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Abstract

Gaussian graphical models are useful tools for exploring network structures in multivariate normal 

data. In this paper we are interested in situations where data show departures from Gaussianity, 

therefore requiring alternative modeling distributions. The multivariate t-distribution, obtained by 

dividing each component of the data vector by a gamma random variable, is a straightforward 

generalization to accommodate deviations from normality such as heavy tails. Since different 

groups of variables may be contaminated to a different extent, Finegold and Drton (2014) 

introduced the Dirichlet t-distribution, where the divisors are clustered using a Dirichlet process. 

In this work, we consider a more general class of nonparametric distributions as the prior on the 

divisor terms, namely the class of normalized completely random measures (NormCRMs). To 

improve the effectiveness of the clustering, we propose modeling the dependence among the 

divisors through a nonparametric hierarchical structure, which allows for the sharing of parameters 

across the samples in the data set. This desirable feature enables us to cluster together different 

components of multivariate data in a parsimonious way. We demonstrate through simulations that 

this approach provides accurate graphical model inference, and apply it to a case study examining 

the dependence structure in radiomics data derived from The Cancer Imaging Atlas.
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1 Introduction

Graphical models describe the conditional dependence relationships among a set of random 

variables. A graph G = (V, E) specifies a set of vertices V = {1,2, …, p} and a set of edges E 
⊂ V × V. In a directed graph, edges are denoted by ordered pairs (i, j) ∈ E. In an undirected 

graph, (i, j) ∈ E if and only if (j, i) ∈ E (Lauritzen, 1996). Here we focus on undirected 

graphical models, also known as Markov random fields. In this class of models, the absence 

of an edge between two vertices means that the two corresponding variables are 

conditionally independent given the remaining variables, while an edge is included 

whenever the two variables are conditionally dependent.

In the context of multivariate normal data, graphical models are known as Gaussian 

graphical models (GGMs) or covariance selection models (Dempster, 1972). In this setting, 

the graph structure G implies constraints on the precision matrix (the inverse of the 

covariance matrix). Specifically, a zero entry in the precision matrix corresponds to the 

absence of an edge in the graph, meaning that the corresponding nodes (variables) are 

conditionally independent. Since graphical model estimation corresponds to estimation of a 

sparse matrix, regularization methods are a natural approach. In particular, the graphical 

lasso (Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007; Friedman et al., 2008), 

which imposes an L1 penalty on the sum of the absolute values of the entries of the precision 

matrix, is a popular method for achieving the desired sparsity. Among Bayesian approaches, 

the Bayesian graphical lasso, proposed as the Bayesian analogue to the graphical lasso, 

places double exponential priors on the off-diagonal entries of the precision matrix (Wang, 

2012; Peterson et al., 2013), while approaches which enforce exact zeros in the precision 

matrix have been proposed by Roverato (2002), Jones et al. (2005), and Dobra et al. (2011). 

Gaussian graphical models have been widely applied in genomics and proteomics to infer 

various types of networks, including co-expression, gene regulatory, and protein interaction 

networks (Friedman, 2004; Dobra et al., 2004; Mukherjee and Speed, 2008; Stingo et al., 

2010; Telesca et al., 2012; Peterson et al., 2016).

Some extensions of standard Gaussian graphical models exist in the literature for the 

analysis of data that show departures from normality. Among others, Pitt et al. (2006) used 

copula models and Bhadra et al. (2018) used Gaussian scale mixtures. Here, we build upon 

the approach of Finegold and Drton (2011, 2014), who introduced a vector of positive latent 

contamination parameters (divisors) regulating the departure from Gaussianity and then 

modeled those as a sample from a nonparametric distribution, specifically a Dirichlet 

process. Their model, however, does not allow the exchange of information among the 

vectors of observed data, since independent Dirichlet process priors are used for each of the 

n samples. We propose to use a more flexible class of nonparametric prior distributions, 

known as normalized completely random measures (NormCRMs), and consider a 
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hierarchical construction where the nonparametric priors for the divisors are conditionally 

independent, given their centering measure, which is itself a completely random measure. 

NormCRMs were first introduced by Regazzini et al. (2003) with the name of Normalized 

Random Measures with Independent increments (NRMI), and subsequently studied by 

several researchers in statistics and machine learning (James et al., 2009; Lijoi and Prünster, 

2010; Caron and Fox, 2017). One of the most commonly used measures in this class is the 

Normalized Generalized Gamma (NGG) process (Lijoi et al., 2007). For illustrations of the 

use of this prior in mixture models, see Argiento et al. (2010), Barrios et al. (2013), and 

Argiento et al. (2016). Theoretical and clustering properties of hierarchical CRMs were first 

investigated by Camerlenghi et al. (2019) (see also Camerlenghi et al., 2017, 2018). 

Subsequently, Argiento et al. (2019) have focused on clustering and computational issues 

arising under mixture models built upon this class of priors. In this paper, we exploit the 

clustering characterization of these constructions to induce sharing of information. More 

specifically, we focus our attention on the normalized generalized gamma process, which 

has been shown to yield a quite flexible clustering structure. Furthermore, we devise a 

suitable MCMC algorithm for posterior sampling.

We are motivated by an application to radiomics data derived from magnetic resonance 

imaging (MRI) of glioblastoma patients collected as part of The Cancer Imaging Atlas. In 

the development of personalized cancer treatment, there is great interest in using information 

from tumor imaging data to better characterize a patient’s disease, as these medical images 

are collected as a routine part of diagnosis. There have been a large number of different 

numerical summaries proposed, but the interpretation of these features is not immediate. It is 

hypothesized that clinically relevant features may be capturing related aspects of the 

underlying disease. Statistical modeling of the dependencies in radiomics data poses 

challenges, however, as the features exhibit outliers and overdispersion due to heterogeneity 

of the tumor presentation across patients.

The paper is organized as follows: we begin in Section 2 with a review of graphical models. 

In Section 3, we lay out the proposed model and summarize computational methods for 

inference. We then illustrate the application of the method to both simulated and a publicly 

available radiomics data set in Section 4. Finally, we conclude with a discussion on the 

current model as well as future directions in Section 5.

2 Background

2.1 Gaussian Graphical Models

Let Xi ∈ ℝp be a random vector, with i = 1, …, n. In GGMs, the conditional independence 

relationships between pairs of nodes encoded by a graph G correspond to constraints on the 

precision matrix Ω = Σ−1 of the multivariate normal distribution

Xi Np(μ, Σ), i = 1, …, n, (1)

with μ ∈ ℝp the mean vector and Σ ∈ ℝp × ℝp a positive definite symmetric matrix. 

Specifically, the precision matrix Ω is constrained to the cone of symmetric positive definite 
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matrices with off-diagonal entry ωij equal to zero if there is no edge in G between nodes i 
and j.

In Bayesian analysis, the standard conjugate prior for the precision matrix Ω is the Wishart 

distribution. Given the constraints of a graph among the variables, Roverato (2002) proposed 

the G-Wishart distribution as the conjugate prior. The G-Wishart is the Wishart distribution 

restricted to the space of precision matrices with zeros specified by a graph G. The G-

Wishart density WG(b, D) can be written as

p(Ω|G, b, D) = IG(b, D)−1 Ω (b − 2)/2 exp − 1
2tr(ΩD) , Ω ∈ PG

where b > 2 is the degrees of freedom parameter, D is a p×p positive definite symmetric 

matrix, IG is the normalizing constant, and PG is the set of all p × p positive definite 

symmetric matrices with ωij = 0 if and only if (i, j) ∉ E. Even when the graph structure is 

known, sampling from this distribution poses computational difficulties since both the prior 

and posterior normalizing constants are intractable. Dobra et al. (2011) proposed a reversible 

jump algorithm to sample over the joint space of graphs and precision matrices that does not 

scale well to large graphs. Wang and Li (2012) and Lenkoski (2013) proposed sampler 

methods that do not require proposal tuning and circumvent computation of the prior 

normalizing constant through the use of the exchange algorithm, improving both the 

accuracy and efficiency of the computations. Mohammadi and Wit (2015) proposed a 

sampling methodology based on birth-death processes for the appearance or removal of an 

edge in the graph. Their algorithm, implemented in the R package BDgraph, can be used 

with the approximation of the normalizing constant of the G-Wishart prior calculated either 

via the Monte Carlo method of Atay-Kayis and Massam (2005) or the Laplace 

approximation of Lenkoski and Dobra (2011).

To sum up, we can write the standard Gaussian graphical model in the Bayesian setting as:

X1, …, Xn |μ, Ω, iidNp(μ, Ω),
μ Np μ0, Ip/σμ2
Ω|G G‐Wishart (G, b, D),
G π(G),

(2)

with the symbol Ip indicating the identity matrix of dimension p. The last ingredient to fully 

specify the model is the prior for the graph G. When prior knowledge is not available, a 

uniform prior is often used (see Lenkoski and Dobra, 2011). However, it is well known that 

this prior is not optimal for sparsity as it favors graphs with a moderately large number of 

edges. To overcome this issue, Dobra et al. (2004) and Jones et al. (2005) suggested 

assigning a small data-dependent inclusion probability to each edge, i.e., 

π(G) ∝ d|E|(1 − d)
p
2 − |E|, with d = 2/(p − 1). This prior, adopted also in this paper, is called 

the Erdős-Rényi prior, and it reduces to the uniform prior when d = 0.5.
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2.2 Robust Graphical Models

Assume Y i ∈ ℝp is a vector of observed data on p variables for subject i, with i = 1, …, n. 

When data show departures from normality, robust models are needed. In particular, as noted 

by Finegold and Drton (2011, 2014), t-distributions are well-suited to accommodate heavy 

tails, and result in minimal loss of efficiency when the data are in fact normal. They propose 

introducing the normal variables Xi in model (2) as latent quantities, and modeling the 

observed data as:

Y ij = μj + Xij
θij

j = 1, …, p, (3)

where θi = (θi1, …, θip), for i = 1, …, n, are data and variable specific perturbation 

parameters (divisors), taking into account the deviation from normality of the observations. 

Using the invariance under linear transformation property of the Gaussian distribution, we 

can express the sampling model as:

Y i |μ, Ω, θi
iidNp(μ, diag( θi) Ω diag( θi)), i = 1…, n . (4)

Different distributions of the vector θi yield different models. Let P0 denote a gamma(v/2, 

v/2) distribution with mean 1 and variance 2/v. If θi1 = θi2 = ⋯ = θip and θi1 ~ P0 (i.e., just 

one common divisor for all the components), then a multivariate t-distribution is assumed for 

the observations. We refer to this model as Yi ~ tp,v(μ,Ω). On the other hand, if θi1, …, θip
iidP0

(i.e., p different divisors, one for each component of the data), then Yi is distributed 

according to an alternative t-distribution, as introduced by Finegold and Drton (2011), and 

denoted by Y i tp, ν* (μ, Ω). As an intermediate case, Finegold and Drton (2014) consider 

θi1, …, θip |Pi
iidPi, Pi ~ DP(κ, P0), where Pi ~ DP(κ, P0) is the Dirichlet process with mass 

parameter κ and centering measure P0. We refer to this model as Y tp, νκ (μ, Ω). A realization 

from the Dirichlet process Pi is almost surely a discrete random probability measure. To give 

an illustration, let p = 2. Therefore, if θi1, θi2 |Pi
iidPi, then with probability 

ℙ θi1 = θi2 = 1
κ + 1 , and Yi = (Yi1, Yi2) ~ t2,v(μ,Ω). On the other hand, with probability κ

κ + 1
we have the alternative t case. Indeed, the two are limiting cases of the Dirichlet t-
distribution when κ → 0 or κ → +∞, respectively. Even though the Dirichlet process has 

proven to perform well in several contexts, it is well known that the clustering it induces is 

often inaccurate as it is affected by the so-called rich-gets-richer effect. In the next section, 

we propose a more flexible approach to mitigate this behavior and to allow for a more 

flexible clustering structure.
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3 Proposed Method

3.1 Robust Graphical Modeling via Hierarchical Normalized Completely Random 
Measures

We propose an extension of the Dirichlet t model that uses a more flexible class of 

nonparametric distributions, namely the class of hierarchical normalized completely random 

measures (NormCRM). Through the use of these measures, we are able to address some of 

the limitations of the Dirichlet process. First, the tendency towards a highly skewed 

distribution of cluster sizes can be mitigated by the use of the more flexible NormCRM. In 

addition, we show how exploiting a hierarchical construction facilitates the sharing of 
information across cluster components in the dataset.

Let Θ be the Euclidean space and let us consider the class of almost surely discrete random 

probability measures that can be written as:

P( ⋅ ) = ∑
l ≥ 1

Jl
Tδτl( ⋅ ) = ∑

l ≥ 1
wlδτl( ⋅ ), (5)

where T = ∑l ≥ 1Jl. We assume P  to be a homogeneous NormCRM, whose law is 

characterized by a Lèvy intensity measure v that factorizes into v(ds, dτ) = α(s)P(dτ)ds, 

where α is the density of a nonnegative measure, absolutely continuous with respect to the 

Lebesgue measure on ℝ+ and regular enough to guarantee that 0 < T < ∞ almost surely, and 

P is a probability measure over (Θ, ℬ). In general, such a factorization does not hold true, 

but by adopting it we ensure that the random jumps {Jl}l≥1 and the random locations {τl}l≥1 

are independent sequences. The random locations τ1, τ2,… are independent and identically 

distributed according to the base distribution P, while the unnormalized random masses 

J1,J2,… are distributed according to a Poisson random measure with intensity α. The 

Dirichlet process is encompassed by this class when α(s) = κs−1e−s, for κ > 0 and s > 0. 

Even though our approach can be implemented with a general NormCRM, in what follows 

we consider the specific case of the normalized generalized gamma (NGG) process (Lijoi et 

al., 2007), which is obtained by choosing α(s) = κ
Γ(1 − σ)s−1 − σe−s, for 0 ≤ σ < 1. This 

nonparametric prior has been shown to be very effective for model-based clustering (Lijoi et 

al., 2007). We also refer readers to Argiento et al. (2015), for an application in biostatistics. 

Note that, when σ = 0, the Dirichlet process is recovered.

A sample θ1, …, θp |P iidP = ∑l ≥ 1wlδτl can be represented via the set of variables 

l = l1, …, lp | wl l ≥ 1
iidDiscrete wl l ≥ 1 , by letting θj = τlj, for j = 1, … , p. Let 

l* = l1*, …, lK*  be the set of the K unique values in l. A partition ρ = {C1, …, CK} of the 

indices {1, …, p} can be defined by letting Cℎ = j:lj = lℎ* , for h = 1, …, K. The partition ρ 

is called l-clustering. Let now θℎ* = τlℎ*. When the centering measure P is diffuse, the θℎ*s

coincide with the unique values in θ = (θ1, …, θp) and the l-clustering coincides with the 

natural clustering, i.e., we can also write Cℎ = j:θj = θℎ* , for h = 1, … , K. The l-clustering 

and the natural clustering can be different when the centering measure P is discrete (see 
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Argiento et al., 2019). In particular, in the discrete case, each θℎ* is the value shared by all the 

indices in the so-called l-cluster Ch, for h = 1, … , K. Furthermore, extending the results in 

Pitman (1996), Ishwaran and James (2003), and Argiento et al. (2019), one can show that, 

for P either atomic or diffuse, the following characterization holds:

ℒ ρ, dθ1*, …, dθK* = ℒ(ρ)ℒ dθ1*, …, dθK* K = eppf(e; κ, σ) ∏
ℎ = 1

K
P dθℎ* , (6)

with e = (e1, … , eK) the vector of l-cluster sizes in the partition ρ, such that eh = #Ch, for 

each h = 1, …, K, and with the notation eppf(e; κ, σ) indicating the exchangeable partition 

probability function (eppf) of the NGG process, a symmetric function of the cluster sizes e, 

as introduced by Pitman (2003). The explicit analytical form of the eppf of a generic 

(homogeneous) NormCRM can be derived (see formulas (36)–(37) in Pitman (2003)) and 

enables the construction of a Gibbs sampler based on the Chinese restaurant process 

representation. In the Dirichlet process case, De Blasi et al. (2015) pointed out that the 

predictive distribution induced by (6), i.e., the probability that θp belongs to a new l-cluster 

given (θ1, …, θp−1), depends only on the dimension p, while in the NGG process case this 

probability depends on both p and K, leading to a more flexible prior. Furthermore, the 

probability that θp belongs to a previously observed l-cluster Ch is proportional to eh − σ, for 

h = 1, …, K. These two properties mitigate the rich-gets-richer behavior arising when 

considering the Dirichlet case.

The first step towards our proposed robust graphical modeling construction is to replace the 

Dirichlet prior on the divisors with an NGG process, yielding the following robust graphical 

model:

Y i |μ, Ω, θi
iidNp(μ, diag( θi) Ω diag( θi)), i = 1…, n,

θi1, …, θip |Pi
iidPi, i = 1, …, n,

P1, …, Pn |κ, σiidNGG(κ, σ, P),
(7)

where P is the distribution on the space of the divisors. Suitable prior distributions can be 

assigned to κ, σ, μ, and Ω. We denote by ρi = Ci1, …, CiKi  the l-clustering induced by Pi in 

each data vector, for i = 1, …, n, as described earlier in this section.

When P is diffuse, model (7) does not allow for sharing of information across the data 

vectors. This can be seen by using characterization (6) to marginalize model (7) with respect 

to the infinite-dimensional parameters P1, …, Pn, and rewriting the last two lines of (7) as:

ρi |κ, σindeppf ei; κ, σ , i = 1, …, n,

θi1* , …, θiKi
* |Ki

iidP, i = 1, …, n,
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where ρi, θi*  represent the partition and the vector of unique values induced by Pi on the 

data components, and ei = ei1, …, eiKi  is the vector of l-cluster sizes in the partition ρi, such 

that eih = #Cih, for each h = 1, …, Ki. By this re-writing, it is clear that the sharing of 

information among the different clustering structures is achieved only via the conditional 

dependence of ρi given κ and σ. In particular, we cannot have shared divisors across data 

vectors, but only across components of the same data vector, since θ*’s are all i.i.d. from the 

diffuse distribution P. We overcome this limitation by considering a more flexible 

hierarchical model formulation that allows for additional sharing of information across the 

samples. Specifically, we assume P to be a random probability measure, namely an NGG 

process centered on a diffuse measure P0. In formulas, the proposed model can be written as 

follows:

Y i |μ, Ω, θi
iidNp(μ, diag( θi) Ω diag( θi)), i = 1…, n,

θi1, …, θip |Pi
iidPi, i = 1, …, n,

P1, …, Pn |κ, σ, P iidNGG(κ, σ, P),
P |κ0, σ0 NGG κ0, σ0, P0 .

(8)

The law of (P1, …, Pn), as given by the last two lines of (8), is called the hierarchical NGG 

(HNGG) process. For ease of notation, we will refer to the mixture model (8) as t-HNGG. 

Theoretical and clustering properties of hierarchical normalized completely random 

measures have been investigated first by Camerlenghi et al. (2019), and a detailed study of 

the clustering induced by these measures in the context of mixture models has been 

conducted in Argiento et al. (2019). An attractive feature of this construction is that it 

induces a two-layered hierarchical clustering structure that allows components of different 

observed data vectors to be clustered together. This two-layered structure consists of an l-
clustering ρi within each group i, and a clustering η that merges elements of ρ1, …, ρn. In 

order to define η more precisely, let θ = θ1
⊤, …, θn

⊤ ⊤
 be the matrix where the row θi is the 

vector of all divisors of the i-th observation, and let ψ = (ψ1, …, ψM) be the vector of 

unique values found in the matrix θ. Let ρ = (ρ1, …, ρn) indicate the l-clustering partitions in 

each data vector, and θ* = θ1*, …, θn*  the corresponding multidimensional array of parameter 

values. We define a clustering of the indices of the multidimensional array θ* by letting η = 

{D1, …, DM} where Dm = (i, ℎ):θiℎ* = ψm, ℎ = 1, …, Ki, i = 1, …, n , with m = 1, …, M. We 

also let d = (d1, …, dM), with dm = #Dm. Then, the law of the matrix θ of divisors, given in 

the last three lines of (8), can be characterized in terms of ρ, η and ψ as:

ℒ(ρ, η, dψ) = ℒ(η |ρ) ∏
i = 1

n
ℒ ρi ∏

m = 1

M
P0 dψm

= eppf d; κ0, σ0 ∏
i = 1

n
eppf ei; κ, σ ∏

m = 1

M
P0 dψm .

(9)
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Full details on the derivation of formula (9) can be found in Argiento et al. (2019). We also 

note that the partially exchangeable partition probability function of Camerlenghi et al. 

(2019) can be obtained from (9) by marginalizing with respect to (η, ψ).

We call the natural clustering induced by θ the partition of indices ℐ = ℐ1, …, ℐM  such 

that (i, j) ∈ ℐm iff θij = ψm. Since the sets of indices ℐm, for m = 1, …, M, can be recovered 

from (ρ, η), formula (9) characterizes the law of the natural clustering. The relationship 

between ℐ and (ρ, η) is clarified in formulas:

ℐm
ρi, η ≔ ∪

ℎ = 1

Ki
(i, j): j ∈ Ciℎ, (i, ℎ) ∈ Dm , m = 1, …, M, (10)

ℐm ≔ ℐm(ρ, η) = ∪
i = 1

n
ℐm

ρi, η , m = 1, …, M .

Formula (9) can be described in terms of a Chinese restaurant franchise process. In our 

context, each observation represents a different restaurant in the franchise, each serving p 
customers, one for each component of the data vector. Customers entering the i-th restaurant 

are allocated to the tables according to eppf(ei; κ, σ), independently from the other 

restaurants in the franchise, and generate the partition ρi = Ci1, …, CiKi , for i = 1, …, n. In 

this metaphor, the elements of ρi represent the tables of the i-th restaurant. Conditionally on 

T = ∑i = 1
n Ki, the tables of the franchise are grouped according to the law described by 

eppf(d; κ0, σ0), thus obtaining a partition of tables. Hence, the elements of η can be 

interpreted as clusters of tables. In addition, all tables in the same cluster Dm share the same 

dish ψm, for m = 1, …, M. Moreover, ψ = (ψ1, …, ψM) is and i.i.d. sample from P0. Under 

this metaphor, eih, for h = 1, …, Ki and i = 1, …, n, represents the number of customers 

seated at the h-th table in the i-th restaurant, while dm, for m = 1, …, M, is the number of 

tables where the m-th dish is served across the franchise. Finally, in this metaphor, the 

natural clustering induced by the corresponding θ is formed of clusters of customers that 

share the same dish across the franchise, and not only in the same restaurant.

3.2 Predictive Structure of the hierarchical NGG

In this paper, we make use of a marginal MCMC algorithm for simulating the nonparametric 

quantities involved in model (8). This algorithm is based on integrating out the infinite-

dimensional parameters P1, …, Pn, P and on the characterization of the generalized Chinese 

restaurant franchise process via formula (9). To drastically reduce the computational 

complexity, it is convenient to consider the predictive structure induced by the hierarchical 

NGG process by using a standard augmentation trick (see James et al., 2009; Lijoi and 

Prünster, 2010). More specifically, we introduce n + 1 auxiliary random variables U = (U1, 

… ,Un, U0), referring to the n clustering structures in each data vector, and to the one 

existing across the whole dataset, respectively. For the NGG process, each partition ρi has 

the following law, jointly with Ui:
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eppf ei, ui; κ, σ =
ui

p − 1

Γ(p) e− κ
σ ui + 1 σ − 1 ∏

ℎ = 1

Ki κ
ui + 1 eiℎ − σ

Γ eiℎ − σ
Γ(1 − σ) , (11)

where Ki is the number of clusters and ei = ei1, …, eiKi  is the vector of cluster sizes in ρi. 

The joint law of (η, U0) has an analogous expression.

Suppose now to have a new variable in the i-th group, whose index is p + 1. We will use an 

abuse on notation by indicating with (p + 1) ∈ Cih, for h = 1, …, Ki, the event that the new 

variable is allocated to the h-th cluster in the i-th group, and with (p + 1) ∈ CiKi + 1 the event 

that the new variable is assigned to a new cluster. It can be shown that the allocation 

probabilities of the new variable are the following, for h = 1, …, Ki:

Piℎ
(to) = ℙ (p + 1) ∈ Ciℎ | ρi, Ui ∝

eppf ei1, …, eiℎ + 1, …, eiKi; κ, σ, ui
eppf ei1, …, eiKi; κ, σ, ui

= eiℎ − σ,

Pi
(tn) = ℙ (p + 1) ∈ CiKi + 1 | ρi, Ui ∝

eppf ei1, …, eiKi, 1; κ, σ, ui
eppf ei1, …, eiKi; κ, σ, ui

= κ ui + 1 σ,

(12)

corresponding to the allocation probabilities of a new customer entering the i-th restaurant, 

and sitting at an existing or at a new table in the generalized Chinese restaurant metaphor. In 

case a new cluster arises, the partition η needs to be updated. The allocation probabilities of 

the new element T + 1 are, for m = 1, …, M:

Pm
(do) = ℙ (T + 1) ∈ Dm | η, U0 ∝ eppf d1, …, dm + 1, …, dM; κ0, σ0, u0

eppf d1, …, dM; κ0, σ0, u0
= dm

− σ0,

P (dn) = ℙ (T + 1) ∈ DM + 1 | η, U0 ∝ eppf d1, …, dM, 1; κ0, σ0, u0
eppf d1, …, dM; κ0, σ0, u0

= κ0 u0 + 1 σ0,

(13)

corresponding to the allocation probabilities that a newly generated table will join a new or 

an existing cluster of tables. Additional details on how to derive (12) and (13) can be found 

in the Supplementary Materials (Cremaschi et al., 2019).

To complete the generalized Chinese restaurant franchise process metaphor, not only does a 

new customer have to select a table, but also a dish from the franchise menu. Suppose the 

new customer enters the i-th restaurant, and let θip+1 be the label of the selected dish. The 

table is picked according to the predictive rules (12) of the i-th restaurant. The customer can 

choose between joining an existing table with label h = 1, …, Ki, or occupying the (Ki+1)-th 

new one. The first choice leads to sharing the dish on the h-th table in the i-th restaurant, i.e. 

θi(p + 1) = θiℎ* . On the other hand, if a new table is chosen, the customer can select a dish 
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from the menu of dishes according to (13). This menu contains dishes that are already served 

in other tables across the franchise, as well as infinitely many new ones, since the centering 

measure P0 is diffuse. Following Argiento et al. (2019), the full-conditional allocation 

probability, for i = 1, …, n is

ℙ (p + 1) ∈ Ciℎ, (i, p + 1) ∈ ℐm
ρi, η |ρ, η, U

= ℙ (i, p + 1) ∈ ℐm
ρi, η | (p + 1) ∈ Ciℎ, ρ, η, U ℙ (p + 1) ∈ Ciℎ |ρ, η, U

∝

Piℎ
(to) ℎ = 1, …, Ki, m = mℎ,

Pm
(do)Pi

(tn) ℎ = Ki + 1, m = 1, …, M

P (dn)Pi
(tn) ℎ = Ki + 1, m = M + 1,

0 otherwise,

(14)

where mh is such that (i, ℎ) ∈ Dmℎ, and the sets ℐm
ρi, η , for m = 1, …, M, are defined in (10). 

These equations are the main blocks to compute the full-conditional allocation probabilities 

needed for posterior sampling, as presented in the next section. Such probabilities can be 

calculated in closed form using equation (9). However, in the next section we make use of 

auxiliary variables as these simplify the sampling algorithm. The conditional predictive 

probabilities hereby specified characterize the prior clustering induced by our nonparametric 

modeling. We refer to Argiento et al. (2019) for results on the distribution of relevant 

quantities, such as the prior distribution of the number of different dishes or the dependence 

induced by our model across observations (e.g. correlation, coskewness).

3.3 MCMC Algorithm

In this section, we describe the MCMC algorithm for posterior inference from model (8), 

embedded within the graphical modeling part described in (2). The state space of the Gibbs 

sampler is given by (μ, Ω, G, ρ, η, ψ). We describe the parameter updates by splitting them 

into two blocks: the graphical model block, which comprises the full conditionals of (μ, Ω, 

G), and the generalized Chinese restaurant franchise block, which includes those for (ρ, η, 

ψ). For simplicity, we will remove the indexing of the Gibbs sampler iteration.

• Graphical model updates: In the following, we will consider the law of (μ, Ω, 

G) conditionally upon the variables (ρ, η, ψ).

– For the update of (Ω, G), we resort to the birth-death algorithm of 

Mohammadi and Wit (2015) available in the R package BDgraph, and 

suitable for non-decomposable graphs. The algorithm proceeds by first 

adding/removing an edge of the graph, and then updating the precision 

matrix Ω using the algorithm presented in Lenkoski (2013). These 

moves have probabilities

ℙ((i, j) ∈ E |μ, Ω, G, Y , θ) ∝ βijb (μ, Ω, G, Y , θ), (i, j) ∉ E,
ℙ((i, j) ∉ E |μ, Ω, G, Y , θ) ∝ βijd (μ, Ω, G, Y , θ), (i, j) ∈ E,
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with βij
b  and βij

d  the birth and death rates of edge (i, j), respectively, 

computed in such a way that the stationary distribution of the Markov 

process is the joint full-conditional of (Ω, G), given (Y, ρ, η, ψ) (see 

Theorem 3.1 in Mohammadi and Wit, 2015). This algorithm is 

particularly efficient since the Markov process specification ensures 

that the birth/death moves are always accepted, contrarily to the 

reversible jump algorithm of Giudici and Green (1999), also 

implemented in the package BDgraph.

– Updating μ: This full-conditional is conjugate. A-priori 

μ Np μ0, Ip/σμ2 , hence:

μ|G, Ω, θ, Y Np mμ, Sμ ,

Sμ = Ip/σμ2 + ∑
i = 1

n
(diag( θi) Ω diag( θi)),

mμ = Sμ μ0/σμ2 + ∑
i = 1

n
(diag( θi) Ω diag( θi))Y i⊤ .

• Generalized Chinese restaurant franchise process updates: We refer to the 

notation of Sections 3.1 and 3.2. Conditionally to the vector of auxiliary 

variables U and the graphical model parameters (μ, Ω, G), the joint law of (8) is:

ℒ Y 1, …, Y n |ρ, η, θ, U, μ, Ω, G ℒ ρ1, …, ρn |U1, …, Un ℒ η|U0 ∏
m = 1

M
P0 dψm

= ∏
i = 1

n
f yi |μ, Ω, θi ∏

i = 1

n
eppf ei; κ, σ, P0, ui eppf d; κ0, σ0, P0, u0 ∏

m = 1

M
P0 dψm ,

with f representing the multivariate Gaussian density introduced in model (8). It 

is important to point out that, under model (8), the observations yij are now 

components of the vector yi and are no longer conditionally independent. Thus, it 

is useful to introduce the following conditional likelihood for a subset of indices 

t ⊂ {1, … p}:

f yit | yi\t, μ, Ω, θi = N yit |μc, [diag( θi) Ω diag( θi)]tt ,
μc = μt − Ωtt

−1Ωt\t yi\t − μ\t θi\t,
(15)

with \t = 1, …, p ∩ t , and t  indicating the complementary set of t. This allows us 

to write the following updates:

– Update of U and ψ: using the expression given in (11) of eppf(·, u0; 

κ0, σ0, P0) and eppf(·,ui; κ, σ, P0), and the centering measure P0, we 

have:
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p Ui | ρi, κ, σ ∝ ui
p − 1e− κ

σ ui + 1 σ − 1

× ∏
ℎ = 1

Ki κ
ui + 1 eiℎ − σ

Γ eiℎ − σ
Γ(1 − σ) , i = 1, …, n,

p U0 | η, κ0, σ0, T ∝ u0
T − 1e−

κ0
σ0

u0 + 1 σ0 − 1

× ∏
m = 1

M κ0

u0 + 1 dm − σ0
Γ dm − σ0
Γ 1 − σ0

,

p ψm |Y , ρ, η ∝ ∏
i = 1

n
f yiℐm

ρi, η | yi\ℐm
ρi, η , μ, Ω, ψm P0 dψm ,

m = 1, …, M .

(16)

These quantities are often known up to a normalizing constant, making 

necessary to implement a series of Metropolis-Hastings (MH) steps. 

Specifically, we use an adaptive MH scheme for the random variables 

U, following the guidelines of Griffin and Stephens (2013). The 

sampling of the unique values ψ is achieved by performing M 
independent standard MH steps. This approach is necessary since the 

full-conditional distribution of ψ presents an intractable normalizing 

constant, and does not allow the use of a direct sampler (Finegold and 

Drton, 2011).

– Update of (ρ, η): We report now the full-conditional distributions for 

the clustering variables (ρ, η). The updating takes advantage of the 

augmented predictive representation given in Section 3.2, inspired by 

(Favaro and Teh, 2013) and by the popular Algorithm 8 of (Neal, 2000). 

Indeed, due to the non-conjugate setting of our model, we augment the 

sample space to include a set of Nc auxiliary variables 

ψc = ψ1
c, …, ψNc

c iidP0. Let the superscript (−ij) denote the conditioning 

on the random variables modified after the removal of the j-th 

observation of the i-th restaurant, for j = 1, …, p and i = 1, …, n. Then, 

conditionally upon Y and (ρ−ij, η−ij), and resorting to (14), the 

probability of assigning the j-th customer to the h-th table of the i-th 

restaurant, where the m-th dish is served, is:
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ℙ j ∈ Ciℎ
−ij, θij = ψm |Y , μ, Ω, G, ρ−ij, η−ij, θ−ij, ψc, U

∝

Piℎ
(to)f yij | yi\j, μ, Ω, θiℎ* , ℎ = 1, …, Ki

−ij

Pi
(tn)Pm

(do)f yij | yi\j, μ, Ω, ψm , ℎ = Ki
−ij + 1, m = 1, …, M−ij

Pi
(tn)P (dn)f yij | yi\j, μ, Ω, ψnc

c /Nc,

ℎ = Ki
−ij + 1, m = M−ij + 1, nc = 1, …, Nc,

(17)

where Ki
−ij + 1 and M−ij +1 are the new table and dish labels, 

respectively. The updating process continues by re-allocating Cih to a 

cluster of tables. To this end, we have to assign Cih to a Dm, for h = 1, 

…, Ki and m = 1, …, M. More formally, let the superscript (−ih) 

indicate the conditioning on the variables after the removal of all the 

observations in Cih. Conditionally on Y and (ρ−ih, η−ih), and using again 

(14), the probability of assigning the h-th table of the i-th restaurant to 

the m-th cluster is:

ℙ (i, ℎ) ∈ Dm
−iℎ, θiℎ* = ψm |Y , ρ−iℎ, η−iℎ, ψ−iℎ, ψc, U

∝
Pm

(do)f yiCiℎ | yi\Ciℎ, μ, Ω, ψm , m = 1, …, M−iℎ,

P (dn)f yiCiℎ | yi\Ciℎ, μ, Ω, ψnc
c /Nc, m = M−iℎ + 1, nc = 1, …, Nc .

(18)

where M−ih + 1 indicates the new dish labels.

Given the output from the MCMC chain, one can estimate the graph structure by 

considering the median graph (Barbieri et al., 2004) as the graph represented by those edges 

(i, j) ∈ E for which the posterior edge inclusion probability ℙ((i, j) ∈ E |Y ) is greater than 0.5. 

Additionally, we can estimate the precision matrix of the sampling model (4) by considering 

the contribution of the divisors θ, as

Ωθ = 1
n ∑

i = 1

n
diag( θi) Ω diag( θi) .

We obtain an analogous estimate Ωθ by averaging over the MCMC samples.

One important feature of the nonparametric prior distributions imposed in models (7) and (8) 

is the ability to cluster the data via the unique values of the divisors θ. In the applications 

below, we illustrate the properties of the random partitions imposed on θ by reporting the 

posterior mean of the number of clusters in each data vector for the independent model (7), 
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and the posterior distribution of the number of clusters among all the data vectors for the 

hierarchical model (8). Both quantities are computed by using the saved iterations of the 

posterior chains of the random partitions ρ and η.

4 Applications

4.1 Simulation Study

In this section we illustrate the performance of the proposed method via simulation studies. 

In particular, we employ two simulated scenarios inspired by the work of Finegold and 

Drton (2014), for ease of comparison. Analogously, an edge (i, j) ∈ E is considered 

“positive” if ℙ((i, j) ∈ E |Y ) > ϵ, for a range of values of ϵ ∈ (0, 1). We compare results 

across different models in terms of the receiver operating characteristic (ROC) curves, by 

calculating true and false positive rates for each of 50 replicated datasets and then computing 

the ROC curves by averaging over the 50 replicates.

AR(1) graph, n = p = 25—In this simulation setting, n = 25 data vectors are simulated 

from model (4) with an AR(1) graph structure on G, induced by a tri-diagonal precision 

matrix Ω where the off-diagonal non-zero elements are set to −1, and the diagonal ones are 

set to 3 apart from the two extremes that are set to 2. The mean vector μ is simulated as p 
independent standard normal random variables. The divisors θ are set to recover different 

distribution structures, namely the multivariate Gaussian (θij = 1 for i = 1, …, n, j = 1, …, p), 

the classical multivariate t-Student θi1 = ⋯ = θip
iidgamma(ν/2, ν/2), i = 1, …, n , and the 

alternative multivariate t-Student θ11, …, θpp
iidgamma(ν/2, ν/2) . Where required, v = 3.

Here, we investigate performance of four different models: an independent Dirichlet model 

(t-DP) obtained from (7) with κ ~ gamma(1, 1) and σ = 0 (E(M) = n4.31,  sd(M) = n1.56); an 

independent t-NGG model obtained from (7) with κ ~ gamma(1, 1) and by setting 

σ = 0.1(E(M) = n4.40, sd(M) = n1.70); a t-HDP model in the form of equation (8) with κ, κ0 

~ gamma(1, 1) and σ = σ0 = 0(E(M) = 4.50, sd(M) = 1.56); and a t-HNGG model obtained 

from (8) with κ, κ0 ~ gamma(1, 1) and by setting (σ, σ0) = (0.5, 0.1) 

(E(M) = 7.67, sd(M) = 2.41). Alternatively, Beta hyperpriors can be imposed on σ, σ0 (see our 

second simulation setting below and Argiento et al. (2019) for a full sensitivity analysis on 

the parameters (κ, κ0, σ, σ0)).

Furthermore, in all models, we set the prior distribution for G to be uniform with edge 

probability d = 0.05. We also set b = p and D = Ip for the prior distribution of Ω, and v = 3. 

For each replicated dataset, we ran an MCMC chain with 50,000 iterations, of which the first 

40,000 are discarded as burn-in period, and 5,000 are saved from the remaining ones, after 

thinning, for estimation purposes.

In order to elucidate the properties of the clustering structure of the divisors induced by our 

model, in Figure 1 we show the posterior distributions of the number of clusters for each of 

the four fitted models, on one of the replicated datasets for each of the three different 

scenarios. As expected, both the t-HDP and the t-HNGG model induce a lower posterior 
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mean number of clusters (in the natural clustering sense), when compared to the number of 

clusters in each data vector induced by the independent t-DP and t-NGG models. This is 

possible thanks to the ability of the hierarchical models to exploit the sharing of information 

across data vectors. This effect is particularly clear when looking at the Gaussian scenario, 

where the proposed model is able to effectively cluster the data into one cluster with high 

posterior probability. On the other hand, in the alternative multivariate t case it is clear how 

the tuning of the hyperparameters plays a crucial role in the resulting partition structure. The 

classical t case shows that neither hierarchical model accurately captures the original number 

of clusters, equal to 25. However, the t-HNGG model outperforms the t-HDP model, 

allowing for higher posterior probability on partitions characterized by a larger number of 

clusters.

Figure 2 shows the comparison of the ROC curves for the four different models, computed 

by averaging over the 50 replicates, for each of the three simulation settings. We can observe 

an agreement in the results for the Gaussian case, while the proposed model performs better 

in the other scenarios, due to the presence of non-unitary divisors that can be captured by the 

flexible nonparametric structure. The t-HDP and t-HNGG models show comparable 

performance. Furthermore, in Table 1 we report the L1, L2, and maximum modulus distances 

between the estimated and the simulated precision matrices, averaged over the 50 replicates, 

for each of the three simulated scenarios. For two matrices A, B ∈ ℝp × p, these measures are 

defined as:

dL1(A, B) = max
1 ≤ j ≤ p

∑
i = 1

p
|aij − bij|,

dL2(A, B) = ∑
i = 1

p
∑
j = 1

p
aij − bij

2,

dmax(A, B) = max
ij

|aij − bij| .

(19)

The proposed model clearly outperforms the independent ones in all simulated scenarios. 

Once again, the two hierarchical models yield comparable results. Additional details on this 

analysis are reported in the Supplementary Materials, where the posterior estimates of the 

precision and covariance matrices are compared for the different models and simulation 

scenarios.

Contaminated data, n = 100 and p = 30—Next, we illustrate the behavior of our model 

on a more complex simulated data structure. In particular, we simulate n = 100 p-

dimensional random vectors, with p = 30. In this set of simulations, the graph structure G is 

produced by splitting the p-dimensional graph into three random graphs of size 10 each, 

while the elements of the related precision matrix Ω are set to 3 on the diagonal (2 at the 

extremes), and to −1 for the off-diagonal non-zero elements. Then, the values are multiplied 

by a constant factor, yielding to a minimum eigenvalue of Ω bigger than 0.5. The divisor 

matrix θ is produced by working on its vectorized version, vec(θ). We sample nr, nc ~ 

Poisson(10), and associate to nrnc randomly selected elements of vec(θ) a divisor ψm ~ 

Unif[0.01, 0.2]. We repeat this process without replacement to produce 4 divisors, and set all 
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the other elements of vec(θ) to 1. For this example, we fit the t-NGG and t-HNGG models 

with hyperpriors σ,σ0 ~ Beta(2, 18), where the prior expectation of the Beta distribution is 

equal to 0.1. The rest of the setting is unchanged from the previous simulation study.

Figure 3 shows the comparison of the ROC curves for our t-HNGG model vs the 

independent counterpart, the t-NGG model. Curves were computed by averaging over 50 

replicated datasets. We observe a clear improvement in the t-HNGG model fitting. Figure 4 

reports a summary of the posterior number of clusters as well as posterior distributions of σ 
and σ0, obtained under the two models. In particular, in the independent model we show the 

posterior mean of the number of clusters in each data vector, while the posterior distribution 

of the number of clusters M is reported for model (8). As expected, the number of clusters in 

each data vector obtained under the t-NGG is higher than in the t-HNGG case, due to the 

lack of sharing of information. Furthermore, the posterior mode of the number of clusters in 

the hierarchical model is very close to the number of unique divisors used to simulate the 

data (i.e., 5 different divisors including 1). We also notice that the posterior distributions of σ 
and σ0 show a clear departure from the Dirichlet process case (achieved when σ = σ0 = 0), 

supporting the choice of the use of the NGG process as a building block for our model.

Finally, Table 2 reports the L1, L2, and maximum modulus distances between estimated and 

true precision matrices, averaged over the 50 replicates, and calculated using formulas (19). 

We also add comparisons with methodologies available in the literature, i.e., the Graphical-

Lasso (Meinshausen and Bühlmann, 2006) and the Bayesian Graphical-Lasso (Wang, 2012). 

The proposed model outperforms both the standard methods and the independent t-NGG 

model.

4.2 Case Study on Radiomics Features

Radiomics is the study of numerical features extracted from radiographic image data, which 

can be used to quantitatively summarize tumor phenotypes (Lambin et al., 2012; Gillies et 

al., 2016). Cellular diagnostic techniques such as biopsies are not only invasive, but they also 

do not allow for a thorough or complete investigation of the entire tumor environment, while 

manual review of images by radiologists is expensive, timeconsuming, and not always 

consistent across raters. Quantitative imaging features mined with radiomics techniques can 

be used to get a more comprehensive picture of the entire lesion environment without having 

to take multiple biopsies or depend on qualitative visual assessments. It has been 

hypothesized that trends in radiomic features are reflective of complementary tumor 

characteristics at the molecular, cellular, and genetic levels (Aerts et al., 2014).

Although the development of novel radiomic features is an active area of research 

(Shoemaker et al., 2018), in this work, we focus on the so-called first and second order 

features, as these are the most commonly used in practice (Gillies et al., 2016). First order 

features consider the collection of intensity values across all voxels in the image, without 

regard for their spatial orientation, and may be referred to as histogram-based or non-spatial. 

Examples of first order features include volume, intensity, mean, median, entropy, kurtosis. 

Second order features account for voxel position in addition to intensity, and are also called 

spatial features. Examples of second order features include eccentricity, solidity, and texture 

features. These features are often computed on multiple combinations of angle, distance, and 
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number of grey levels, leading to a large set of features that can be used in model building 

and data analysis. However, there are challenges in the use of radiomics data for statistical 

modeling. Firstly, features often exhibit departures from normality due to the heterogeneity 

of the tumor images across patients. Secondly, they are often highly correlated. Such 

dependence is partially structural in nature, as the features are all calculated on the same 

voxel data. To date, most efforts at predictive modeling begin with filtering of the features by 

selecting a single representative for each cluster of highly correlated features (Gillies et al., 

2016) or applying rank-based filtering methods across all features (Parmar et al., 2015) or 

within each class of features (Aerts et al., 2014). The screened features are then used as 

input to machine learning algorithms for prediction or classification such as random forests, 

support vector machines, or regularized regression. There is a push in the field, however, 

away from “black box” modeling. For example, there is an interest in establishing the 

genetic basis of the features (known as “radiogenomics”, see Gevaert et al., 2014) and, more 

generally, in enhancing the interpretability of the features, models, and results obtained 

(Morin et al., 2018). Investigation of the relationships between features supports the search 

for links between radiomic features, genotypes, phenotypes, and clinical outcomes in more 

complex statistical models (Stingo et al., 2013) aimed at not only using imaging features for 

prediction, but understanding their interdependence and the genomic and clinical factors that 

shape them.

In this case study, we focus on glioblastoma data collected as part of The Cancer Imaging 

Atlas (TCIA), which provides imaging data on the same set of subjects whose clinical and 

genomic data are available through The Cancer Genome Atlas (TCGA). Specifically, we 

obtained radiomic features extracted from magnetic resonance imaging (MRI) images by 

Bakas et al. (2017), which made a standard set of features publicly available with the goal of 

providing reproducible and accessible data. This data set includes more than 700 radiomic 

features for 102 subjects diagnosed with glioblastoma (GBM). The features provided 

include intensity, volumetric, morphologic, histogrambased, and textural features, as well as 

spatial information and parameters extracted from a glioma growth model (Hogea et al., 

2008). Each subject has scans in the MRI modalities of T1-weighted pre-contrast (T1), T1-

weighted post-contrast (T1-Gd), T2, and T2-Fluid-Attenuated Inversion Recovery (FLAIR). 

The MRI images were segmented into the following regions: the enhancing part of the tumor 

core (ET), the non-enhancing part of the tumor core (NET), and the peritumoral edema 

(ED), and these segmentations were manually checked and approved by a neurologist.

To obtain a usable feature set for the proposed robust graphical model, we first applied a log 

transformation to improve symmetry and reduce the impact of outlying large values in the 

untransformed data. To account for negative values and to handle the presence of zeros, the 

features with negative values were shifted up by the minimum value, and 1 was added to 

each observation for all features before the log transformation was applied. We then assessed 

the pairwise correlation between all the log-transformed features. If a pair had absolute 

correlation greater than 0.8, we removed the feature with a higher mean absolute correlation 

to all other features. In order to focus on features with potential clinical importance, we 

obtained survival information from the TCGA database, and filtered the features to include 

only those with p-value ≤ 0.05 in a univariate Cox proportion hazard model for overall 

survival. This resulted in a set of 26 features for downstream analysis. The features that 
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remain are fairly representative of the different types of features provided in Bakas et al. 

(2017), as well as from the different regions of the brain and MRI modalities. See 

Supplementary Materials for detailed information on these features.

Analysis—The t-HNGG model was applied to the screened features. As in the first 

simulation study, we set κ, κ0 ~ gamma(1, 1) and (σ, σ0) = (0.5, 0.1), yielding E(M) = 8.83
and sd(M) = 2.66. We ran an MCMC chain with 30,000 iterations, with 20,000 burn-in 

iterations and thinned by 2. The edge inclusion was determined by thresholding the posterior 

probability of inclusion (PPI) at 0.5, as in the median model of Barbieri et al. (2004). 

Following Peterson et al. (2015), we computed the Bayesian false discovery rate (FDR) for 

the selected model; the resulting value of 0.053 suggests that our edge selection procedure is 

reasonable.

To assess convergence, we applied the Geweke diagnostic criteria (Geweke et al., 1991) on 

four parameters: κ, κ0, the number of clusters, and the number of edges. The test gave non-

significant p-values for each of the parameters, indicating that the chains converged. The 

trace plots for the number of clusters and the number of edges are given in Figure 5. 

Summaries of the posterior means of the number of clusters in each data vector, the number 

of edges, and the number of clusters are given in Figure 6.

For comparison, we applied the graphical lasso (GLasso) and the Bayesian graphical lasso 

(BGLasso) methods. The regularization parameter for the GLasso was chosen as 0.45 by 

minimizing the Bayesian information criterion (BIC), and the gamma prior for the 

regularization parameter of the BGLasso was set such that the prior mean was also 0.45, 

with shape = 4.5 and scale = 1/10. The BGLasso was run for 13,000 total iterations, with a 

burn in of 3,000. The sampled precision matrices for this method are not sparse, so a 

threshold of 0.1 on the absolute value of the entries in the posterior mean of the precision 

matrix was chosen to create the adjacency matrix.

Results—The graph inferred by the proposed t-HNGG method is presented in Figure 7, 

with three different color schemes to indicate class membership of the nodes by feature type, 

feature region, and imaging modality. In this illustration, we see that features from the same 

type and modality are more likely to be identified as connected, while there are fewer links 

dictated by region: this could imply that it is more critical to have features divided over 

separate regions of the tumor than it is to have a large number of features or to have scans in 

multiple modalities, as the former is more likely to give independent information from the 

different features.

Regarding the comparison to other methods, GLasso and BGLasso produced very similar 

graphs, as is to be expected, and these had fewer edges overall than the graph inferred via 

the t-HNGG model, although there were a couple of connections selected under the lasso 

methods that were not identified in the t-HNGG model. Table 3 reports edge similarities 

between the three methods. In all three graphs, edges are captured that we expect to see, 

such as adjacent bins in various histograms, e.g., there is a connection between bin 1 and bin 

2 of the histogram for the T2 modality of the NET region. The busyness features over three 

different modalities are connected in all three models. However, the two GLasso models 
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only select couplets and triplets, and none of these are particularly surprising, linking 

together similar features that could be considered adjacent in a qualitative sense. As one 

would expect, reducing the PPI threshold in the t-HNGG model increases the number of 

selected edges, while increasing this threshold reduces the number of selections. We found, 

however, that the overlapping edges between the t-HNGG and the graphs inferred with 

GLasso and BGLasso remained consistent across the range of PPI thresholds between 0.2 

and 0.9.

An interesting edge captured by the t-HNGG model that is not captured by the other models 

is one between a histogram feature and a busyness texture feature. Histogram features 

display only the first-order information about the pixels and are not often used to infer any 

information about the adjacency or texture of the images. However, this particular histogram 

feature is of the first bin of the histogram, so this could suggest that heavier tailed pixel 

distributions are harbingers of busyness. The end bin of the histogram was also found to be a 

significant feature for glioma classification by Cho and Park (2017). Further, there are no 

edges in the graphs inferred by the LASSO-type models that connect the solidity feature to 

any other feature, unlike in the t-HNGG graph. Failure to recover edges might be attributed 

to the non-normal distribution shown by this feature, as it can be seen in Figure 8, showing 

once again the power of the t-HNGG model to handle outliers. Edges and dependencies, and 

lack thereof, can be used to inform more complex models for classification and 

characterization, to inform radiologists and clinicians as they begin to utilize radiomics, and 

to enhance the general interpretation as statisticians move away from the “black box 

models” often used on these complicated feature sets.

5 Conclusion

In this paper, we have proposed a class of robust Bayesian graphical models based on a 

nonparametric hierarchical prior construction that allows for flexible deviations from 

Gaussianity in the distribution of the data. The proposed model is an extension of the t-
Dirichlet model presented in Finegold and Drton (2014), where departure from Gaussianity 

is accounted for by including suitable latent variables (divisors) in the sampling model, to 

allow for skewness. In our proposed construction, the law of the divisors is described by a 

hierarchical normalised completely random measure. In particular, in this paper we have 

focused on a hierarchical NGG process, yielding to what we have called a t-HNGG model. 

The advantage of this choice is twofold: on one side, by extending the characterization to the 

NGG process, we induce a more flexible clustering structure when compared to the Dirichlet 

process case; on the other side, by allowing for an additional level of hierarchy in the 

nonparametric prior setting, we achieve sharing of information across the data sample. For 

posterior inference, we have implemented a suitable MCMC algorithm, which is built upon 

the generalized Chinese restaurant franchise metaphor to exploit dependency among the 

components of each data vector (i.e,. customers seated in the same restaurant).

We have illustrated performances of our proposed methodology on simulated data and on a 

case study on numerical features extracted from radiographic image data which can be used 

to quantitatively summarize tumor phenotypes, and that are known to show non-Gaussian 

characteristics. On simulated data, we have shown good recovery of the main features of the 
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data, such as the graph structure and the precision matrix. Additionally, a comparison with 

existing methodologies such as the GLasso and the Bayesian GLasso has shown how these 

methods are outperformed by our proposed model in the presence of non-Gaussian data. On 

the real data, our model has resulted in a less sparse graph than those inferred by GLasso 

and Bayesian GLasso. Furthermore, the inferred relationships highlighted by our estimated 

graph have revealed interesting interpretation in terms of important characteristics of the 

data. These relationships and dependencies, and lack thereof, can provide valuable 

information for follow-up classifications and characterization of radiomics data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Simulation study, AR(1) graph: Posterior number of clusters, comparing the four models 

under study (independent t-DP, independent t-NGG, t-HDP, and t-HNGG), for data 

generated from a Gaussian distribution (first column), a Classical t distribution (second 

column) and an Alternative t distribution (third column). Posterior means for each data 

vector are reported for the independent t-DP and t-NGG models (first and second rows, 

respectively), while posterior distributions are shown for the t-HDP and the t-HNGG models 

(third and fourth rows).
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Figure 2: 
Simulation study, AR(1) graph: ROC curves comparing the independent t-DP and t-NGG 

models with the t-HDP and the t-HNGG models, for data generated from a Gaussian 

distribution, a Classical t distribution and an Alternative t distribution.
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Figure 3: 
Simulation study, contaminated data: ROC curves, t-NGG vs t-HNGG models.
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Figure 4: 
Simulation study, contaminated data: t-NGG vs t-HNGG models. (a) Posterior mean of the 

number of clusters in each data vector (t-NGG); (b,c) posterior distribution of σ and σ0 (t-
NGG); (d) posterior distribution of the number of clusters M (t-HNGG); (e,f) posterior 

distribution of σ and σ0 (t-HNGG).
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Figure 5: 
Case study on radiomics data: Trace plots of the parameters for the numbers of edges and 

the number of clusters for the t-HNGG model.
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Figure 6: 
Case study on radiomics data: (a) Posterior mean of the number of clusters in each data 

vector; (b) Posterior distribution of the number of edges; (c) Posterior distribution of the 

number of clusters.
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Figure 7: 
Case study on radiomics data: The resulting graph from the t-HNGG model is depicted in 

plots (a)–(c). In each plot, colors are used to indicate class membership of the graph nodes, 

according to different characteristics of the features, i.e, (a) feature type, (b) feature region, 

and (c) imaging modality.
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Figure 8: 
Case study on radiomics data: A histogram of the data for the 9th feature, solidity of the 

NET region.
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Table 1:

Simulation study, AR(1) graph: Average distances between Ωθ and Ωθ.

Gaussian

t-DP t-NGG t-HDP t-HNGG

L1 15.5948 15.3678 3.3862 3.4717

L2 26.4608 26.2770 6.8677 6.8875

Max 9.2539 9.1041 1.1490 1.2120

Classical t

t-DP t-NGG t-HDP t-HNGG

L1 12.7382 13.0816 4.3448 4.3848

L2 16.6510 17.2454 9.0376 8.7959

Max 6.1404 6.3945 1.5965 1.6277

Alternative t

t-DP t-NGG t-HDP t-HNGG

L1 8.5563 9.2981 5.3283 5.2390

L2 11.3243 12.0485 9.0608 8.8924

Max 4.7448 5.3204 2.8309 2.7630
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Table 2:

Simulation study, contaminated data: Average distances between Ωθ and Ωθ.

G-Lasso Bayes G-Lasso t-NGG t-HNGG

L1 6.9213 6.9089 6.6516 5.6287

L2 17.2031 18.3216 16.2151 8.6058

Max 3.2770 3.4513 3.1293 1.6143
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Table 3:

Case study on radiomics data: Number of edges in each of the graphs inferred by GLasso, BGLasso and the t-
HNGG model, and number of shared edges between pairs of graphs.

GL BGL t-HNGG

GL 7 7 5

BGL 8 6

t-HNGG 19
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