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Abstract Spike sorting is a crucial step in electrophysiological studies of neuronal activity. While
many spike sorting packages are available, there is little consensus about which are most accurate
under different experimental conditions. SpikeForest is an open-source and reproducible software
suite that benchmarks the performance of automated spike sorting algorithms across an extensive,
curated database of ground-truth electrophysiological recordings, displaying results interactively
on a continuously-updating website. With contributions from eleven laboratories, our database
currently comprises 650 recordings (1.3 TB total size) with around 35,000 ground-truth units. These
data include paired intracellular/extracellular recordings and state-of-the-art simulated recordings.
Ten of the most popular spike sorting codes are wrapped in a Python package and evaluated on a
compute cluster using an automated pipeline. SpikeForest documents community progress in
automated spike sorting, and guides neuroscientists to an optimal choice of sorter and parameters
for a wide range of probes and brain regions.

Introduction
Background

Direct electrical recording of extracellular potentials (Buzsaki, 2004; Seymour et al., 2017) is one of
the most popular modalities for studying neural activity since it is possible to determine, with sub-
millisecond time resolution, individual firing events from hundreds (potentially thousands) of cells,
and to track the activity of individual neurons over hours or days. Recordings are acquired either
from within the living animal (in vivo) or from extracted tissue (ex vivo), at electrodes separated by
typically 5-25 pum, with baseline noise on the order of 10 uV RMS and 10-30 kHz sampling rate.
Probes for in vivo use—which are usually needle-like to minimize tissue damage during insertion—
include microwire monotrodes (Hubel, 1957; Nicolelis et al., 1997), tetrodes (Gray et al., 1995;
Harris et al., 2000; Dhawale et al., 2017), and multi-shank probes (with typically 1-4 columns of
electrodes per shank) on silicon (Csicsvari et al., 2003; Buzsaki, 2004; Jun et al., 2017b) or polymer
(Kuo et al., 2013; Chung et al., 2019) substrates. Multiple such probes are often combined into
arrays to cover a larger volume in tandem. For ex vivo use (e.g., explanted retina), planar, two-
dimensional multi-electrode arrays (MEAs) are common, allowing channel counts of up to tens of
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thousands (Eversmann et al., 2003; Litke et al., 2004; Berdondini et al., 2005; Yuan et al., 2016,
Tsai et al., 2017).

Spike sorting is an essential computational step needed to isolate the activity of individual neu-
rons, or units, within extracellular recordings which combine noisy signals from many neurons. Histor-
ically, this procedure has relied on manual steps (Hazan et al., 2006; Prentice et al., 2011,
Rossant et al., 2016): putative waveforms crossing an amplitude threshold are visualized in a low-
dimensional space (either using peak amplitudes or dimensionality reduction techniques), then clus-
ters are separated by eye. While manual spike sorting is manageable with small numbers of record-
ing channels, the rapid growth in channel counts and data volume in recent years as well as the
requirement for reproducibility and objectivity demand automated approaches.

Most automated algorithms apply a sequence of steps that include filtering, detection, dimension
reduction, and clustering, although these may be combined with (or replaced by) many other
approaches such as template matching (Prentice et al., 2011; Pillow et al., 2013, Pachitariu et al.,
2016), dictionary learning or basis pursuit (Carlson et al., 2014; Ekanadham et al., 2014), and inde-
pendent component analysis (Takahashi et al., 2002; Buccino et al., 2018). The past 20 years have
seen major efforts to improve these algorithms, with recent work focusing on the challenges arising
from probe drift (changing spike waveform shapes), spatiotemporally overlapping spikes, and mas-
sive data volumes. We will not attempt a full review here, but instead refer the reader to,
for example Fee et al., 1996; Lewicki, 1998; Quiroga, 2012; Einevoll et al., 2012, Rey et al.,
2015; Lefebvre et al., 2016; Hennig et al., 2019; Carlson and Carin, 2019.

In the last few years, many automated spike sorters have been released and are in wide use. Yet,
there is little consensus about which is the best choice for a given probe, brain region and experi-
ment type. Often, decisions are based not on evidence of accuracy or performance but rather on the
ease of installation or usage, or historical precedent. Thus, the goals of extracting the highest quality
results from experiments and of improving reproducibility across laboratories (Denker et al., 2018;
Harris et al., 2016) make objective comparison of the available automated spike sorters a pressing
concern.

Prior work
One approach to assessing spike sorter accuracy is to devise intrinsic quality metrics that are applied
to each sorted unit, quantifying, for instance, the feature-space isolation of a cluster of firing events
(Pouzat et al., 2002; Schmitzer-Torbert et al., 2005; Hill et al., 2011, Neymotin et al., 2011,
Barnett et al., 2016; Chung et al., 2017). Another approach is to use biophysical validation meth-
ods such as examining cross-correlograms or discovered place fields (Li et al., 2015; Chung et al.,
2017). However, the gold standard, when possible, is to evaluate the sorter by comparing with
ground-truth data, that is using recordings where the spike train for one or more units is known a
priori. Laboratory acquisition of such recordings is difficult and time-consuming, demanding simulta-
neous paired extracellular and intra-/juxta-cellular probes (Harris et al., 2000; Franke et al., 2015;
Neto et al., 2016; Yger et al., 2018; Allen et al., 2018; Marques-Smith et al., 2018a). Since the
number of ground-truth units collected in this way is currently small (one per recording), hybrid
recordings (where known synthetic firing events are added to experimental data) (Marre et al.,
2012; Steinmetz, 2015; Rossant et al., 2016; Pachitariu et al., 2016; Wouters et al., 2019), and
biophysically detailed simulated recordings (Camunas-Mesa and Quiroga, 2013; Hagen et al.,
2015; Gratiy et al., 2018; Buccino and Einevoll, 2019), which can contain 1-2 orders of magnitude
more ground-truth units, have also been made available for the purpose of method validation.
Recently, such ground-truth data have been used to compare new spike sorting algorithms
against preexisting ones (Einevoll et al., 2012; Pachitariu et al., 2016; Chung et al., 2017,
Jun et al., 2017a; Lee et al., 2017, Yger et al., 2018). However, the choice of accuracy metrics,
sorters, data sets, parameters, and code versions varies among studies, making few of the results
reproducible, transparent, or comprehensive enough to be of long-term use for the community. To
alleviate these issues, a small number of groups initiated web-facing projects to benchmark spike
sorter accuracy, notably G-Node (Franke et al., 2012), a phy hybrid study (Steinmetz, 2015) and
spikesortingtest (Mitelut, 2016). To our knowledge, these unmaintained projects are either small-
scale snapshots or are only partially realized. Yet, in the related area of calcium imaging, leader-
board-style comparison efforts have been more useful for establishing community benchmarks
(Freeman, 2015; Berens et al., 2018).
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We have addressed the above needs by creating and deploying the SpikeForest software suite. Spi-
keForest comprises a large database of electrophysiological recordings with ground truth (collected
from the community), a parallel processing pipeline that benchmarks the performance of many auto-
mated spike sorters, and an interactive website that allows for in-depth exploration of the results. At
present, the database includes hundreds of recordings, of the types specified above (paired and
state-of-the-art biophysical simulation), contributed by eleven laboratories and containing more than
30,000 ground-truth units. Our pipeline runs the various sorters on the recordings, then finds, for
each ground-truth unit, the sorted unit whose firing train is the best match, and finally computes
metrics involving the numbers of correct, missing, and false positive spikes. A set of accuracy evalua-
tion metrics are then derived per ground-truth unit for each sorter. By averaging results from many
units of a similar recording type, we provide high-level accuracy summaries for each sorter in various
experimental settings. In order to understand the failure modes of each sorter, SpikeForest further
provides various interactive plots.

A central aim of this project is to maximize the transparency and reproducibility of the analyses.
To this end, all data—the set of recordings, their ground-truth firings, and firing outputs from all
sorters—are available for public download via our Python API. SpikeForest itself is open-source, as
are the wrappers to all sorters, the Docker (Merkel, 2014) containers, and all of the parameter set-
tings used in the current study results. In fact, code to rerun any sorting task may be requested via
the web interface, and is auto-generated on the fly. Both the code and the formulae (for accuracy,
SNR, and other metrics) are documented on the site, with links to the source code repositories.

Contribution

Our work has three main objectives. The primary goal is to aid neuroscientists in selecting the opti-
mal spike sorting software (and algorithm parameters) for their particular probe, brain region, or
application. A second goal is to spur improvements in current and future spike sorting software by
providing standardized evaluation criteria. This has already begun to happen as developers of some
spike sorting algorithms have already made improvements in direct response to this project. As a
byproduct, and in collaboration with the Spikelnterface project (Buccino et al., 2019), we achieve a
third objective of providing a software package which enables laboratories to run a suite of many
popular, open-source, automatic spike sorters, on their own recordings via a unified Python
interface.

Results

In conjunction with the Spikelnterface project (Buccino et al., 2019), the SpikeForest Python pack-
age provides standardized wrappers for the following popular spike sorters: HerdingSpikes2
(Hilgen et al., 2017), IronClust (Jun et al., in preparation), JRCLUST (Jun et al., 2017a), KiloSort
(Pachitariu et al., 2016), KiloSort2 (Pachitariu et al., 2019), Klusta (Rossant et al., 2016), Mountain-
Sortd (Chung et al., 2017), SpyKING CIRCUS (Yger et al., 2018), Tridesclous (Garcia and Pouzat,
2019), and WaveClus (Chaure et al., 2018; Quiroga et al., 2004). Details of each of these algo-
rithms are provided in Table 1. Since each of these spike sorters operates within a unique computing
environment, we utilize Docker (Merkel, 2014) and Singularity (Kurtzer et al., 2017) containers to
rigorously encapsulate the versions and prerequisites for each algorithm, ensuring independent veri-
fiability of results, and circumventing software library conflicts.

The electrophysiology recordings (together with ground-truth information) registered in SpikeFor-
est are organized into studies, and studies are then grouped into study sets. Table 1 details all study
sets presently in the system. Recordings within a study set share a common origin (e.g., laboratory)
and type (e.g., paired), whereas recordings within the same study are associated with very similar
simulation parameters or experimental conditions.

Each time the collection of spike sorting algorithms and ground-truth datasets are updated, our
pipeline, depicted in Figure 1, reruns the ten sorters on the recordings. It then finds, for each
ground-truth unit, the sorted unit whose firing train is the best match, and finally computes metrics
involving the numbers of correct, missing, and false positive spikes. A set of accuracy evaluation met-
rics are then derived per ground-truth unit for each sorter and displayed on the website.
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Table 1. Table of spike sorting algorithms currently included in the SpikeForest analysis.

Each algorithm is registered into the system via a Python wrapper. A Docker recipe defines the operating system and environment
where the sorter is run. Algorithms with asterisks were updated and optimized using SpikeForest data. For the other algorithms, we
used the default or recommended parameters.

Sorting algorithm

Language

Neuroscience

Notes

HerdingSpikes2*

Python

Designed for large-scale, high-density multielectrode arrays. See Hilgen et al., 2017.

IronClust* MATLAB and CUDA Derived from JRCLUST. See Jun et al., in preparation.

JRCLUST MATLAB and CUDA Designed for high-density silicon probes. See Jun et al., 2017a.
KiloSort MATLAB and CUDA Template matching. See Pachitariu et al., 2016.

KiloSort2 MATLAB and CUDA Derived from KiloSort. See Pachitariu et al., 2019.

Klusta Python Expectation-Maximization masked clustering. See Rossant et al., 2016.

MountainSort4

Python and C++

Density-based clustering via ISO-SPLIT. See Chung et al., 2017.

SpyKING CIRCUS*

Python and MPI

Density-based clustering and template matching. See Yger et al., 2018.

Tridesclous*

Python and OpenCL

See Garcia and Pouzat, 2019.

WaveClus

MATLAB

Superparamagnetic clustering. See Chaure et al., 2018; Quiroga et al., 2004.

Web interface

The results of the latest SpikeForest analysis may be found at https://spikeforest.flatironinstitute.org
and are updated on a regular basis as the ground-truth recordings, sorting algorithms, and sorting
parameters are adjusted based on community input. The central element of this web page is the
main results matrix (Figure 2) which summarizes results for each sorter listed in Table 1 (using

Ground truth
recordings

study 1

Spike sorters HS2 || IRC || JRC|| KS || KS2 || KLU ||MS4 || SC || TDC ||WAV

=

55155PF

ephys recording
i L
hed | v]"""

i ! ™y

ground truth firings

| | |

p———————time

sorted firings Results table
run chosen

sorter

U

Compute accuracy @ of best-matching
unit, and other metrics

L. ()OO0

[

000000
0. 000000

Figure 1. Simplified flow diagram of the SpikeForest analysis pipeline. Each in a collection of spike sorting codes (top) are run on each recording with
ground truth (left side) to yield a large matrix of sorting results and accuracy metrics (right). See the section on comparison with ground truth for
mathematical notations. Recordings are grouped into ‘studies’, and those into ‘study sets’; these share features such as probe type and laboratory of
origin. The web interface summarizes the results table by grouping them into study sets (as in Figure 2), but also allows drilling down to the single
study and recording level. Aspects such as extraction of mean waveforms, representative firing events, and computation of per-unit SNR are not shown,
for simplicity.
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Figure 2. Main results table from the SpikeForest website showing aggregated results for 10 algorithms applied to 13 registered study sets. The left
columns of the table show the average accuracy (see (5)) obtained from averaging over all ground-truth units with SNR above an adjustable threshold,
here set to 8. The right columns show the number of ground-truth units with accuracy above an adjustable threshold, here set to 0.8. The first five study
sets contain paired recordings with simultaneous extracellular and juxta- or intra-cellular ground truth acquisitions. The next six contain simulations from
various software packages. The SYNTH_JANELIA, obtained from Pachitariu et al., 2019, is simulated noise with realistic spike waveforms
superimposed at known times. The last study set is a collection of human-curated tetrode data. An asterisk indicates an incomplete (timed out) or failed
sorting on a subset of results; in these cases, missing accuracies are imputed using linear regression as described in the Materials and methods. Empty
cells correspond to excluded sorter/study set pairs. These results reflect the analysis run of March 23rd, 2020.

formulae defined later by Equation 5). The average accuracies are mapped to a color scale (heat
map), with darker blue indicating higher accuracy, using a nonlinear mapping designed to highlight
differences at the upper end. For the average accuracy table on the left, only ground-truth units with
SNR above a user-adjustable threshold are included in the average accuracy calculations; the user
may then explore interactively the effect of unit amplitude on the sorting accuracies of all sorters. If
a sorter either crashes or times out (>1 hr run time) on any recording in a study set, an asterisk is
appended to that accuracy result, and the missing values are imputed using linear regression as
described in the Materials and methods section (there is also an option to simply exclude the miss-
ing data from the calculation).

The right table of Figure 2 displays the number of ground truth units with accuracy above a user-
adjustable threshold (0.8 by default), regardless of SNR. This latter table may be useful for determin-
ing which sorters should be used for applications that benefit from a high yield of accurately sorted
units and where the acceptable accuracy threshold is known. The website also allows easy switching
between three evaluation metrics (accuracy, precision, and recall) as described in the section on
comparison with ground truth.

Clicking on any result expands the row into its breakdown across studies. Further breakdowns are
possible by clicking on the study names to reveal individual recordings. Clicking on any result brings
up a scatter plot of accuracy vs. SNR for each ground-truth unit for that study/sorter pair (e.g., Fig-
ure 3, left side). Additional information can then be obtained by clicking on the markers for individ-
ual units, revealing individual spike waveforms (e.g., Figure 3, right side).

Parallel operation and run times
Since neuroscientist users also need to compare the efficiencies (speeds) of algorithms, we measure
total computation time for each algorithm on each study, and provide this as an option for display
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Figure 3. Screenshots from the SpikeForest website. (left) Scatter plot of accuracy vs. SNR for each ground-truth unit, for a particular sorter (KiloSort2)
and study (a simulated drift dataset from the SYNTH_JANELIA study set). The SNR threshold for the main table calculation is shown as a dashed line,
and the user-selected unit is highlighted. Marker area is proportional to the number of events, and the color indicates the particular recording within
the study. (right) A subset of spike waveforms (overlaid) corresponding to the selected ground truth unit, in four categories: ground truth, sorted, false
negative, and false positive.

on the website via a heat map. Run times are measured using our cluster pipeline, which allocates a
single core to each sorting job on shared-memory multi-core machines (with GPU resources as
needed). Since many jobs thus share I/O and RAM bandwidth on a given node, these cannot be
taken as accurate indicators of speeds in ideal, or even typical, laboratory settings. We emphasize
that our pipeline has been optimized for generation and updating of the accuracy results, not for
speed benchmarking. For these reasons, we will not present run time comparisons in this paper,
referring the interested reader to the website. Here we only note that older sorters such as Klusta
can be over 30 times slower than more recent GPU-enabled sorters such as KiloSort and IronClust.
At present, the total compute time for the 650 recordings and 10 sorters is 380 core hours, yet it
takes only 3-4 hr (excluding failing jobs) to complete this analysis when run in parallel on our com-
pute cluster with up to 100-200 jobs running simultaneously (typically 14 jobs per node). Since the
system automatically detects which results require updating, the pipeline may be run on a daily basis
utilizing minimal compute resources for the usual situation where few (if any) updates are needed.

Sorter accuracy comparison results

We now draw some initial conclusions about the relative performances of the spike sorters based on
the threshold choices in Figure 2. No single spike sorter emerged as the top performer in all study
sets, with IronClust, KiloSort2, MountainSort4, and SpyKING CIRCUS each appearing among the
most accurate in at least six of the study sets.

The higher average accuracy of KiloSort2 over its predecessor KiloSort is evident, especially for
paired recordings. However, in synthetic studies, particularly tetrodes, KiloSort finds more units
above accuracy 0.8 than KiloSort2. Scatter plots (e.g., Figure 3, left side) show that KiloSort2 can
retain high accuracy down to lower SNR than other sorters, but not for all such low-SNR units. While
KiloSort2 was among the best performers for six of the study sets, KiloSort and KiloSort2 had higher
numbers of crashes than any of the other sorters, including crashing on every one of the SYNTH_VIS-
APY recordings. It is likely that modifications to sorting parameters could reduce the number of
crashes, but attempts so far, including contacting the author, have not yet fixed this problem. In the
synthetic datasets, KiloSort2 had the largest number of false positive units (distinct from the false
positive rate of a single unit), but this is not currently reported by SpikeForest (see Discussion).
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IronClust appears among the top average accuracies for eight of the study sets, and is especially
strong for the simulated and drifting recordings. For most study sets, IronClust has improved accu-
racy over its predecessor JRCLUST, and is also improved in terms of speed and reliability (no crashes
observed). Although a substantial portion of the development of the IronClust software took place
while it had access to the SpikeForest ground truth datasets, the same sorting parameters are used
across all studies, limiting the potential for overfitting (see Discussion).

MountainSort4 is among the top performers for six of the study sets (based on the average accu-
racy table) and does particularly well for the low-channel-count datasets (monotrodes and tetrodes).
It is not surprising that MountainSort4 is the top performer for MANUAL_FRANKLAB because that
data source was used in development of the algorithm (Chung et al., 2017).

When considering the left table (average accuracy), SpyKING CIRCUS is among the best sorters
for ten study sets. However, it ranks a lot lower in the unit count table on the right of Figure 2. This
was an example of a sorter that improved over a period of months as a result of using SpikeForest
for benchmarking.

HerdingSpikes2 was developed for high-density MEA probes and uses a 2D estimate of the spike
location, hence was applied only for recordings with a sufficiently planar electrode array structure
(this excluded tetrodes and linear probes). For PAIRED_MEA64C_YGER its performance was similar
to other top sorters, but in the other study sets, it was somewhat less accurate. One advantage of
HerdingSpikes2 not highlighted in the results table is that it is computationally efficient for large
arrays, even without using a GPU.

Tridesclous is among the top performers for both MEAREC study sets and for PAIRED_MEA64-
C_YGER, but had a substantially lower accuracy for most of the other datasets. This algorithm
appears to struggle with lower-SNR units.

Klusta is substantially less accurate than other sorters in most of the study sets, apart from MAN-
UAL_FRANKLAB where, surprisingly, it found the most units above accuracy 0.8 of any sorter. It also
has one of the highest crash/timeout rates.

The version of WaveClus used in SpikeForest is only suited for (and only run on) monotrodes; a
new version of WaveClus now supports polytrodes, but we have not yet integrated it. We included
both paired and synthetic monotrode study sets with studies taken from selected single electrodes
of other recordings. Four sorters (HerdingSpikes2, JRCLUST, KiloSort, and KiloSort2) were unable to
sort this type of data. Of those that could, MountainSort4 was the most accurate, with accuracies
slightly higher than WaveClus.

An eleventh algorithm, Yet Another Spike Sorter (YASS) (Lee et al., 2017), was not included in
the comparison because, even after considerable effort and reaching out to the authors, its perfor-
mance was too poor, leading us to suspect an installation or configuration problem. We plan to
include YASS in a future version of the analysis.

Precision and recall results

Depending on the scientific question being asked, researchers may want to place a greater impor-
tance on maximizing either precision or recall. Precision is the complement of the false positives rate
which corresponds to spikes incorrectly labeled as coming from some true neuron. A low precision
(high number of false positives) may result in illusory correlations between units and a potentially
false conclusion that the neurons are interacting, or may result in a false correlation between a unit
firing and some stimulus or task. A low recall, on the other hand, means a large fraction of the true
firing events are missed, causing a general reduction in putative firing rates, and also possibly intro-
ducing false correlations.

Figure 4 shows aggregated precision and recall scores for the results in the main SpikeForest
table, again using the SNR threshold of 8 (keep in mind that conclusions can depend strongly on this
threshold). We will not attempt to summarize the entire set of results, only to make two observa-
tions. For the paired studies, the sorters that have the highest precisions are IronClust, KiloSort2,
MountainSort4, and SpyKING CIRCUS. For the paired and manual studies, precisions are generally a
lot lower than recalls, across most sorters. Interestingly, this is not generally true for the synthetic
studies (where often the precision is higher than recall), indicating that, despite the sophistication of
many of these simulations, they may not yet be duplicating the firing and noise statistics of real-
world electrophysiology recordings.
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Figure 4. Results table from the SpikeForest website, similar to the left side of Figure 2 except showing aggregated precision and recall scores rather
than accuracy. Precision measures how well the algorithm avoids false positives, whereas recall is the complement of the false negative rate. An asterisk
indicates an incomplete (timed out) or failed sorting on a subset of results; in these cases, missing accuracies are imputed using linear regression as
described in the Materials and methods. Empty cells correspond to excluded sorter/study set pairs. These results reflect the analysis run of March 23rd,
2020.

How well can quality metrics predict accuracy?

In addition to informing the selection of a spike sorter, our SpikeForest analysis provides an unprece-
dented opportunity to compare various quality metrics that can be used to accept or reject sorted
units when ground truth is not available (i.e., in a laboratory setting). For each sorter, what is the
quality metric (or combination thereof) most predictive of actual accuracy? Figure 5 is based on the
SYNTH_JANELIA tetrode study and shows the relationships between ground-truth accuracy and
three metrics of the sorted units: SNR, mean firing rate, and inter-spike interval violation rate (ISl-vr)
(Hill et al., 2011). The latter is the ratio between the number of refractory period violations (2.5 ms
threshold) and the expected number of violations under a Poisson spiking assumption. We observe
that these relationships are highly dependent on the spike sorter. For IronClust, the SNR and log ISI-
vr are predictive of accuracy, whereas firing rate is much less predictive. For KiloSort and SpyKING
CIRCUS, firing rate and SNR are both predictive, but log ISI-vr does not appear to correlate. For Kil-
oSort2 and MountainSort4, firing rate is the only predictive metric of the three. The final column in
this plot shows that a linear combination of metrics is a better predictor than any metric alone. We
note that this predictive ability will also depend on the recording type, and, in this case, fidelity of
the simulation. For these reasons it is an important future task to extend this type of study across
the entire database; see the discussion below.

Discussion

We have introduced a Python framework and public website for evaluating and comparing many
popular spike sorting algorithms by running them on a large and diverse set of curated electrophysi-
ology datasets with ground truth. We have described the principal features of the website. The
Materials and methods section details how we prepared ground truth data of varying types (paired,
synthetic, and manually-curated) and apply the algorithms in a uniform, transparent, and unbiased
manner. We have summarized initial findings comparing sorter accuracies, and invite the reader to
explore the continually updating results on the live site.
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Figure 5. Relationship between ground-truth accuracy and three quality metrics for all sorted units (with SNR >5), for the SYNTH_JANELIA tetrode
study and five spike sorting algorithms. Each marker represents a sorted unit. The x-axis of the plots in the final column is the predicted accuracy via
linear regression using all three predictors (SNR, firing rate, and log ISl-vr).

One conclusion is that (as of this time) there is no single sorter that is the most accurate across a

diversity of probe types, experimental conditions, metric types and SNR cut-offs. Rather, several dif-
ferent sorters are optimal in different settings. For example, MountainSort4 performs especially well
for low channel counts (tetrodes and monotrodes), IronClust excels in the simulated and drifting

datasets, while KiloSort2 retains higher accuracy (for units that are found) at lower SNR than other
sorters.
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Our contribution also helps to overcome some practical issues with neurophysiology research in
the laboratory. Traditionally, spike sorting codes bring special requirements for installation and cus-
tom input/output file formats, and also require expertise in sorting parameter selection and using
visualization and curation utilities intimately tied to that code. This problem has been exacerbated
by the use of GPU computing to improve performance in recently developed codes. It is therefore
challenging, and unusual, for a laboratory to have more than one or two installed sorters for in-house
evaluation. Part of this obstacle is overcome by the Spikelnterface project (Buccino et al., 2019),
which SpikeForest utilizes, but another part is solved by the Docker and Singularity containers that
we have developed to fully capture the operating system environments needed by each sorter.

In the past, comparisons between spike sorting algorithms have been biased or limited. Almost
all have been presented in the context of a new or improved method, and so the choice of simula-
tions used for evaluation can often be (unintentionally) biased toward showing that the new method
is superior. Given only such reports, it is impractical for readers to verify that the various sorters
were used properly and with sensible parameters. The openness and reproducibility of SpikeForest
in part remedies this situation.

Validation approach and challenges

There are many ongoing challenges to the validation of spike sorters. Although human curation is
still part of the spike sorting analysis pipeline in most labs, the increase in the potential yield from
recently developed high-density recording devices will soon make this step infeasible. We therefore
have adopted the philosophy that spike sorting algorithms should be evaluated in an automated
reproducible fashion on recordings that we make publicly available, and that, when used for bench-
marking purposes, the algorithms should be wrapped and run server-side without the possibility of
human curation of their output. This follows evaluation efforts for automated clustering algorithms
such as ClustEval (Wiwie et al., 2015). We constrast this to ‘competition’-style efforts (Franke et al.,
2012; Freeman, 2015; Berens et al., 2018) which allow contributions of (potentially non-reproduc-
ible) sorting results, and which report accuracy on held-out data whose ground truth is necessarily
private, and thus cannot be interrogated by the community.

Although some effort has been made to choose good parameters for each sorter, optimal choices
are not guaranteed. We anticipate that a use case for SpikeForest will be finding the best combina-
tion of sorter and parameters for a particular recording type. However, automated parameter opti-
mization (as in ClustEval by Wiwie et al., 2015) has not yet been implemented, since it would
multiply the total CPU cost by a large factor. For now, we encourage the community to contact us
with improved settings or algorithms. Indeed, we reached out to the developers of all ten tested
sorters in mid-2019 with preliminary results, and several developers (including at least those of SpyK-
ING CIRCUS, HerdingSpikes2, IronClust, and Tridesclous; see Table 1) have already used SpikeFor-
est to improve their software. We emphasize that, for reproducibility, sorter versions and parameter
choices used for each date-stamped analysis are available in the downloadable analysis archives
linked from the website.

This raises the issue of potential overfitting. Because all SpikeForest data are public, the commu-
nity may continue to optimize sorters using SpikeForest as a benchmark, so one might wonder if this
will lead to SpikeForest metrics which overestimate true real-world performance. We believe that
such bias will be small, and certainly smaller than the bias of studies conducted in order to propose
a single sorting algorithm, for the following reasons. 1) Our database is large and diverse, compris-
ing 13 different types of study sets. It is difficult to imagine overfitting to 650 different recordings by
optimizing even dozens of parameters, and, while we allow the potential (as yet unused) for different
parameter choices for different studies, multiple recordings would still have to be overfit by one
parameter set. 2) All code and parameter settings are available for public inspection, making the
above style of parameter and algorithm hacking obvious, were it to occur. We feel that the benefit
to the community of improved, validated sorters far outweighs the risk of overfitting. Naturally, Spi-
keForest results are biased towards the types of neurons and conditions for which ground-truth data
exist; by keeping results for different study sets separate we expose such biases as much as possible.
In the long run, we appreciate that both held-out and open data benchmarks will play a useful role
in comparison and standardization.

Another issue is the paucity of paired ground-truth units in the database, a consequence of the
time-consuming nature of their collection. For instance the study set PAIRED_KAMPFF has 15 units,
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of which only 11 have sufficient SNR to be sortable by any of the sorters. Therefore a single false

split or merge by a sorter can lead to variations in reported study-averaged accuracy as large as
+0.05, and dictate the most accurate sorter for that study set. In (small-scale) laboratory pipelines it
is possible that such splits or merges would be detected by expert human curation; the point of Spi-
keForest is to measure the performance of purely automated algorithms. Such variance will be
reduced as the size of the ground-truth studies increases.

Future work
The above issues help inform several specific future goals:

1.

We plan to report false positive units. Currently only the one sorted unit which best matches
each ground-truth unit is assessed for accuracy. Thus, there is no penalty for a sorter which
generates many spurious units that are not present in the data (this is necessarily true for Kilo-
Sort in most cases, since the number of returned units is set in advance by the user). Results
from such a sorter would of course then be less credible, and, even if examined by an expert,
much harder to curate. This failure mode is not revealed by paired recordings; however, in sim-
ulations (where every single firing is ground truth) a new metric capturing the fraction of such
spurious units will be included (see Buccino et al., 2019).

. SpikeForest does not directly address the common laboratory task of deciding, given a new

sorting of electrophysiology recordings, which neural units are to be trusted and which dis-
carded. Assessing the credibility of putative neural units output by spike sorters remains a cru-
cial question, and many quality metrics are used in practice, including SNR, firing rate, metrics
of cluster isolation or separation from the 'noise cluster’, stability, and cross-correlograms
(Pouzat et al., 2002; Schmitzer-Torbert et al., 2005; Hill et al., 2011, Neymotin et al.,
2011; Barnett et al., 2016; Chung et al., 2017). Yet, because of its scale, the SpikeForest
database provides a unique opportunity to tabulate such quality metrics for multiple sorter
outputs, then correlate each to the actual ground-truth accuracy, with the goal of assessing
the predictive power of each metric, or combinations thereof. Figure 5 showed such a metric
comparison for just one of the SpikeForest studies. We are now poised to scale this up to the
entire database and a wider set of metrics.

. Most of the ground truth recordings in our database have a relatively short duration, on the

order of 10 min. When waveform drift is not a factor, this duration usually yields enough events
per unit to satisfy the requirements of clustering algorithms. However, when waveform drift is
present, it is important to assess the performance of spike sorters for a greater range of
recording durations. We plan to provide examples of longer duration datasets (on the order of
1-2 hr) in future iterations.

. It is currently not as easy as it could be to identify common failure modes such as false merges

and false splits. We plan to display confusion matrices (see, e.g., Barnett et al., 2016)
between ground-truth and a given sorting; this would also allow comparison between two dif-
ferent sorter outputs.

. We plan to add accuracy evaluations taylored to specific tasks, such as the ability to handle

probe drift and/or long recording durations (currently only three synthetic studies explicitly
test drift). The website could, for instance, visualize successful tracking as a function of time.

. The comparison of CPU time for each sorter is currently sub-optimal, because multiple sorters

may be running on one node. We plan to include special timing comparisons on dedicated
nodes in order to reflect actual laboratory use cases.

. The number of sorter job crashes and time-outs needs be reduced, which requires detailed

diagnosis on many sorter-recording pairs. For instance, currently KiloSort2 has a larger propor-
tion of crashes or time-outs than many other sorters, yet this is not fully understood and not
quantified in accuracy summary results.

. Finally, we envision that the machinery of SpikeForest could be used for a web-based spike

sorting platform, to which users would upload their data (which becomes public), run possibly
more than one sorter, visualize, curate, and download the results. This could render all spike
sorting and human curation affecting the downstream science analysis accessible and
reproducible.

We anticipate that, as the use and scale of spike sorting as a tool continues to grow, SpikeForest
will become a resource for comparison and validation of sorter codes and encourage more rigorous
reproducibility in neuroscience. To this end, we seek contributions and input from the
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electrophysiology community, both to optimize parameter settings for existing algorithms, and to
further expand the set of algorithms and ground-truth recordings included in the analysis.

Materials and methods

Ground-truth recordings
The thirteen study sets included in the SpikeForest analysis are detailed in Table 2 and are grouped
according to type (paired, simulated, curated).

Paired recordings

We selected 145 paired recordings from raw extracellular recordings that were publicly released or
otherwise provided to us by four laboratories (Henze et al., 2000; Harris et al., 2000; Henze et al.,
2009; Neto et al., 2016; Allen et al., 2018; Marques-Smith et al., 2018a; Marques-Smith et al.,
2018b; Yger et al., 2018; Spampinato et al., 2018). The intracellular spike times were taken from
the author-reported values unless they were not provided (Henze et al., 2009). 93 of these we pre-
pared from raw Buzsaki laboratory recordings (Henze et al., 2000; Harris et al., 2000; Henze et al.,
2009) with ground truth based on the intracellular traces, after excluding time segments containing
artifacts due to movement and current injection. The other 52 were obtained from tetrodes or con-
ventional silicon probes in rat hippocampus (PAIRED_CRCNS_HC1) (Henze et al., 2000;
Harris et al., 2000; Henze et al., 2009), high-density silicon probes in mice cortex

Table 2. Table of study sets currently included in the SpikeForest analysis.
Study sets fall into three categories: paired, synthetic, and curated. Each study set comprises one or more studies, which in turn com-
prise multiple recordings acquired or generated under the same conditions.

# Rec. / # Elec. /

Study set Dur. Source lab. Description

Paired intra/extracellular

PAIRED_BOYDEN 19/ 32ch / 6- E. Boyden Subselected from 64, 128, or 256-ch. probes, mouse cortex
10min

PAIRED_CRCNS_HC1 93 / 4-6¢h / 6- G. Buzsaki Tetrodes or silicon probe (one shank) in rat hippocampus
12min

PAIRED_ENGLISH 29 /4-32ch / 1-  D. English Hybrid juxtacellular-Si probe, behaving mouse, various regions
36min

PAIRED_KAMPFF 15/ 32ch / 9- A. Kampff Subselected from 374, 127, or 32-ch. probes, mouse cortex
20min

PAIRED_MEA64C_YGER 18 / 64ch / 5min O. Marre Subselected from 252-ch. MEA, mouse retina

PAIRED_MONOTRODE

100/ 1ch / 5-
20min

Boyden, Kampff, Marre,
Buzsaki

Subselected from paired recordings from four labs

Simulation

SYNTH_BIONET

36/60ch/ 15min AIBS

BioNet simulation containing no drift, monotonic drift, and random jumps;
used by JRCLUST, IronClust

SYNTH_JANELIA

SYNTH_MAGLAND

60 / 4-64ch / 5-

M. Pachitariu Distributed with KiloSort2, with and without simulated drift

20min

80 / 8ch / 10min

Flatiron Inst. Synthetic waveforms, Gaussian noise, varying SNR, channel count and unit

count

SYNTH_MEAREC_NEURONEX

60/ 32ch / 10min A. Buccino

Simulated using MEAREC, varying SNR and unit count

SYNTH_MEAREC_TETRODE

40/ 4ch / 10min

A. Buccino Simulated using MEAREC, varying SNR and unit count

SYNTH_MONOTRODE

111/ 1ch/10min Q. Quiroga

Simulated by Quiroga lab by mixing averaged real spike waveforms

SYNTH_VISAPY 6/ 30ch / 5min  G. Einevoll Generated using VISAPy simulator

Human curated

MANUAL_FRANKLAB 21/ 4ch / 10- L. Frank Three manual curations of the same recordings
40min
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(PAIRED_KAMPFF and PAIRED_BOYDEN) (Neto et al., 2016; Allen et al., 2018, Marques-
Smith et al., 2018a), and high-density MEAs in mice retina (PAIRED_MEA64C_YGER) (Yger et al.,
2018; Spampinato et al., 2018). We also include 29 new paired recordings in awake behaving mice
(PAIRED_ENGLISH), from a hybrid probe comprising a juxtacellular electrode glued on top of a Neu-
ronexus silicon probe (similar to English et al., 2017 but with only ~20 um separation). These come
from the hippocampus, neocortex and thalamus. We generated a monotrode version (PAIRED_MO-
NOTRODE) of various paired recordings by randomly sampling one channel from each recording
session to uniformly span the SNR range (25 units per study).

Synthetic recordings

Table 1 provides details on the ten algorithms included in the SpikeForest analysis. To overcome the
limited number of units offered by the paired ground truth, we added simulated ground-truth study
sets that were independently generated by five laboratories (Camunias-Mesa and Quiroga, 2013,
Hagen et al., 2015; Chung et al., 2017; Gratiy et al., 2018; Buccino and Einevoll, 2019). The simu-
lators vary in their biophysical details, computational speeds, and configurable parameters. Simula-
tions based on phenomenological models tend to be fast and easily configurable (e.g.,
SYNTH_MAGLAND, identical to the simulations in Chung et al., 2017 except with iid Gaussian
noise), while biophysical simulators such as SYNTH_VISAPY (Hagen et al., 2015) and SYNTH_BIO-
NET (Gratiy et al., 2018) use synaptically connected, morphologically detailed neurons to achieve
high fidelity at the expense of computational speed. SYNTH_MONOTRODE (Camurnas-Mesa and
Quiroga, 2013) and SYNTH_MEAREC (Buccino and Einevoll, 2019) take an intermediate approach
by generating spike waveform templates based on single-neuron simulations and randomly placing
the spike waveforms conforming to pre-specified IS distributions.

SYNTH_BIONET was generated from the Allen Institute’s BioNet simulator (Gratiy et al., 2018;
Jun et al., 2017a) running on the computing resources provided by the Neuroscience Gateway
(Sivagnanam et al., 2013). We simulated a column of synaptically connected neurons (n = 708,
200 x 200 x 600 um’) based on the rat cortical NEURON models (Hines and Carnevale, 1997,
Ascoli et al., 2007; Mitelut, 2017; Jun et al., 2017a) by capturing the spike waveforms at four verti-
cal columns of densely-spaced electrodes (2 um vertical, 16 um horizontal pitch, 600 channels). Lin-
ear probe drift was simulated by subsampling the electrodes to match the Neuropixels site layout
(20-25 pm pitch) and vertically shifting the electrode positions as a function of time. To achieve
smooth linear motion, a 2D-interpolation based on a Gaussian kernel was applied (0.5 um vertical
spacing, 16 um total displacement for 16 min). Based on the linear probe drift simulation, we gener-
ated a ‘shuffled’ version to mimic the fast probe displacements during animal movement by subdi-
viding the recordings into 32 time segments and randomly shuffling (30 s per segment).

The simulation entitled SYNTH_JANELIA was developed by J. Colonell (Pachitariu et al., 2019)
and uses average unit waveforms from a densely spaced electrode array (5 um pitch, 15 x 17 layout)
collected by the Kampff, 2018 laboratory. The waveform templates were inserted at randomly
selected channels and time points after being multiplied by an amplitude-scaling factor drawn from
a Gamma distribution. The baseline noise was randomly generated to match the power spectrum
observed from a Neuropixels recording, and a spatiotemporal smoothing was applied to induce cor-
relation between nearby channels and time samples. The original simulation generated either static
or sinusoidal drift (10 um displacement, 600 s period) with 1200s duration (30 KS/s) on the Neuro-
pixels layout (64 channels, 25 um pitch, staggered four columns). We trimmed the original simula-
tions to generate shorter recording durations (600, 1200s) and channel counts (4, 16, 32, 64
channels) to study the effects of these parameters on sorting accuracy.

Manually sorted recordings

Based on the requests of the electrophysiology community, we included a single study set of manu-
ally curated tetrode sortings (MANUAL_FRANKLAB) (Chung et al., 2017); we emphasize that, for
this study set only, there is no ground-truth data. Accuracies are reported relative to three indepen-
dent manual sortings of the same tetrode recording session in a chronically implanted rat hippocam-
pus. We subdivided the entire recording duration to generate three different durations (600, 1200,
2400 s) to study the effect of duration on sorting accuracy, but did not find a consistent relationship
across all sorters.
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Registration

A content-addressable storage database is used to store the file content of each recording, and all
data is available for public download via our Python API. Since these files are indexed according to
their SHA-1 hashes, their content is guaranteed not to have changed even when the mechanism for
retrieving the data evolves over time, ensuring long-term repeatability of the analysis.

Sorting algorithms and wrappers
Table 2 provides details on the ten algorithms included in the SpikeForest analysis. For each spike
sorter, SpikeForest contains a Python wrapper and a Docker (and Singularity) container defining the
exact execution environment including all necessary dependencies. For the sorters that are imple-
mented in MATLAB, the MATLAB Compiler tool was used to generate standalone binary files
inserted into the containers so that a MATLAB license is not required to run spike sorting. The Spike-
Forest framework flexibly allows running of each sorter either within the native operating system or
within the container. The former method is useful during development or in an environment where
the spike sorting software is already installed. The latter is crucial for ensuring reproducibility and for
avoiding conflicts between sorters due to incompatible dependencies. The Python wrappers make
use of the spikesorters package of the Spikelnterface project (Buccino et al., 2019) for passing the
parameters and executing the sorter. All sorters operate on the raw (unfiltered) recordings.

An eleventh algorithm, YASS, was incorporated into the Python package, but was not included in
the comparison, as discussed in the Results section.

Comparison with ground truth

Depending on the experimental context, false negatives (missed events) and false positives may
have different relative importance for the researcher. Thus the SpikeForest website allows switching
between three evaluation metrics for the comparison with ground truth: precision (which penalizes
only false positives), recall (which penalizes only false negatives), and an overall accuracy metric
(which balances the two). For each sorter-recording pair these are computed by comparing the out-
put of spike sorting (spike times and labels) with the ground-truth timings associated with the
recording, as follows.

We first consider a sorted unit k and a ground-truth unit /, and describe how the events in the

)

spike train for k are matched to ground-truth events of /. Let sgk ,...,s$2 be the spike train (time-

), .. .,t,(\? be the spike train for ground-truth unit [

stamps) associated with sorted unit &, and let tgl
(see Figure 1). Let A be an acceptable firing time error, which we assume is shorter than half the
refractory period of any true neuron. We set A to one millisecond; the results are rather insensitive

to its exact value. The number of matches of sorted unit k to the ground-truth unit [ is
n}j}amh =#{i: |t§1) - s;k)| < A for some j}. (1)

Note that even if more than one sorted event falls within £A of a true event, at most one is
counted in this matching. The reverse situation—more than one ground-truth event from the same
neuron matching to a given sorted event—cannot happen by our assumption about the refractory
period. The number of missed events and false positives are then, respectively,

f
n}}(llbb =N — n}}}amh ’ ”1.5 =M, — nﬁlatch : @
where N, is the total number of firings of ground-truth unit /, and M, is the total number of found
events of sorted unit k. Following Jun et al., 2017b we define the accuracy for this pair as

match
o

(3)

Gk = match , ,miss | D’

g T g
Note that this definition of accuracy is a balance between precision and recall, and is similar, but

not identical, to the F; metric (Zaki and Meira Jr, 2014, Eq. (17.1)) used to evaluate clustering

methods.
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Fixing the ground-truth unit I, we define its best matching sorted unitk; as the sorted unit k with
highest accuracy,

]ACI (=arg III;?X ajk - (4)

Now restricting to this best match, we define the accuracy for ground-truth unit / by

ar=ay,, (5)

and the corresponding precision and recall for this unit by

match pmatch
pri=— pm— b ©)
©  match | P " ymatch  miss ’
" + "k Lki Lk

Averages of these metrics are then computed for all units [ within each study, without weighting
by their numbers of events (i.e., treating all units equally). Note that, in the case of a recording with
more than one ground-truth unit, it is possible that more than one such unit could share a common
best-matching sorted unit, but this could only happen if these ground-truth units had extremely cor-
related events or if the sorting was highly inaccurate.

The spike sorted units that are considered in the computation of these metrics are only those that
are matched to ground-truth units. Therefore, the results shown in the main table do not account for
false positive units, that is units found by the spike sorters that are not present in the recording.

Compensating for missing data
As described above, when a sorting run fails (either crashes or times out), an asterisk is appended to
the corresponding table cell, and the average accuracy is calculated based on imputed data using
linear regression. There is also an option to simply exclude the missing values, but the problem with
this method (which we have encountered) is that sometimes an algorithm will happen to crash on
recordings with relatively difficult units, resulting in artificially elevated scores. Imputing by zero has
the problem of yielding deceptively low values. We have thus opted to use linear regression to fill in
the missing data using values predicted based on the accuracies of other sorters. Specifically, for a
given sorter with missing data and a given study set (or study, depending on the level of aggrega-
tion), a linear model is estimated for fitting the non-missing values based on the values of all sorters
with no missing data. That model is then applied to estimate the missing data. To give some intui-
tion, if a sorter typically has somewhat lower scores than the other sorters and crashes on one
recording, then for the purpose of computing average accuracy, the accuracy for that recording will
be filled in with a value that is also somewhat lower than the other sorters.

In constrast, when reporting total numbers of units found above an accuracy cut-off (e.g., Fig-
ure 2, right side), we do not impute, but simply sum the number of non-missing units.

Signal-to-noise ratio per unit

We define SNR as a property of a single neural unit, either a ground-truth unit or a unit as output by
a sorter. It is reported on the website and is used as a cut-off for selection of a subset of ground-
truth units for computing average accuracy. SNR is computed on the bandpass-filtered timeseries
data.

We first describe our filter used to compute SNR (noting that this is distinct from various filters
used internally by the spike sorters). This filter is a bandpass from f;,;;, = 300 to fmax = 6000, in Hz
units. It is applied to each channel by taking the FFT, multiplying by the real-valued frequency filter
function

A(f) :%\/1 +erf((f —finin)/100) \/1 —erf((f — fmax)/1000) , (7)

where erf is the error function, then taking the inverse FFT. Here, the parameters 100 and 1000 con-
trol the roll-off widths in Hz at the low and high ends respectively. From this filtered timeseries and
the set of firing times of a unit, the average spike waveform is extracted. SNR is then defined as the
ratio between the peak absolute amplitude of this average spike waveform and the estimated noise
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on the channel where this peak amplitude occurs. The noise is estimated as the median absolute
deviation of the filtered timeseries data divided by 0.6745, which gives a robust estimate of the stan-
dard deviation of the noise (Quiroga et al., 2004, Sec. 3.1).

Analysis pipeline

The analysis pipeline of SpikeForest depicted in Figure 6 is built using Python utilities developed by
the authors for creating shareable and reproducible scientific workflows. This system provides a for-
mal method for creating well-defined Python procedures that operate on input parameters and files
and produce output files. These are known as processors. SpikeForest defines processors for running
the spike sorters, computing properties of ground-truth units (e.g., SNR), comparing the spike sort-
ing outputs with ground truth, and computing summary data for the plots shown on the website.
Once these processors are set up, the framework provides several advantages including: (a) auto-
matic execution of processing inside Singularity or Docker containers; (b) automatic caching of proc-
essing results; and (c) job management and queueing mechanisms for running batches of processing
on a compute cluster. This allows the analysis pipeline to be defined as a standard Python script,
with a simple nested loop iterating through the sorters and ground-truth datasets (as in Figure 1).
The script may then be configured to run in a variety of settings: on a standard workstation for
development, testing, or reproducing of a subset of results; a shared computer with large memory
and many cores; or on a compute cluster.

A crucial and novel feature of our framework is that all files (both input and output) are repre-
sented by SHA-1 URIs, for example of the form: shal://88b62db6£c467b83ba0693453c59c5-
£538e20d5c/firings_true.mda.

The hexadecimal code embedded in the URI is the SHA-1 hash of the content of the file, and
therefore this URI uniquely identifies the desired file (in this case the ground-truth firing data for one
of the SpikeForest recordings) without specifying the actual location of the data. In contrast, explicit
location references (e.g., a path on the local computer, an IP address, or a web URL) can be prob-
lematic because over time data archives may stop being maintained, may change locations, or files
may be renamed or updated with new content. The SHA-1 URI system alleviates these difficulties by
separating the mechanism for storing archives of files from the representation of these files, via uni-
versal hash strings within scripts.

All SpikeForest input recordings, ground-truth data, sorting outputs, and other processing data
are stored in a public content-addressable storage (CAS) system called kachery. The API of a kachery
database simply allows downloading of files referenced only by their SHA-1 hashes (or URIs).

Analysis pipeline
Preprocessing
Sorting
Comparison with truth
Parallel execution
Process cache

@ python

MountainTools

JSON database
Studies
Sorting params
Processing outputs

Back end website Front end website

\ 4
\ 4

. mongoDB.

n\ggde React

A 4

Binary database

HEROKU I3

Raw recordings >

Compute cluster

slurm (§) Singularity

Larki=23 renaner

\ 4

Ground truth
Processing outputs

o

Kachery

Figure 6. Interaction of software and hardware components of the SpikeForest system, showing the flow of data from the server-side analysis (left) to
the user’s web browser (right). The processing pipeline automatically detects which sorting jobs need to be updated and runs these in parallel as
needed on a compute cluster. Processing results are uploaded to two databases, one for relatively small JSON files and the other for large binary
content. A NodeJS application pulls data from these databases in order to show the most up-to-date results on the front-end website.
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Therefore, as long as the environment is configured to point to a kachery database with the relevant
files available, the SpikeForest pipeline may be executed (in whole or in part) on any computer con-
nected to the internet.

The automatic caching capability we developed is also crucial for the SpikeForest system. If
updates are made to either the database of ground-truth recordings or to the sorting algorithms
and parameters, the system can automatically detect which processing needs to be rerun. In this
way, the pipeline can simply be executed in full at regular intervals, and the website will continuously
update with the latest changes. This facilitates a conceptually simple method for adding new data-
sets or sorting algorithms because changes are represented by modifications to pipeline configura-
tion files.

A limitation of the reliance on caching is the implicit assumption that the sorting algorithms are
deterministic, that is given the same inputs, parameters, and code, the outputs should be exactly
the same. However, this assumption can be violated by unfixed random seeds or even differences
between implementations of floating-point arithmetic on different hardware. Controlling these fac-
tors is currently out of scope for SpikeForest, but we aim to measure the degree of stability
(Barnett et al., 2016) with respect to repeated runs of each sorting task in future versions.

To ensure that all results may be reproduced at a later date and/or independently verified by a
third party, the Python wrapper for each spike sorter includes a reference to a Docker image con-
taining the entire operating system and environment where the sorter is installed. Our system han-
dles the automatic download of these images (if not already on the local computer) and the
execution of the sorting inside Docker or Singularity containers. For development and testing pur-
poses, it is also possible to configure the pipeline to run outside the container, provided that the
sorter software is installed on the operating system.

The output of processing is a single JSON file (only around 15 MB at this time) containing SHA-1
URI references to all recording files, ground-truth data, containers, spike sorting parameters, sorting
outputs, comparisons with ground truth, and other information used by the website. It also contains
meta-information about the sorting runs such as the execution times and console outputs. This
JSON file is itself uploaded to the kachery database and is represented by a SHA-1 URI accessible
on the website. The archive section of the website contains references to these files for all past anal-
yses, allowing tracking of sorter performance over time.

Finally, the data from this JSON output file is loaded into a MongoDB database for efficient
access by the website’s front end.

Website front end

The primary user interface for the SpikeForest platform is an isomorphic JavaScript web application
with overall structure as shown on the right side of Figure 6. Built from reusable React components,
the front end utilizes the D3 library to render the interactive tables and plots. A Node.JS backend,
organized using the Redux state container, queries a MongoDB database to retrieve JSON files for
each datatype and generate the comparative visualizations. For more detailed plots, like the spike
sprays, larger data objects are retrieved via the content-addressable storage database.

We optimized the interface for efficient hierarchical navigation through the results and rapid load-
ing and interactive response (for instance, when a user adjusts the SNR or accuracy cut-off slider
bar). When the user clicks on results at the individual recording or unit level, they are taken to a
page (with an auto-generated, shareable URL) specific to the study in question. This page allows
one-click comparison of the sorters on this study. Clicking on individual units in the scatter plot for a
given sorter-study pair brings up spike waveforms for that unit (Figure 3) and a link to a sub-page
with details specific to the particular sorter-recording run. This latter page includes sorter parame-
ters used, the console output of the run and a link to an auto-generated Python script with human-
readable documentation to reproduce that sorter run within SpikeForest. A permanent top-level
menu bar allows access to all meta-data about sorters (as in Table 1), study sets (as in Table 2, also
allowing hierarchical drilling down to the individual recording level), historical snapshots, metrics
used, and an explanation of the project. All of the website data and results sub-pages are automati-
cally generated from the SpikeForest databases.
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Enabling users to run all spike sorters locally on their own data

The benefit of having wrappers and Docker images for these ten spike sorting algorithms extends
beyond usage within the SpikeForest pipeline. Researchers may also utilize these wrappers and
images to spike sort their own data without needing to install and configure the individual sorting
packages. As mentioned in the previous subsection, the website provides, for each sorting result, a
self-contained Python script for reproducing that result offline. This script may easily be modified to
operate on datasets that are not registered within the SpikeForest database. Here is an excerpt of
the auto-generated script for running SpyKING CIRCUS on a dataset:

# Run the spike sorting
with hither.config(container='docker://magland/sf-spykingcircus:0.9.2’, gpu=-
False) :
sorting_result=sorter.run(
recording path=recording path,
sorting out=hither.File(),
**params
)
assert sorting result.success
sorting path=sorting result.outputs.sorting out

This is compatible with all three OS platforms: Linux, MacOS and Windows (although, currently,
the last of these cannot use GPU-based sorters). Here, hither is a utility within SpikeForest; note that
the Docker container and version (located on Docker Hub) is specified in the configuration line.
Because we use Spikelnterface, it is easy to switch between a variety of different file formats for the
input and output data. The SpikeForest website provides further instructions and examples.
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