demonstrated that PmrA sequences are generally conserved with a pairwise identity of 56.6 ± 18.9%
across seven bacteria. The aspartate residue of PmrA (e.g., Asp51 in E. coli MG1655) was particularly well conserved
across the seven species examined.

PmrA mutations

Hitherto, ten nonsynonymous mutations that confer resistance to polymyxins have been identified in PmrA of
S. enterica, K. pneumoniae and A. baumannii (Table 2 & Figure 3); all occurred in the receiver domain. The
conformational changes caused by mutations in the receiver domain likely augment the phosphorylation of PmrA
and contribute to the enhanced DNA-binding capacity and upregulation of the targeted genes.

Stimuli of PmrAB
Environmental stimuli affecting PmrAB have mostly been studied in Salmonella. In S. enterica, PmrB senses high
concentrations of Fe3+ (e.g., 100 μM) and Al3+ (e.g., 100 μM) [73] or low pH (e.g., pH 5.8) [74]. The ferric ions
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Table 2. Nonsynonymous substitutions of PhoPQ and PmrAB in polymyxin-resistant bacteria.
Species MIC (mg/l) Nonsynonymous substitution Ref.

PmrB PmrA PhoQ PhoP

Escherichia coli 4 C84Y [40]

8 D149Y

4 L10P [39]

4 V161G [41]

�2 T156K [42]

�2 A159V

�64 P94L [43]

64 V125E

64 A159V

Salmonella enterica 3.5 L14S [44]

3.5 L14F

3.5 L22P

2.5 P94Q

4 E121A

2.3 S124P

2.5 T147P

3.5 R155P

4.4 T156P

3.5 T156M

4 V161M

3 V161G

3 E166K

2.8 M186I

2.7 S305R

2.7 G15R

3 G53E

3 G53R

4 R81C

3 R81H

Klebsiella pneumoniae �128 T157P [45]

�2 S85R [46]

�2 T140P

128 S85R [47]

�256 H340R

64 P95L [36]

64 D150Y

64 T157P

3–6 T157P [48]

4–32 R256G [49]

32 T157P [50]

128 P95L [51]

64 G53C [36]

16 A21S [52]

32 L26P [53]

�2 L96P [46]

�2 L348Q

64 G385S

128 S174N [45]

64 T244N [36]
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Table 2. Nonsynonymous substitutions of PhoPQ and PmrAB in polymyxin-resistant bacteria (cont.).
Species MIC (mg/l) Nonsynonymous substitution Ref.

PmrB PmrA PhoQ PhoP

�64 L348Q

4 L173P [50]

64 T244N

16 S260N

�2 T281M [54]

�2 G385C

�2 L26Q [46]

Pseudomonas aeruginosa 32 L243Q [55]

32 A248V

4 V15I [56]

�64 L167P

�64 V15I [43]

64 A67T

�64 L167P

16 M292T [37]

�512 G188D [57]

�512 A248T

�512 S257N

8 H223R [58]

8 V260G

128 N104I [45]

128 V184G

128 A207R

128 R214H

8 N188Y [59]

8 N188H

Acinetobacter baumannii 128 P233S [60]

8 P233S [61]

64 S17R [62]

64 T235I

64 A226V [63]

8 T235I

16 N256I

4 G315D

�128 P233T [64]

64 A227V

16 L87F [65]

4 M145K

32 A227V

16 P233S

16 N353Y

32 P170L [66]

128 P233S

�64 H263R [43]

≥4 S17R [67]

16 T232I

≥4 R263L

6 A227V [68]
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Table 2. Nonsynonymous substitutions of PhoPQ and PmrAB in polymyxin-resistant bacteria (cont.).
Species MIC (mg/l) Nonsynonymous substitution Ref.

PmrB PmrA PhoQ PhoP

16 P233S

64 M12R [43]

�2 E8D [69]

4 M12I [63]

4 E8D [67]

Table 3. Nonsynonymous substitutions of PhoPQ and PmrAB in polymyxin-susceptible bacteria.
Species MIC (mg/l) Mutation in Ref.

PmrB PhoQ PhoP

Salmonella enterica 0.5 S29R [44]

0.25 T92A

2 N130Y

2 V161L

2 G206W

2 G206R

Klebsiella pneumoniae 1 R256G [53]

1 D150G

1 V258F

1 D434N [71]

1 V3F [53]

1 S86L

Pseudomonas aeruginosa �2 E72G [72]

Acinetobacterbaumannii 2 R231L [63]
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Figure 3. Multiple sequence alignment of PmrA across seven Gram-negative bacteria. The conservation of amino acid residues is
indicated by the darkness of the dark blue color. Mutations conferring polymyxin resistance are shown with red boxes.

directly bind to the periplasmic domain of PmrB which harbors two copies of the ExxE motif [73,75]. The ExxE
motif is also necessary for the response to high concentrations of Al3+ [73], although the detailed mechanisms that
underpin aluminum signaling are unknown [76]. The direct sensing of environmental mild acid (i.e., pH 5.8) by
PmrB in Salmonella requires the single histidine residue and the four glutamate residues (i.e., H35, E36, E39, E61
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Figure 4. Multiple sequence alignment of PhoQ across six Gram-negative bacteria. The conservation of amino acid residues is indicated
by the darkness of the dark blue color. Mutations conferring polymyxin resistance are shown with red boxes and mutations that do not
cause polymyxin resistance are shown with yellow boxes.

and E64) in the periplasmic domain [77]. PmrA-regulated genes eptA and arnBCADTEF-ugd were activated when
the medium pH fell from 7.7 to 5.8 [78]. Wild-type S. enterica 14028s grown at pH 5.8 was >100,000-fold more
resistant to polymyxin B when compared with those grown at pH 7.7 [77]. Besides the direct regulation by the
aforementioned signals, PmrAB can also be indirectly activated by PhoPQ (see section PhoPQ).

PmrA regulon-associated lipid A modifications
The known PmrA regulated genes include arnBCADTEF-ugd, eptA, eptC and naxD [79]. arnBCADTEF-ugd encode
a series of enzymes catalyzing the synthesis of L-Ara4N from UDP-N-acetylglucosamine and transfer of L-Ara4N
to lipid A. Specifically, arnT encodes a glycosyltransferase catalyzing the transfer of L-Ara4N from an undecaprenyl
phosphate-α-L-Ara4N donor to a phosphate group of lipid A [80]. eptA and eptC encode pEtN transferases
catalyzing the addition of pEtN to the phosphate groups of lipid A and the heptose-I phosphoryl group of LPS
inner core oligosaccharide, respectively [81]. In A. baumannii naxD encodes a deacetylase that deacetylates N-
acetylgalactosamine to galactosamine, a step required for the subsequent addition of galactosamine to lipid A [7].
Overexpression of these genes may confer polymyxin resistance in Gram-negative bacteria [82].

PhoPQ
PhoPQ plays a critical role in virulence and LPS remodeling in Gram-negative bacteria by regulating over 200
genes [83–85]. Consisting of an HK PhoQ and a cognate RR PhoP, PhoPQ senses the presence of specific en-
vironmental stimuli (e.g., Mg2+, Ca2+ and cationic antimicrobial peptides) and activates the transcription of a
set of PhoP-regulated genes (e.g., pagL and pmrD) [86]. Similar to PmrAB, PhoQ contains four major domains:
a transmembrane sensor domain, an HAMP domain, a DHp domain and a catalytic domain [87,88]; PhoP has
an N-terminal receiver domain and a C-terminal effector domain (i.e., DNA-binding domain) [27]. Interestingly,
phoPQ is absent in A. baumannii genomes [89], indicating a unique regulation of polymyxin resistance in this prob-
lematic ‘superbug’. Compared with PmrAB (80 mutations reported), far fewer mutations that confer resistance to
polymyxins have been reported for PhoPQ (22 mutations reported).

To date, 19 PhoQ single aa substitutions (13 in K. pneumoniae and six in P. aeruginosa) that increase resistance
to polymyxins have been reported (Table 2). Generally, these mutations are distributed in all four domains without
any obvious preference (Figure 4). Our MSA result revealed that PhoQ proteins across the six selected species share
a mean pairwise identity of 61.3 ± 21.3%. PhoQ in Y. pestis and P. aeruginosa had the lowest sequence similarities
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compared with those in E. coli, S. enterica, K. pneumoniae and C. rodentium. Five papers have reported on truncated
structures of PhoQ domains from E. coli or S. enterica solved by X-ray diffraction (resolution from 1.6 to 3.2Å),
although no full-length structure has yet been reported (Table 1).

To date, only three PhoP mutations that confer polymyxin resistance have been reported in Gram-negative
bacteria. These are L26Q (receiver domain) in K. pneumoniae [46] and N188Y/N188H (DNA-binding domain) in
P. aeruginosa [59].

Stimuli of PhoPQ
In E. coli and S. enterica, PhoQ can sense the presence of low concentrations (e.g., 10 μM) of divalent cations
(e.g., Mg2+ and Ca2+), cationic antimicrobial peptides and low pH, subsequently activating the transcription of
PhoPQ [90]. Environmental Mg2+ and Ca2+ are detected by the periplasmic domain of PhoQ via direct binding [91].
Véscovi et al. [92] demonstrated in S. enterica serovar Typhimurium that an amino acid substitution (T48I) in the
periplasmic domain of the PhoQ reduced its affinity for millimolar concentrations of Ca2+ and attenuated virulence.
PhoPQ is also activated by cationic antimicrobial peptides including polymyxins, indolicidin and LL-37 [93,94].
Exposure of S. enterica to subinhibitory concentrations of cationic antimicrobial peptides resulted in the activation
of PhoPQ-regulated gene expression [95]. Low pH (pH 5.5) also promotes PhoPQ expression via the periplasmic
domain of PhoQ [96]. It is of interest that both PhoPQ and PmrAB respond to acidic pH and affect the structure of
the bacterial OM [76]. The expression of PhoPQ can also be promoted by macrophage phagolysosomes and other
host tissues and cell vacuoles [90], indicating the complex interplay between host immunity and bacterial defense
systems.

PhoP regulon-associated lipid A modifications
In E. coli, PhoPQ regulates the expression of hundreds of genes directly (e.g., pagP and pagL) and indirectly
(e.g. pmrAB) [97]. PagP is an OM palmitoyltransferase that catalyzes palmitoylation at the hydroxyl group of the
R-3-hydroxymyristate chain at position two of lipid A [98]. Mutants with pagP deletion display increased membrane
permeability, which is directly activated by PhoPQ, and susceptibility to an antimicrobial peptide C18G [99]. The
3-O-deacylase PagL in the OM mediates deacylation at the C3 of lipid A in Salmonella and Pseudomonas, which
increases the hydrophobicity of lipid A [100,101]. Han et al. [101] showed that even highly polymyxin-resistant P.
aeruginosa (e.g., MIC = 16 mg/l) responded to polymyxin treatment by PagL-mediated lipid A deacylation. In this
case, exposure to polymyxin B affected OM packing and hydrophobicity, decreasing polymyxin penetration.

Modulators & regulators of PmrAB & PhoPQ
Apart from external signals, the expression of PhoPQ or PmrAB can be influenced by some modulators (e.g., PmrD)
or regulators (e.g., MgrB). PmrD is a small connector protein (85 aa in S. enterica) and modulates the interaction
between PmrAB and PhoPQ (Figure 1) [102]. PhoP activates the expression of pmrD, while PmrD in turn alters the
activity of PmrA-P by inhibiting the dephosphorylation of PmrA and prolonging its phosphorylation state [103].
PmrA-P also represses the transcription of pmrD by binding to the pmrD promoter [104]. When challenged by
polymyxin B, a pmrD-inactivated mutant of E. coli W3110 had dramatically reduced survival compared with the
wild-type strain [103]. This connector loop PmrPQ–PmrD–PmrAB has also been reported in S. enterica and K.
pneumoniae, but not in P. aeruginosa, A. baumannii or Y. pestis [104,105].

MgrB is a small transmembrane repressor (47 aa in K. pneumoniae) of PhoPQ in E. coli, S. enterica and K.
pneumoniae [16]. MgrB spans the inner membrane and represses the expression of PhoPQ by directly binding to the
periplasmic domain of PhoQ [106]. Polymyxin resistance due to the inactivation of mgrB (via IS element insertion,
indels and nonsynonymous mutations) has commonly been reported in clinical isolates of K. pneumoniae [51,107–110].

Other TCSs in Gram-negative bacteria
A number of other TCSs associated with polymyxin resistance in Gram-negative bacteria have been reported
including ParRS [111], CprRS [112], ColRS [113], VprAB [114] and CrrAB [71]. Collectively, the large number of TCSs
involved in polymyxin resistance highlights the complexity of the regulatory networks in Gram-negative bacteria
involved in such resistance. ParRS, ColRS and CprRS have been reported to regulate polymyxin resistance in P.
aeruginosa [111–113]. ParRS is a newly identified TCS and is required for the activation of the arnBCADTEF operon
in P. aeruginosa [111]. Mutations in either parR or parS can reduce adaptive resistance to polymyxins, indicating that
parRS are required for polymyxin resistance in P. aeruginosa [111]. cprRS and colRS mutations may also contribute
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to high-level polymyxin resistance in the clinic via interactions with PhoPQ [112]. Deletion of the cprRS genes,
individually or in tandem, abrogated polymyxin resistance of a phoQ deletion mutant, as did individual or tandem
deletion of colRS [112]. Notably, in P. aeruginosa PA14 ColRS specifically induces eptA expression and lipid A
modification with pEtN in the presence of extracellular zinc ions (2 mM ZnSO4) [113]. VprAB in Vibrio cholerae has
been shown to induce lipid A modification involved in polymyxin resistance by directly regulating the expression
of the alm operon, the latter encoding proteins essential for glycine modification of lipid A [114]. Two recent studies
revealed that CrrAB is associated with polymyxin resistance in K. pneumoniae [71,115]. It is hypothesized that CrrAB
induces the expression of a glycosyltransferase-like protein that transfers a sugar to lipid A phosphate [71] and CrrB
mutations activate PmrAB through CrrC, inducing elevated expression of arnBCADTEF-ugd, eptA and leading to
polymyxin resistance [115].

Conclusion & future perspective
Over the past decade, use of the polymyxins (polymyxin B and colistin) for the treatment of otherwise untreatable
infections caused by Gram-negative ‘superbugs’ has increased dramatically. At the same time, reports of resistance
to polymyxins have also increased, threatening the clinical utility of this important class of antibiotics. The
mechanisms underpinning polymyxin resistance are multifaceted and controlled by multiple TCSs. This review
discussed the regulatory functions of two key TCSs, PmrAB and PhoPQ, that contribute to polymyxin resistance
in Gram-negative bacteria. Of particular importance, polymyxin resistance due to nonsynonymous substitutions in
PmrAB and PhoPQ was reviewed with several hotspots in different domains identified by MSA. The findings are
of potential significance in the prediction of polymyxin resistance in Gram-negative pathogens. Further elucidation
of the protein structures of these TCSs will assist with our understanding of their roles in LPS modification and
bacterial pathogenesis. Mechanistic investigations on TCS-mediated polymyxin resistance are also warranted in
order to optimize polymyxin use in the clinic and minimize the emergence of resistance.

Executive summary

• Polymyxins are last-line antibiotics against Gram-negative bacteria and resistance is increasingly reported
worldwide.

• Polymyxin resistance is mediated by multifaceted mechanisms including lipid A modifications.
• Lipid A modifications are regulated by two-component systems such as PmrAB and PhoPQ, anonymous mutations

that confer resistance to polymyxins.
• Seventy nonsynonymous substitutions in PmrB reported to date are related to polymyxin resistance, and 50 of

them are in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and
phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains.

• PmrB senses external high concentrations of Fe3+ and Al3+, and low pH; while PmrA regulates the expression of
arnBCADTEF-ugd, eptA, eptC and naxD.

• PhoQ senses external divalent cations (e.g., Mg2+ and Ca2+), cationic antimicrobial peptides and low pH, and
PhoP regulates the expression of pagP and pagL.

• The activity of PhoPQ or PmrAB can be influenced by some modulators (e.g., PmrD) or regulators (e.g., MgrB).
• Several other two-component systems ParRS, CprRS, ColRS, VprAB and CrrAB are associated with polymyxin

resistance.
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