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Abstract

Human vascular microphysiological systems (MPS) represent promising three-dimensional in 
vitro models of normal and diseased vascular tissue. These systems build upon advances in tissue 

engineering, microfluidics, and stem cell differentiation and replicate key functional units of 

organs and tissues. Vascular models have been developed for the microvasculature as well as 

medium-size arterioles. Key functions of the vascular system have been reproduced and stem cells 

offer the potential to model genetic diseases and population variation in genes that may increase 

individual risk for cardiovascular disease. Such systems can be used to evaluate new therapeutics 

options.
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Introduction

Complications from cardiovascular disease (CVD) represent the leading cause of death in 

the United States (1) and other developed countries. The underlying cause for most CVD is 

atherosclerosis, in which cholesterol-laden plaques on the inner wall of the arterial lumen 

cause loss of vascular elasticity, reduction in blood flow, and narrowing of the arterial 

lumen. Risk factors for CVD include age, hypertension, type 2 diabetes, obesity, 

hypercholesterolemia, and smoking that induce oxidative stress resulting in modified forms 

of low-density lipoprotein (LDL), inflammation, and smooth muscle cell proliferation (2–5). 

The formation of plaque and oxidation of LDL causes endothelial cell activation and later 

leads to the recruitment of monocytes. In the presence of oxidative and pro-inflammatory 

stimuli, monocytes differentiate to macrophages and promote the formation of foam cells. 

The plaque may eventually rupture, which results in thrombus formation in the blood vessel, 

causing ischemia, heart attack, or stroke (4). Other diseases that lead to vascular damage 

including thrombotic disorders (deep vein thrombosis and disseminated intravascular 

coagulation), Marfan syndrome, aortic aneurysm, heart valve disease, congenital defects, 
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and Progeria. Human immune system and inflammatory pathway activation play key roles in 

the initiation of atherosclerosis (6).

Mice are commonly used to study the genetic factors in vascular diseases (7). While animal 

models have provided crucial information about the initiation and progression of 

atherosclerosis, they still possess many shortcomings and cannot produce many of the 

features of the pathology found in humans. Wild type mice use high-density lipoprotein to 

transport cholesterol to tissues while humans uses LDL (8). The size of arteries in mice is 

much smaller compared to humans and the heart rate is much higher (9), leading to very 

different hemodynamic conditions. The many interacting polymorphisms identified in 

genome-wide association studies cannot be replicated in mice. Given these limitations, the 

response of treatments in mice may differ from that in humans (10, 11).

To overcome these pitfalls with animal models, human microphysiological systems (MPS) 

have been introduced to improve the accuracy of experimental predictions, minimize 

experimental time and cost, and reduce patient risk. Experiments that use MPS are highly 

reproducible. MPS use advanced fluidic fabrication methods to create three-dimensional 

models of the functional unit of tissue. These systems can be used for functional assays as 

well as genomic, metabolomic, and histological analysis. The major advantage of MPS is 

that they can be modified to test single or combination of hypotheses, which allows 

identification of the key factors in different model systems.

Vascular MPS use microfluidic devices with three-dimensional culture methods to 

recapitulate many model systems (12) (Figure 1). Furthermore, one or more MPS can be 

combined together to study systematic effects by the key contributing factors. To study the 

initiation and progression of vascular disease, tissue engineered blood vessels (TEBVs) have 

been designed to model the many vascular diseases, including atherosclerosis, progeria, and 

thrombotic disorders (13–17). The versatility of TEBVs allows the use of these models 

extended to vasculitis in rheumatoid arthritis and lupus or the role of oxidative stress (18). 

Given the different features and fabrication strategies of microvascular systems and TEBVs, 

each will be described separately.

In this perspective we examine the design criteria to build vascular MPS at the level of 

microvascular networks and as mimics of arterioles and arteries. Next, we address the 

various cell sources and the properties needed for adequate differentiation. Disease models 

are an important application area of MPS and may be used to assess the safety and efficacy 

of novel therapeutics.

Design Criteria and Fabrication of Arteriole- and Arterial-Scale MPS

The ultimate goal in designing vascular MPS is to reproduce key vascular functions in vivo. 

The minimum requirements are to allow blood flow under physiological pressures (10– 20 

kPa) and shear stress (0–2.5 Pa) without inducing thrombosis or inflammation (19). Given 

that blood flow is generated by pressure induced by the heart, the large vessel MPS or 

TEBVs must process two mechanical properties, resistance to rupture (measured by burst 

pressure) and resistance to plastic deformation (measured by compliance) (19–21). The burst 

pressure of the human saphenous vein and artery are around 2000 and 3000 mm Hg, 
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respectively (22–24). The compliance of human vessels ranges between 1% and 6% (24–

28). Hence, an ideal TEBV should possess mechanical properties similar to the natural 

vessels.

Other than the mechanical properties of vascular MPS, biological properties also contribute 

to vessel failure. Protein adsorption on the surface of vascular MPS could subsequently lead 

to blood clotting. Hence, the non-thrombogenic and non-immunogenic behavior is necessary 

for designing vascular MPS, usually by incorporating a layer of vascular endothelium. The 

barrier function of vascular endothelium varies considerably from impermeable in the brain 

microvascular network to relatively permeable in the kidneys and liver (29, 30).

Current approaches to fabricate TEBVs that are more or less similar to natural vessels can be 

divided into two major categories, scaffold based or self-assembly. With scaffold-based 

method, either synthetic polymer or nature extracellular matrix (ECM) could be utilized as 

scaffold for in-vitro cell seeding. The essential requirements for synthetic polymers are 

biocompatibility and biodegradability. Polyglycolic acid (PGA) and Poly (lactide-co-

glycolide) acid (PLGA) are two of the most widely studies biodegradable polymers used in 

TEBVs. After a period of growth and maturation, the developing TEBVs is placed in a 

bioreactor with pulsatile flow and burst pressures above 2000 mm Hg can be achieved after 

8–10 weeks (31). Animal studies showed great patency results of these vessels.

Natural biological hydrogels and ECM proteins such as collagen, elastin, fibrin, gelatin, and 

modified hyaluronic acid (32–34) have been used as scaffold materials. These scaffolds have 

improved biocompatibility and provide adhesion sites for binding of cell surface integrins or 

cleavage sites to matrix metalloproteinases (MMPs), which facilitate cell attachment, cell 

migration and cell proliferation (35). While fibrin scaffolds also produce high burst 

pressures (36, 37), collagen scaffold TEVBs typically have lower mechanical properties (20, 

21, 38, 39).

Although the use of synthetic polymers as scaffold is promising, the long manufacturing 

time for these vessels poses a great challenge for the use as a disease model system in vitro. 

One way to increase the burst pressure and rapidly fabricate perfusable vessels is by plastic 

compression of collagen gels embedded with smooth muscle cells, which increase the 

collagen density and improves the TEBV (14, 15, 40). Plastic compression generates TEBVs 

with burst pressures around 1600 mm Hg in a few hours (14). After a one to three week 

maturation period, these vessels are well-suited for modeling diseases in vitro (15).

Another source of natural scaffold is to decellularize TEBVs by depleting tissue and cells 

from allogenic or xenogeneic sources. Decellularized scaffolds preserved the natural 

architecture of the ECM of the vessels (34, 35). Complete depletion of cells is required to 

avoid the host immune response. To overcome this challenge, two strategies have been used, 

either by advancing decellularization technique or inactivating immunogenic biomolecules 

(34).

Self-assembly is another approach to manufacture TEBVs. Self-assembly utilizes the ECM 

produced by seeded cells as the vessel structural supports. With this method, a confluent 

layer form by cells in vitro is rolled into a tubular structures to mimic the vessel (22, 24). 
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These vessels achieve a burst pressure over 2000 mm Hg. The major pitfall for TEBVs 

generated by this method is the long manufacturing time of several months, which makes it 

difficult to use as disease modeling purpose. Acellular grafts represent one approach to 

overcome this challenge.

Extrusion of a Matrigel solution containing endothelial cells and smooth muscle cells 

enabled self-organized of an arteriole-like structure, termed vesseloids (41). The vesseloids 

exhibit key vessel properties including a restrictive endothelial barrier and smooth muscle 

cell contractility. The vessels respond to inflammatory stimuli causing the endothelial cells 

to express the leukocyte adhesion molecules VCAM-1 and ICAM-1. The benefit of this 

novel approach is that vessels can be rapidly produced without a thick layer of extra cellular 

matrix, in contrast to most methods to produce tissue-engineered blood vessels.

Design Criteria and Fabrication of Microvascular Models

In addition to models for diseases of large and medium-size arteries, microvascular systems 

(MVS) have been developed for drug screening, discovery, delivery, and modeling diseases 

in microvasculature. MVS are often combined with engineered solid organs to allow long-

term maintenance (42). For example, human blood-brain barrier (BBB) tissue chips have 

been designed to model the BBB dysfunctions in neurological disorders (43) and 

Alzheimer’s disease (44). Animal models do not recapitulate the whole disease state. The 

use of in vitro MVS with human cells or stem cells allows scientists to model the disease 

progression and drug response, which would result in better response prediction and reduce 

the use of live animals for disease modeling and drug testing (45, 46).

The structure of human micro-scale vessels (arterioles, capillaries and venules) are quite 

different from large vessels (arteries and veins). While arterioles and venules contain all 

three layers, the media and externa layers are very thin compared to arteries and veins, 

respectively. The capillaries consist of a layer of endothelial cells that function in tissue-

vessel material exchanges. Pericytes are attached to the endothelium, regulating vessel 

dimensions and permeability.

Given the structural differences between large and medium size arteries and capillaries, 

strategies to manufacture MVS are different from those of TEBVs. Current approaches to 

manufacture MVS are either Top-Down or Bottom-Up (34, 47, 48). With the Top-Down 

approach, the pattern or geometry of the vascular systems are designed and then 

manufactured by 3D-printing (49), mold degradation (50, 51) or multilayer chip (52). While 

the pre-designed Top-Down approach could provide a controllable vascular structure and 

allow perfusions, the major disadvantage is that the resolution of these methods does not yet 

reach the level of capillaries.

In the Bottom-Up approach endothelial cells, pericytes or pericyte-like cells (e.g. fibroblasts 

or mesenchymal stem cells) are mixed together with a biological hydrogel and local 

chemical or physical stimuli from the various cell types induce angiogenesis and 

vasculogenesis. With these approaches, endothelial cells self-organized to form an 

interconnected network of microvessels (53–56). Growth factors such as VEGF and 

fibroblast growth factors are also supplemented to promote angiogenesis (57). Pericyte-like 
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cells are needed to stabilize the microvasculature, otherwise the vessels breakdown after 24–

48 hours. These methods allow the formation of perfusable capillary-size networks (42, 58) 

but the structures of these networks are hard to control. Another challenge for these methods 

is to form perfusable networks.

Cell source

Cells are one of the major components in vascular tissue engineering. Primary autologous 

cells including vascular smooth muscle cells, endothelial cells and fibroblasts, harvested 

from the patients, showed great successes for manufacturing vascular MPS. However, there 

are some challenges to use these cells as source for TEBVs. First, these cells required 

invasive procedure to harvest. Second, primary cells lost the ability to proliferate after 

prolonged expansion. Third, these cells are not available or not usable in some of the 

patients. While primary endothelial cells, which can be isolated from blood-derived 

endothelial colony forming cells, and fibroblasts are relatively feasible to obtain, obtaining 

functional and proliferative primary SMCs retains a major challenge given the limited 

accessibility of donors’ tissue, limited proliferation rate and donor-to-donor variation (59). 

Human embryonic stem cells (hESCs), mesenchymal stem cells (hMSCs) and induced 

pluripotent stem cells (iPSCs) show great potentials as cell sources in vascular tissue 

engineering. While the use of hESCs raises ethical issues, hMSCs and iPSCs seem well-

suited for clinical translation and regenerative medicine. hMSCs can be easily obtained from 

various tissues (60) and their multipotent nature allows them to differentiate into many cell 

types, including smooth muscle cells (61) and endothelial cells (62). Since the discovery of 

iPSCs in 2006 by Takahashi and Yamanaka (63), iPSCs have been widely used (64) and 

showed great potential to develop vascular MPS. iPSCs could be transformed from various 

adult cells including fibroblasts or blood cells. The pluripotency gives iPSCs the potential to 

differentiate into cells from all three germ layers (mesoderm, endoderm and ectoderm) (63), 

which include SMCs (65) and ECs (66). The main pitfalls with iPSCs cells are their 

tumorigenic potential and immature differentiation. Progress has been made to reduce the 

risk of tumorigenicity by using non-integrating methods (67–70). Current prevailing non-

viral and non-integration approaches include adenoviral vectors (68), Sendai vectors (71), 

episomal vectors (72), minicircle vectors (73), synthetic mRNAs (74) or small molecule 

cocktails (75).

A challenge with iPS-derived smooth muscle cells has been limited differentiation which 

reduced mechanical strength of the TEBVs (76, 77). Optimizing the differentiation protocol 

(65, 78) or applying cyclical mechanical stimulation (65)promotes SMC differentiation and 

increases the TEBV mechanical strength. Self-assembled microvascular networks have been 

developed using human brain microvascular endothelial cells and pericytes have been 

derived from iPSCs and exhibit the low permeability and high levels of tight junction 

proteins found in vivo (79).

Transdifferentiation of human adult cells to ECs and SMCs provides another cell source for 

vascular MPS. Transdifferentiation eliminates the intermediate step of generating iPSC cells 

and reduce the risk of tumorigenicity and can be achieved by small molecules (80, 81) 

targeting certain signaling pathways, activation and overexpression of key genes (82, 83) or 

Zhang et al. Page 5

Cell Gene Ther Insights. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CRISPR/Cas9-based transcriptional activator systems that force expression of key 

endogenous transcription factors (84). The introduction of cDNAs or CRISPR/Cas9 systems 

for gene editing can be achieved by either viral systems or non-viral/non-integration systems 

(85). In the context of vascular MPS, several groups have shown success in 

transdifferentiating human fibroblast cells to ECs (80, 82, 83, 86, 87) and SMCs (88) or ECs 

to SMCs (89).

Disease Models

iPSC cells and transdifferentiated cells offer great potentials for regenerative medicine and 

personalized medicine with minimum ethical issues. iPSC differentiated smooth muscle 

cells have been derived from patients with progeria (15), supervalvular aortic stenosis (90), 

and fibrillin 1 mutations in Marfan syndrome (91). Endothelial cells have been derived from 

individuals with pulmonary hypertension (92). iPSCs enabled discovery of new biology of 

these diseases, although only a few have been converted to three-dimensional models. 

Atchison et al., used Hutchinson-Gilford progeria syndrome (HGPS) patient derived TEVBs 

and these vessels could reproduce key features of HGPS and the response to drug treatment 

(15). A recent study used HGPS patient derived TEVBs and identified the contribution of 

endothelial dysfunction to the progression of atherosclerosis in HGPS (78). A tissue-on-a-

chip and bottom-up self-assembly model of the neurovascular unit using primary or iPSCs 

derived from individuals with various neurological diseases, showed that these disease states 

alter the blood brain barrier permeability and could be suitable testbeds to assess drug 

candidates (43, 44).

Translational Insight

The development of vascular MPS provides an effective platform for the investigation of 

vascular development, vascular disease modeling, and evaluation of drug safety and efficacy. 

The vascular MPS create physiologically relevant microenvironments that closely model the 

in vivo environments. By incorporating recent advances in stem cell differentiation, vascular 

MPS could also be used in tailored medicine to model diseases individually and provide 

personalized information for each patient. Microvascular systems have already been used to 

study angiogenesis (54), (93), and the blood-brain barrier (42). Furthermore, the easy 

modification of vascular MPS enables deconvolution of the complex in vivo systems and 

testing hypotheses one by one. For example, high levels of LDL, monocyte activation, and 

accumulation and inflammatory environments all contribute to the initiation and progression 

of atherosclerosis. However, it is extremely difficult to identify which contributes more to 

the early stages of atherosclerosis by in vivo system. By using vascular MPS, each factor 

could be tested individually or combined with other factors to give more information about 

the underlying mechanisms. Gene editing technology allows creation of specific acquired 

changes to examine complex conditions such as aging (94) and interactions among 

polymorphisms associated with CVD. The future of vascular MPS relies on new techniques 

to 1) manufacture vascular MPS with shorter manufacturing time and more closely 

mimicking the natural vessels, 2) promote complete cell differentiate from iPSCs or hMSCs 

to functional ECs and SMCs, and 3) integrate different scales of vessel (artery to capillary) 

in the same system.
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Figure 1. 
Overview of in vitro human vascular system. Fibroblasts, smooth muscle cells and 

endothelial cells that resemble the externa, media and intima layers, respectively, of human 

blood vessel could be obtained by isolation, differentiation from stem cells, or 

transdifferentiation from other cell types. Human vascular MPS including TEBV and MVS 

manufactured from these cells could be applied for functional assays, disease modeling and 

treatment discovery. These results could potentially translate back to patients.
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