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Abstract

A massive number of biological entities, such as genes and mutations, are mentioned in the

biomedical literature. The capturing of the semantic relatedness of biological entities is vital

to many biological applications, such as protein-protein interaction prediction and literature-

based discovery. Concept embeddings—which involve the learning of vector representa-

tions of concepts using machine learning models—have been employed to capture the

semantics of concepts. To develop concept embeddings, named-entity recognition (NER)

tools are first used to identify and normalize concepts from the literature, and then different

machine learning models are used to train the embeddings. Despite multiple attempts, exist-

ing biomedical concept embeddings generally suffer from suboptimal NER tools, small-

scale evaluation, and limited availability. In response, we employed high-performance

machine learning-based NER tools for concept recognition and trained our concept embed-

dings, BioConceptVec, via four different machine learning models on ~30 million PubMed

abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the litera-

ture and is of the largest among the publicly available biomedical concept embeddings to

date. To evaluate the validity and utility of BioConceptVec, we respectively performed two

intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene inter-

actions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug

interaction extraction), collectively using over 25 million instances from nine independent

datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from

three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowl-

edge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by

a large margin, better performance than existing concept embeddings in identifying similar

and related concepts. More importantly, the extrinsic evaluation results demonstrate that

using BioConceptVec with advanced deep learning models can significantly improve perfor-

mance in downstream bioinformatics studies and biomedical text-mining applications. Our

BioConceptVec embeddings and benchmarking datasets are publicly available at https://

github.com/ncbi-nlp/BioConceptVec.
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Author summary

Capturing the semantics of related biological concepts, such as genes and mutations, is of

significant importance to many research tasks in computational biology such as protein-

protein interaction detection, gene-drug association prediction, and biomedical litera-

ture-based discovery. Here, we propose to leverage state-of-the-art text mining tools and

machine learning models to learn the semantics via vector representations (aka. embed-

dings) of over 400,000 biological concepts mentioned in the entire PubMed abstracts. Our

learned embeddings, namely BioConceptVec, can capture related concepts based on their

surrounding contextual information in the literature, which is beyond exact term match

or co-occurrence-based methods. BioConceptVec has been thoroughly evaluated in mul-

tiple bioinformatics tasks consisting of over 25 million instances from nine different bio-

logical datasets. The evaluation results demonstrate that BioConceptVec has better

performance than existing methods in all tasks. Finally, BioConceptVec is made freely

available to the research community and general public.

Introduction

In the biomedical domain, one primary application of text mining is to extract knowledge

within the biomedical literature automatically [1]. Specifically, identifying important concepts

(mentioned in the literature, such as gene/proteins, diseases, and mutations, is critical to bio-

curation [2], literature-based knowledge discovery [3], and many downstream applications

[4–6]. Previous studies have used different words such as concepts, entities, names, and men-

tions to refer to the same topic in the biomedical domain. Here, we use bio-concepts for consis-

tency. Similar to the use of word embeddings, capturing the representation of bio-concepts

plays a vital role in biomedical applications such as biomedical relation extraction [7] and doc-

ument classification [8]. Existing studies use the term concept embeddings, which is a special

kind of word embedding [9–11]. According to the literature, a concept embedding may con-

tain only the concept vectors [10], or it may contain vectors of both concepts and common

words [11]. Named entity recognition (NER) tools or concept dictionaries are often used to

identify and normalize concepts in a consistent format [10].

Since 2014, word embedding models have revolutionized how to represent text. In these

models, each word is represented as a high dimensional vector [7, 8, 12, 13]. The vector repre-

sentations are learned on large-scale free text corpora via unsupervised learning. Primary

methods include training the embeddings based on (1) averaged surrounding context words,

such as the continuous bag-of-words (cbow) model in word2vec [14], (2) weighted context

words, such as the skip-gram model in word2vec, (3) global co-occurrence statistics, such as

GloVe [15], and (4) word n-grams, such as fastText [16]. The use of vector representations can

capture related words from different lexicons, such as cancer and tumor. This overcomes the

limitations of traditional bag-of-words approaches that rely on exact term matching [17]. To

date, text-mining applications have rapidly adopted word embeddings. For instance, the use of

embeddings have shown promising performance in biomedical applications such as biomedi-

cal document classification [18], sentence retrieval [19], and question answering [20].

It is known that biomedical concepts have a high degree of ambiguity [21]. The same words

can be used to describe different types of concepts in free text; for example, AP2 can be the

name of a gene (https://www.ncbi.nlm.nih.gov/gene/?term=2167), a chemical (https://meshb.

nlm.nih.gov/record/ui?ui=C417523), or a cell-line (https://web.expasy.org/cellosaurus/CVCL_

1147). Conversely, the same concepts can have different names; for example, the HER2 gene
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has at least 10 different synonyms mentioned in text (https://www.ncbi.nlm.nih.gov/gene/

2064). In addition, a bio-concept can span multiple words; for example, serum and glucocorti-
coid-induced protein kinase is the name of a gene (SGK1, https://www.ncbi.nlm.nih.gov/gene/

6446). Therefore, accurate NER is essential prior to training concept embeddings.

We present a detailed summary of the existing bio-concept embeddings in Table 1. These

studies have used various corpora (mainly electronic health records (EHR), combined with

medical claims, biomedical corpora, or Wikipedia) and several training methods (mainly

word2vec, while some used GloVe and fastText) to train concept embeddings. Overall, the pri-

mary method paradigm is consistent among these studies and generally involves two steps. In

the first step, NER tools are applied to identify and normalize target concepts and to replace

the mentions in the text as a preprocessing to the corpora. In the second (embedded training)

step, embedding training occurs, whereby standard word embedding training methods, such

as word2vec, are employed. Note that we consider concept embeddings trained on knowledge

bases, such as gene2vec [22], as different work because knowledge bases are distinct from free-

text collections. For example, knowledge bases contain concepts already curated either manu-

ally or semi-automatically; therefore, training concept embeddings via knowledge bases does

not require NER tools. In addition, the relationships between concepts in knowledge bases

already have been organized in a structured format, such as ontologies. Free text, however, is

unstructured, and training embeddings on free text occurs purely in an unsupervised way.

Also note that individual knowledge bases contain only specific types of concepts by design.

By contrast, a wide spectrum of concept types are described in the literature.

Table 1. An overview of biomedical concept embeddings trained on large-scale free-text corpora. Repository: the scope of concepts. Corpora: the training collection.

Note that for EHR (electronic health records) and Claims (medical claims), the size is the number of patients, whereas for Wikipedia, PubMed (abstracts), and PMC (full-

text articles), the size is the number of documents. #Concepts: the number of distinct concepts in the embedding. Method: the method for training embeddings. PCA: prin-

ciple component analysis. PMI: pointwise mutual information. Intrinsic evaluation: a focus on applications that directly use the similarity between the vectors produced by

word embeddings, such as word-pair similarity and relatedness. Extrinsic evaluation: a focus on downstream applications that use only word embeddings as an intermedi-

ate component. For example, the last study evaluated the effectiveness of concept embeddings for heart-failure prediction. Availability: whether the studies made the

embeddings publicly available (we accessed on 04/20/2019).

Study (year) Repository Corpora (size) #Concepts Method Evaluation Availability

Intrinsic Extrinsic

Vine et al. (2014) [47] UMLS EHR (<20K)

PubMed (0.35M)

52,102 skip-gram Concept

similarity

N N

Choi et al. (2016) [64] ICD9CM EHR (0.55M) 49,873 skip-gram Concept

clustering

N N

Claims (0.85M)

Choi et al. (2016) [10] UMLS EHR (20M) 22,705 skip-gram Concept

clustering

N Y

Claims (4M)

Yu at al. (2017) [43] UMLS PubMed (22M) 310,403 cbow Concept

similarity

N Y

Beam et al. (2018) [9] UMLS EHR (60M) 108,477 skip-gram Concept

similarity

N Y

Claims (20M) GloVe

PMC (1.7M) PCA

Cai at al. (2018) [65] UMLS EHR (2M) 47,873 cbow Concept

clustering

N N

Nguyen at al. (2018) [66] UMLS Wikipedia (5M) 659,873 cbow Concept

similarity

N N

PubMed (24M)

PMC (3M)

Xiang at al. (2019) [8] UMLS EHR (50M) 30,348 skip-gram Concept

clustering

Y N

PMI

fastText

https://doi.org/10.1371/journal.pcbi.1007617.t001
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Despite these recent efforts, past studies share some limitations. As shown in Table 1, exist-

ing studies used NER tools to recognize and normalize Unified Medical Language System

(UMLS) concepts [23]. A long series of evaluation studies demonstrate that the effectiveness of

these NER tools fluctuates dramatically for different types of UMLS concepts [24–28]. For

example, Hassanzadeh et al. evaluated the NER tools used by the studies in Table 1 and found

that the F1-score ranged from 5% to 75% for different types of UMLS concepts [24]. Likewise,

Reátegui et al. found that the F1-score of the NER tools varied from 44% to 96% for different

types of diseases [26]. Importantly, errors produced in the NER step may diminish the effec-

tiveness of bio-concept embeddings. For example, low precision, such as a non-concept word

wrongly identified as a bio-concept by NER tools, will bias the context or nearby words of the

true bio-concepts when training embeddings. Similarly, low recall, such as true bio-concepts

that are not identified by NER tools, will reduce the number of training instances and decrease

the concept coverage of bio-concept embeddings.

Second, almost no studies had evaluated the effectiveness of concept embeddings in extrin-

sic evaluations. The evaluation of word embeddings can be broadly categorized into two types

(i.e., intrinsic and extrinsic) [29]. Intrinsic evaluations are commonly accomplished via an

unsupervised setting or using weakly supervised labels, whereas extrinsic evaluations are often

performed via a supervised setting in downstream applications. As shown in Table 1, only one

study [8] performed extrinsic evaluations for heart failure, predicting whether a patient would

be diagnosed as having heart failure based on the associated clinical notes. The study used a

basic long short-term memory (LSTM) model with randomly initialized embedding as the

baseline and replaced the randomly initialized embedding with the proposed concept embed-

ding to compare the performance. Although the results demonstrated that the proposed con-

cept embedding has better performance, the study (1) did not compare the results with those

of other existing concept embeddings and (2) did not compare the results with those of the

state-of-the-art model that had achieved the highest performance on that task [30].

Further, importantly, the existing concept embeddings are designed primarily for concepts

and applications in the clinical domain, whereas concept embeddings for the biological

domain remain to be developed. As shown in Table 1, existing studies used UMLS concepts

and mainly used EHR data as the training corpora. Correspondingly, the evaluation focuses on

clinical applications, i.e., the evaluation datasets are generated from EHR data. For example,

most of the studies evaluated the two datasets, UMNSRS (Medical Residents Relatedness Set)-

Similarity [31] and UMNSRS-Relatedness [31], each consisting of ~600 pairs of clinical con-

cepts derived from EHR data and annotated by physicians. Similarly, the above extrinsic evalu-

ation of heart-failure prediction is also based on a patient’s clinical notes [8]. Developing

embeddings for biological concepts and applications is also important.

In response, we propose BioConceptVec, a collection of concept embeddings on primary

biological concepts mentioned in the biomedical literature. Fig 1 shows an overview of our

study. Specifically, the study has three primary contributions:

1. To our knowledge, we are the first study to use machine learning-based NER tools to recog-

nize and normalize biological concepts for training bio-concept embeddings. Specifically,

we employed PubTator, a state-of-the-art NER system with concept annotations for the

entire PubMed abstracts [32]. It contains over 400,000 concepts, which is the largest among

the publicly available concept embeddings. For example, our evaluation of the human gene

coverage shows that BioConceptVec covers 33% more gene concepts than the existing con-

cept embeddings.

2. We conducted large-scale intrinsic and extrinsic evaluations to quantify the validity and

utility of BioConceptVec. The intrinsic evaluations contain ~18 million instances from six
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datasets. BioConceptVec has significantly higher performance (up to 10% improvement)

than the existing concept embeddings and is consistent across multiple datasets. The

extrinsic evaluations cover two downstream applications: protein-protein interaction

(PPI) prediction, consisting of ~8 million PPIs from the STRING database [33], and drug-

drug interaction (DDI) classification, consisting of ~5,000 DDIs from a community-recog-

nized gold standard dataset. The extrinsic evaluation results demonstrate that the deep

learning models that use BioConceptVec can significantly improve the state-of-the-art per-

formance, achieving an AUC of 0.95 for predicting PPIs and an F1-score of 0.80 for extract-

ing DDIs.

3. We make all of the embeddings and evaluation datasets publicly available. The embeddings

and datasets can be downloaded via https://github.com/ncbi-nlp/BioConceptVec. We also

provide a Jupyter notebook that contains code examples for users to get started.

Materials and methods

Training corpus and method

NER step: Using PubTator to annotate biological concepts. We trained concept embed-

dings on the ~30 million abstracts in the entire PubMed. We followed the preprocessing pipe-

line from [34] (the code is publicly available via https://github.com/ncbi-nlp/BioSentVec). As

noted, the first step of bio-concept embedding development is to use NER tools to identify the

target concept mentions (e.g., “estrogen receptor”) and to further normalize the mentions to

the concept identifiers (e.g., “NCBI Gene: 2099”). As an example, shown in Fig 2, a targeted

concept (i.e., MLN4924) is identified and normalized to a chemical concept: MESH:C539933.

Due to the requirement of high-quality concept normalization for the concept embeddings,

we applied PubTator to annotate the full PubMed abstracts. PubTator [32] is a PubMed-scale

Fig 1. An overview of our study. BioConceptVec was trained on PubMed abstracts, which consists of ~30 million documents.

(1) We employed PubTator, which contains four NER tools, to annotate and normalize the concepts. (2) We trained four

concept embeddings on the normalized corpus. (3) We conducted both intrinsic evaluations on drug-gene interactions and

gene-gene interactions, and extrinsic evaluations on protein-protein interaction prediction and drug-drug interaction

extraction to evaluate the effectiveness of BioConceptVec.

https://doi.org/10.1371/journal.pcbi.1007617.g001
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resource that utilizes four NER tools (i.e., TaggerOne [35], GNormPlus [36], tmVar [37], and

SR4GN [38]) with a recent deep learning-based module for disambiguating conflict mentions

[39] (when the mentions are annotated by two or more concept taggers) to recognize six key

biological concepts (i.e., genes, mutations, diseases, chemicals, cell lines, and species). S1 Table

provides a summary of the state-of-the-art performance of the NER tools in PubTator on vari-

ous benchmarking datasets.

Embedding training step: Using word2vec, GloVe, and fastText to produce BioConcept-

Vec. We trained concept embeddings on the full collection of PubMed abstracts after concept

recognition via PubTator, i.e., identified named entities are replaced with bio-entity types and

IDs (e.g., Disease_MESH_D008288) before training. To our knowledge, there is no agreement

on which embedding model is the most effective in biomedical domains. For example, Wang

et al. [40] showed that fastText achieved the highest performance in biomedical event trigger

detection versus other word embeddings [40], whereas Jin et al. [41] found that word2vec has

better performance in biomedical sentence classification [41]. In this study, we therefore

trained four different word embeddings, cbow, skip-gram, GloVe, and fastText such that

future studies can choose our concept embeddings according to their specific requirements.

In general, the methods to train word embeddings can be categorized into two groups: win-

dow-based and matrix factorization-based [15]. The major distinction between these two cate-

gories is that window-based methods aim to learn the semantics of words based on local

context, i.e., words within a pre-defined window size, whereas matrix factorization-based

methods aim to learn the semantics of words based on global statistics of words in corpora.

word2vec and fastText belong to the first category while GloVe belongs to the second category.

word2vec has two versions: cbow, training a model using context words as input to predict a

target word, and skip-gram: reversely using a target word to predict context words [14]. fas-

tText is an extension of word2vec, using character n-grams to represent a word [42]. In con-

trast, GloVe is dramatically different from word2vec and fastText. It builds a matrix based on

global co-occurrences between the words and then applies matrix factorization.

As mentioned, fastText represents each word as a set of character n-grams. In the case of

bio-concept embeddings, however, each bio-concept should be considered a unit. Thus, when

training with fastText, we disabled the n-grams representation for bio-concepts (in contrast,

for the words that are not bio-concepts, we still used the default n-grams representation in

fastText).

The values of hyperparameters for training embeddings are summarized in Table 2. Our

choice of hyperparameters is based on similar studies in the past and other related work in the

general domain.

Fig 2. Identified bio-concept in-text and the normalized versions (one instance per type) in PubTator.

https://doi.org/10.1371/journal.pcbi.1007617.g002
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Hyperparameters and other methods for comparison. To directly compare with the

existing concept embeddings, we used the exact hyperparameter values from Yu et al. [43] as

the default setting. As shown in Table 1, of the three publicly available concept embeddings, it

is the only concept embedding trained on PubMed. The other two were trained on EHR data.

We measured the concept overlap in terms of genes and found that concept embeddings

trained on EHR data contain a significantly fewer number of genes than do embeddings

trained on PubMed. Thus, we did not compare with those two EHR-driven methods.

Yu et al. [43] used cbow to train the concept embeddings and their hyperparameters are

summarized in Table 2. Hence, under the same parameter settings, we firstly trained a com-

mon cbow word embedding on PubMed abstracts, as a baseline. Common word embeddings

do not contain vectors for normalized bio-concepts. The words in a bio-concept name, how-

ever, often exist in common word embeddings. For example, the TOR3A gene (https://www.

ncbi.nlm.nih.gov/gene/64222) does not exist in a common word embedding, but the words of

its name torsin family 3 member A all exist. Thus, we averaged the word vectors based on the

bio-concept name to represent the concept vector. Averaged vectors are used as a strong base-

line for many embedding-related tasks, such as sentence similarity [44] and sentiment analysis

[45]. We refer to the averaged word embedding baseline as BioAvgWord (cbow). As such, we

are able to directly compare BioConceptVec (cbow) with the two baselines: BioAvgWord

(cbow) and the concept embedding provided by Yu et al.

In addition, we trained and assessed BioConceptVec (cbow) under different parameters but

keeping the same values for minimal word occurrences (so that embeddings share the same

vocabulary), learning rate and training epochs (so that embeddings share the same optimiza-

tion procedure). For each of the other hyperparameters, we selected two representative values

that were used in the previous studies on embeddings [46, 47], as shown in Table 2 (other val-

ues). Note that we do not select larger values for the negative samples and down-sampling

threshold because the training epoch is set to be 10 –it would require more epochs to stabilize

the loss when there are more samples.

Furthermore, different studies show that performance can vary by different embedding

methods [46, 48]. Thus, we also train BioConceptVec using skip-gram, GloVe and fastText,

using the same default setups. We make all of the four versions of BioConceptVec (cbow, skip-

gram, GloVe and fastText) publicly available so that users can experiment and choose between

the models for their tasks.

To ensure a fair comparison, the evaluation datasets described below contain only concepts

shared among these baseline methods and BioConceptVec. We also measured the coverage of

concepts using human genes as an example.

Table 2. The values of hyperparameters used for training BioConceptVec. Default values: the default values are identical to the values selected by baseline embeddings.

We used the default values to train BioConceptVec (cbow), BioConceptVec (skip-gram), BioConceptVec (GloVe) and BioConceptVec (fastText). Other values: we also

adopted other commonly-used hyperparameter values to test the effectiveness of BioConceptVec (cbow) under different parameter settings.

Hyperparameter Default values Other values

Shared hyperparameters Vector dimension 200 100, 300

Window size 20 5, 10

Negative samples 5 2, 3

Down-sampling threshold 0.001 0.0001, 0.00001

Minimal word occurrence 5 -

Learning rate 0.025 -

Training epochs 10 -

fastText-specific hyperparameters Minimal character n-gram length 2 -

Maximum character n-gram length 3 -

https://doi.org/10.1371/journal.pcbi.1007617.t002
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Intrinsic evaluations

Identifying related genes based on drug-gene and gene-gene interactions. We posit

that concept embeddings should give higher similarity to related concepts than to unrelated

concepts. The intrinsic evaluations in our study quantify the effectiveness of concept embed-

dings in terms of identifying related genes. We concentrate on genes because genes are a cen-

tral focus of biological studies; the interactions between genes (or genes and other biological

concepts) are essential for understanding the structures and functions of a cell [49, 50]. In

addition, biological studies over the decades have collected related genes from different per-

spectives, such as those based on expression signatures, pathways, and gene ontologies (GO).

These collected related genes can be used as a gold standard for our intrinsic evaluations. In

contrast, other biological concepts, such as diseases and mutations, are somewhat difficult to

define in regard to the notion of relatedness systematically. We considered related gene pairs

based on drug-gene interactions and gene-gene interactions, as explained below.

Evaluation dataset construction and evaluation metrics. We adopted six datasets for

creating evaluation datasets. The detailed statistics of these datasets are summarized in Table 3.

The relatedness of genes was modeled from two broad categories. The first was based on the

relationships between genes and other bio-concepts, and the second was based on the relation-

ships among genes.

For the first category, we used the Comparative Toxicogenomics Database (CTD) [51],

which captures drug-gene interactions. For each drug, we consider the genes that interact with

the same drug as a related set and randomly select the same number of genes that do not inter-

act with the drug as an unrelated set. A related and unrelated set together form a group. Ideally,

concept embeddings should have significantly higher similarity for the related sets than the

unrelated sets for each group.

For the second category, we used five gene sets (C1–C5) of MSigDB [52]. MSigDB captures

related genes using different perspectives, and each gene set is generated from a distinct per-

spective. For example, MSigDB C1 is generated based on human chromosomes, and MSigDB

C5 is generated based on GO. The strategy of creating related and unrelated sets is the same as

above. For example, in terms of MSigDB C5, the genes that share the same GO term are con-

sidered a related set, and the same number of genes that do not share that GO term are ran-

domly generated as an unrelated set.

We computed the similarity of a set by averaging the cosine similarity of all of the pairs in

the set, using concept embeddings. Cosine similarity is the most popular similarity measure

used by embeddings [29]. Importantly, different embeddings may report different cosine

Table 3. The statistics of datasets in intrinsic evaluation tasks. There are six datasets in total. #groups: the number of groups in a dataset. Each group has a related set

and an unrelated set of genes based on drug-gene interactions provided by CTD or gene sets provided by MSIGDB. #distinct concepts: the total number of distinct genes

in a dataset. Avg #concepts per group: the average of number of genes in a group; note that one gene may be in multiple groups. #pairs: the total number of pairs in a data-

set. Avg #pairs per group: the average of the number of pairs per group.

Dataset #groups #distinct concepts Avg #concepts

per group

#pairs Avg #pairs

per group

CTD 6383 14,654 22.39 2,146,482 358.88

MSigDB datasets

C1 positional gene sets 326 11,709 63.30 431,254 1447.16

C2 curated gene sets 4,762 13,783 66.21 6,171,976 1621.21

C3 motif gene sets 836 9,553 115.63 910,722 3976.95

C4 computational gene sets 858 8,637 85.84 1,452,542 2392.99

C5 GO gene sets 5,917 13,627 62.71 6,697,736 1455.08

Total 19,082 14,998 - 17,810,712 -

https://doi.org/10.1371/journal.pcbi.1007617.t003
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similarities for same pairs, and the range of cosine similarities also may be different, which is

strictly inevitable [53]. To reduce the biases, for each embedding, we first applied Z-score stan-

dardization to the cosine similarities of all of the pairs and then used Min-Max normalization

to transform the range to [0, 1].

We used the similarity score difference between related sets and unrelated sets at group

level as the final evaluation metric. As noted, a more effective concept embedding should have

a greater similarity score difference between the related set and the unrelated set for a group.

For computational efficiency, we restricted the maximum number of genes in a set to be 100,

i.e., a group has, at most, 200 genes in total. Note that MSigDB has other gene sets, such as C6

and C7. We did not use them because the number is fewer than 100 in shared genes. Collec-

tively, our intrinsic evaluation datasets contain over 13,000 genes and over 17 million instances

across six datasets.

Extrinsic evaluations

We further evaluated the utility of BioConceptVec in two downstream applications: protein-

protein interaction (PPI) prediction on the STRING database [33] and drug-drug interaction

(DDI) classification on biomedical literature [54].

Protein-protein interaction prediction on the STRING database. Analyzing functional

interactions between proteins, which facilitates the understanding of the cellular processing

and characterization, is a routine task in molecular systems biology [55]. The STRING data-

base is one of the most comprehensive data resources that integrate, score, and analyze pub-

licly available PPIs [33]. To date, it consists of over 3 billion PPIs from ~25 million proteins

(https://string-db.org/). The PPIs in the STRING database are scored by accumulating a wide

range of evidence, such as measurements from biological experiments, co-expressions, and

gene co-occurrences.

Existing studies have used STRING for training and testing machine learning models for

PPI prediction [56, 57]. In a recent study, for example, Smaili et al. constructed two PPI data-

sets for human proteins: (1) PPIs based on combined scores, i.e., the score calculated from

multiple sources (including results from the biomedical literature and many others, such as

gene co-expressions, biological experiments and pathways), which we refer to as the combined-
score, and (2) PPIs that have the experimental score over 700, i.e., the score is based only on

biological experiments and is greater than 700, which we refer to as the experimental-700. The

study considered these PPIs as positive instances and randomly generated the same number of

negative instances. Smaili et al. split the datasets into the training and testing datasets, account-

ing for 70% and 30% of the total number of PPIs, respectively. They further developed a deep

learning model by taking the vector representations of the two proteins as inputs and predict-

ing whether the proteins have interactions. The deep learning model was an artificial neural

network (ANN) that had two hidden layers [57]. Using the same model, the study tested differ-

ent vector representations and reported Area Under the Curve (AUC) accordingly.

We followed this study [57] for creating the datasets and implementing the reported ANN

model. Table 4 provides a summary of the statistics of the datasets. The combined-score data-

set covers all of the 13,802 proteins that are shared by concept embeddings and STRING data-

bases. In comparison, the previous study sampled only 1,800 proteins. We also implemented a

2-layer ANN. The details of the hyperparameters are summarized in S2 Table. In keeping with

the previous study, the model and hyperparameters are identical when testing different con-

cept embeddings. The Precision, Recall, F1-score, and AUC are reported.

Drug-drug interaction extraction on biomedical literature. We also examined the use-

fulness of concept embeddings in a text-mining task. Specifically we evaluated the
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performance of concept embeddings on the SemEval 2013: Task 9 DDI extraction corpus [54]

for DDI classification. This dataset consists of over 1,000 documents from the DrugBank data-

base [58] and PubMed abstracts and ~5,000 DDIs manually annotated by two senior pharma-

cists, serving as a gold standard dataset for relation extraction by the community [59].

In this task, the input is a sentence that contains a pair of drugs. If the pair of drugs repre-

sents a true DDI, the model needs to output the DDI type; otherwise, the model needs to indi-

cate the pair is not a true DDI [54]. The annotators classified a DDI into one of four types:

advice, effect, mechanism, and int (the interaction occurs, but its type cannot be classified)

[59]. We used the official training and testing datasets. The statistics of the datasets are summa-

rized in Table 5. This is a multi-class classification problem (i.e., 5 classes: 4 DDI types and a

negative class indicating a pair is not a DDI), and the organizers used the F1-score to measure

the multi-class performance of true DDIs (i.e., without considering the negative cases). We fol-

lowed the same evaluation procedure.

We implemented a simple averaged sentence embedding neural network model (SEN) for

DDI classification. Fig 3 illustrates the architecture of SEN. For an input sentence, it first uses

word embedding to map the vectors of each word in the sentence (Embedding Layer in Fig 3).

We used the recent context-based word embedding ELMo in the Embedding Layer [60],

which was shown to be superior to common word embeddings in relation extraction tasks

[61]. Then it averages all of the word vectors to obtain the sentence vectors (Averaged Layer),

followed by dense layers (the hidden layers used in the ANN above). Finally, it outputs class

probabilities. The details of the hyperparameters of SEN are summarized in S3 Table. SEN has

been used widely as a baseline model in sentence-related applications [34]. We hypothesized

that adding the vector representations of the drugs mentioned in the sentences will increase

the classification performance. We used PubTator to map the drug mentions into concept

identifiers. Thus, similar to PPI prediction, we used the same model and tested different con-

cept embeddings. The Precision, Recall, and F-1 score are reported.

Results and discussions

Number of shared human genes in BioConceptVec and other public

embeddings

Fig 4 shows the number of human genes with computed embeddings in each method. We

compared all of the publicly available concept embeddings shown in Table 1. There are two

Table 5. Statistics of the DDI extraction datasets. Mechanism, Effect, Advice, Int are four types of DDIs. Negative

means that the instance does not contain a DDI.

Class #Training #Testing

Mechanism 1,319 302

Effect 1,621 360

Advice 826 221

Int 188 96

Negative 23,772 4,737

https://doi.org/10.1371/journal.pcbi.1007617.t005

Table 4. Statistics of the datasets for PPI prediction. #Concepts: the number of concepts in the dataset. #Training: the number of training instances; same applies to

#Validation and #Testing.

Dataset #Concepts #Training #Validation #Testing Total

combined-score 13,802 5,245,358 582,818 2,497,790 8,325,966

experimental-700 13,290 24,684 2,743 11,755 39,182

https://doi.org/10.1371/journal.pcbi.1007617.t004
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embeddings provided by Choi et al. (https://github.com/clinicalml/embeddings). We used the

version from stanford_cuis_svd_300.txt.gz because it contains more concepts and also more

human genes than the other one. Fig 4 illustrates that BioConceptVec contains more human

genes than other publicly available concept embeddings. Specifically, it covers about 3,000

Fig 3. The architecture of the model used for DDI extraction.

https://doi.org/10.1371/journal.pcbi.1007617.g003

Fig 4. Gene coverage results in terms of human genes. The number of human genes in different embeddings is

shown individually. In total, these four embeddings consist of 18,881 human genes. Note that the embeddings from

Beam et al. and Choi et al. were mainly trained on EHR. The results mainly aim to demonstrate that biomedical

literature and EHR contain significantly different concepts.

https://doi.org/10.1371/journal.pcbi.1007617.g004
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more human genes than does the second highest embedding method (Yu et al). In total, these

four embeddings cover 18,881 human genes, ~98% of which can be found in BioConceptVec.

We manually examined the genes that were missing in BioConceptVec and found that most of

them only occurred once. We also found that these genes occur more frequently in PMC full-

text articles; we plan to integrate both PubMed abstracts and PMC full-text articles for training

concept embeddings in the future.

Notably, the embeddings from Beam et al. and Choi et al, were primarily trained on EHR,

and these embeddings are designed mainly for clinical applications. Hence, they only cover a

small number of gene and protein concepts. This comparison thus further illustrates that the

biomedical literature contains significantly different bio-concepts from clinical notes.

Intrinsic evaluation results

Fig 5 and Fig 6 show the intrinsic evaluation results on the six evaluation datasets. As noted,

the average group similarity difference (%) is used as the evaluation metric. A more effective

concept embedding should have higher similarity difference between the positive set and the

negative set of a group. Using the same embedding training method and the same hyperpara-

meters, the results in Fig 5 show that the performance of BioConceptVec (cbow) is consistently

higher (an average of 4 percentage points) than that of Yu et al. on the six datasets. The differ-

ences are even more remarked when compared to the average word embedding (an average of

7 percentage points). In addition, the results also show that BioConceptVec (cbow) achieves

consistently better performance than that of baseline approaches with different hyperpara-

meters. Collectively, these results suggest the positive impact of our selected NER methods.

In Fig 6, we report the effect of different embedding methods. As shown, there is no one-

size-fits-all method that always achieves the best performance across all of the datasets. For

instance, BioConceptVec (cbow) had the best performance on the CTD dataset, whereas Bio-

ConceptVec (GloVe) had the highest score on the MSigDB C1 dataset. This is consistent with

Fig 5. The intrinsic evaluation results in terms of average group similarity difference (%) for the six evaluation

datasets. Direct comparison shows the results of BioConceptVec (cbow) using identical hyperparameters as the

baselines. The baselines were also trained using cbow. Different hyperparameters shows the results of BioConceptVec

(cbow) using different hyperparameters (provided in Table 2): w, v, s, and n stand for window size, vector dimension,

sampling threshold, and negative samples, respectively.

https://doi.org/10.1371/journal.pcbi.1007617.g005
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the findings in the previous literature on embedding comparison [46, 48]. Hence, it is neces-

sary to make embeddings trained with different methods publicly available.

Extrinsic evaluation results

Protein-protein interaction predictions on STRING database. Table 6 illustrates the

classification results of PPI predictions on the STRING database. The direct comparison

results show that BioConceptVec (cbow) has better performance than the baseline

approaches–achieving the highest F1 score and AUC on both datasets. The results of BioCon-

ceptVec (cbow) with different hyperparameters is summarized in S4 Table, which further

demonstrate that its performance was consistent overall. When comparing BioConceptVec

trained using different methods, BioConceptVec (fastText) had the best overall performance

for this task, although the performance of BioConceptVec (cbow) and BioConceptVec (skip)

are very close. Note that we were unable to directly compare with the previous study [57]

because the proposed embedding is not publicly available. Also as noted, the performance of

the study was measured on ~1,800 proteins, whereas our datasets contain ~13,000 proteins.

Fig 6. The intrinsic evaluation results for BioConceptVec from different embedding methods (cbow, skip-gram,

Glove, and fastText). The embeddings were trained using the same default parameters. Direct comparison: the results

of baseline embeddings and BioConceptVec trained using cbow.

https://doi.org/10.1371/journal.pcbi.1007617.g006

Table 6. Classification results of PPI predictions on the STRING database. Combined-scores: PPIs that have combined scores are considered positive cases. Experi-

mental-700: PPIs that have experimental scores over 700 are considered positive cases. Direct comparison: the results of embeddings using the same method (cbow) and

same hyperparameters. Different embedding methods: the results of BioConceptVec (skip-gram), BioConceptVec (GloVe) and BioConceptVec (fastText). The highest

results of each section are marked as bold.

Combined-score dataset Experimental-700 dataset

Precision Recall F1 AUC Precision Recall F1 AUC

Direct comparison

BioAvgWord (cbow) 0.8195 0.7935 0.8063 0.8941 0.8851 0.7422 0.8074 0.9123

Yu et al. (cbow) 0.8236 0.8017 0.8125 0.9029 0.9130 0.7686 0.8346 0.9283

BioConceptVec (cbow) 0.8304 0.8025 0.8162 0.9064 0.9476 0.7981 0.8664 0.9525

Different embedding methods

BioConcept (skip-gram) 0.8279 0.8097 0.8187 0.9074 0.9201 0.8525 0.8850 0.9522

BioConcept (GloVe) 0.8116 0.8102 0.8109 0.9004 0.8656 0.8289 0.8468 0.9218

BioConcept (fastText) 0.8324 0.8100 0.8210 0.9099 0.9076 0.8677 0.8872 0.9556

https://doi.org/10.1371/journal.pcbi.1007617.t006
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Drug-drug interaction extraction results. Table 7 demonstrates the evaluation results on

DDI extraction. We ran the model 5 times with different random seeds and then calculated

the average performance [62]. The state-of-the-art (SOTA) model by Zhang and colleagues

achieved an F1-score of 0.73 on this dataset [63]. Their model uses an LSTM as an encoder

with an attention mechanism and outperforms other feature-based, kernel-based, and neural

networks-based methods. We found that, compared with the SOTA model, the SEN model

had a slightly better classification performance on advice, effect, and mechanism relation types

but had a dramatically lower performance on int relation where a DDI cannot be classified

into a specific type.

We also measured the performance of SEN by adding concept vectors. The direct compari-

son results show that BioConceptVec has better performance than the baseline approaches.

Adding BioConceptVec improves the F1-score significantly and BioConceptVec (cbow)

appears to be the most effective in this task. The results of BioConceptVec (cbow) using differ-

ent hyperparameters are summarized in S5 Table. It also shows that the performance is

consistent.

We further qualitatively analyzed the errors by comparing the results of the SEN model

with and without BioConceptVec. We found that the SEN model failed to classify challenging

cases in which the definitions of relation types are somewhat similar. For example, the sen-

tence, “Zidovudine competitively inhibits the intracellular phosphorylation of stavudine,” con-

tains the relation “zidovudine-stavudine.” The annotator classified it as the effect type, but the

SEN model wrongly classified it as the mechanism type. According to the annotation guide-

lines, both effect and mechanism types can describe pharmacological effects. The effect type,

however, focuses on the change of the effect, whereas the mechanism type focuses on the

underlying reason for the change. For this case, inhibiting the intracellular phosphorylation

describes the change rather than the mechanism. There are ~20 similar erroneous cases for

which the SEN model only mixed the effect type with the mechanism type. Adding BioCon-

ceptVec (cbow) to the SEN model correctly classified all of them. This is likely due to the fact

that BioConceptVec provides additional information learnt from the entire PubMed abstracts,

making the classification of the two related types easier as a result. Collectively, the results con-

firm the hypothesis that adding concept representatives improves the performance of down-

stream deep learning models and suggests that BioConceptVec has the potential to facilitate

the development of deep learning models in the biomedical domain.

Table 7. Classification results of DDI classification. SOTA: state-of-the-art. P: Precision. R: Recall. The SOTA results are extracted from [63]. Direct comparison: the

results of embeddings using the same method (cbow) and same hyperparameters. Different embedding methods: the results of BioConceptVec (skip-gram), BioConcept-

Vec (GloVe) and BioConceptVec (fastText). The highest results of each section are marked as bold.

Model F1-score on each relation type Overall performance

Int Advice Effect Mechanism P R F

Zhang et al. (SOTA) 0.5400 0.8000 0.7200 0.7400 0.7400 0.7200 0.7300

SEN 0.3569 0.8336 0.7978 0.8463 0.7940 0.7832 0.7776

Direct comparison

SEN + BioAvgWord (cbow) 0.3150 0.7787 0.8000 0.8824 0.7883 0.7814 0.7731

SEN + Yu et al. (cbow) 0.4285 0.8263 0.8133 0.8559 0.7948 0.7961 0.7916

SEN + BioConceptVec (cbow) 0.5206 0.8423 0.8191 0.8692 0.8167 0.8161 0.8105

Different embedding methods

SEN + BioConcept (skip-gram) 0.4090 0.8164 0.8255 0.8626 0.8088 0.8025 0.7941

SEN + BioConcept (GloVe) 0.4587 0.8100 0.8160 0.8702 0.8046 0.8029 0.7963

SEN + BioConcept (fastText) 0.4382 0.8153 0.8200 0.8571 0.7999 0.7998 0.7930

https://doi.org/10.1371/journal.pcbi.1007617.t007
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In this work, we propose BioConceptVec, concept embeddings that focus on primary bio-

logical concepts mentioned in the biomedical literature. We employed SOTA biological NER

tools and trained four concept embeddings on the full collection of ~30 million PubMed

abstracts. We evaluated the effectiveness of BioConceptVec in intrinsic and extrinsic settings,

consisting of ~25 million instances in total. The results demonstrate that BioConceptVec con-

sistently achieves the best performance in multiple datasets and in a range of applications. We

hope that it can facilitate the development of deep learning models in biomedical research. In

the future, we plan to leverage both PubMed abstracts and PMC full-text articles for training

BioConceptVec.

This study focused on the evaluation on human genes because there are rich resources read-

ily available for serving as a gold standard. We plan to evaluate BioConceptVec embeddings

on different concept types in the future. Also, the quality of our concept embeddings is depen-

dent on the accuracy of the NER tools. Improving NER tools such as PubTator would help

enhance the quality of BioConceptVec. Finally, in this work, we did not apply retro-fitting,

which is a fine-tuning step to further optimize the embeddings based on specific tasks with

gold standard labels. For example, one of the most common retro-fitting procedures is to opti-

mize the performance of the generated embeddings on identifying synonyms and acronyms.

We did not employ it because such datasets are very limited for biomedical concepts. We plan

to develop related datasets and apply the approach to further enhance BioConceptVec.
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