
INTRODUCTION

Neuropsychiatric disorders, including schizophrenia, autism, 
depression, and anxiety, are very common all around the world [1]. 
The limited effectiveness of current therapies against neuropsy-
chiatric disorders and neurological disorders highlights the urgent 
need for understanding their pathological mechanisms and for 
developing new approaches to prevent or retard the disease pro-
gression [2].

Genome-wide association studies (GWAS) have identified 
 MIR137 (encoding microRNA-137) as a risk gene for  the etiology 
of schizophrenia [3], bipolar disorder [4], and autism spectrum 
disorders [5]. MIR137  is a key regulator in neurodevelopment, 
with deletion of Mir137 in the germline or nervous system result-
ing in embryonic or postnatal lethality [6]. Growing evidence 
supports the idea that microRNA-137 (miR-137) is a critical epi-
genetic modulator in neurogenesis, synaptogenesis, and synaptic 
plasticity [7-10]. Only a few important target genes of miR-137 
that might be responsible for neuropsychiatric dysfunction, such 
as BDNF, CACNA1C, EZH2, PDE10A, TCF4, and ZNF804A, have 
been experimentally validated [11, 12]. 

Neural activity depends on electric signals that are transmitted 
from the presynaptic neuron to the postsynaptic cell via chemical 
signaling. The positive or negative change in membrane potential 
of the postsynaptic neuron is caused by the activation of post-
synaptic receptors, which are ion channels whose activation alters 
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permeability for specific ions [13]. Although genetic variation in 
genes coding for ion channels increases risk for psychiatric disor-
ders [14-17], little is known about the function of miR-137 on ion 
channels in neurons.

In this study, we provide the first evidence that loss of miR-137 
results in impaired  homeostasis of potassium in neurons, both 
in vitro  and in vivo . KCC2 (Slc12a5 ), a potassium-chloride co-
transporter, was significantly upregulated in miR-137 knockout 
neurons. Importantly, VU0240551, a specific KCC2 antagonist 
[18], can maintain the homeostasis of potassium in MIR137 
knockout neurons. Moreover, knockdown of KCC2 could rescue 
anxiety-like phenotype in MIR137 cKO mice. These results sug-
gest that miR-137 loss of function contributes to potassium efflux 
via KCC2, and  targeting the miR-137-KCC2 pathway might have 
great therapeutic potential for treating neuropsychiatric disorders 
due to the deficiency of miR-137.

MATERIALS AND METHODS

Mice

All experiments involving animals were performed in accor-
dance with the animal protocol approved by the Institutional Ani-
mal Care and Use Committee at the Institute of Zoology, Chinese 
Academy of Sciences. Mice were housed in groups of 3~5 animals 
under a 12 h light/12 h dark cycle, and were fed ad libitum on a 
standard mouse diet. The miR-137f/f mice were generated as previ-
ously described [10]. The Emx1-Cre transgenic mice were bought 
from Jackson Laboratory (Stock No. 005628). The miR-137 condi-
tional knockout mice were generated by breeding miR-137f/f mice 
with Emx1-Cre transgenic mice, as described previously [19].

Primary hippocampal neuron culture

H ippocampal neurons were isolated from P0 MIR137 cKO and 
WT mice, and cultured on plates (1×104 cells per well in a 24-well 
plate) coated with poly-D-lysine (100 μg/ml). The dissected hip-
pocampus tissue was digested with trypsin-EDTA for 10 min at 
37℃. The tissue was then washed three times with MEM contain-
ing 10% FBS. Hippocampal neurons were then dissociated with 
the culture medium. Then neurons were grown in Neurobasal 
medium (Invitrogen) supplemented with 2% B27 (Invitrogen), 2 
mM GlutaMAX (Invitrogen), and penicillin/streptomycin. 

Dual luciferase assays

Approximately 300 base pairs around the predicted target site 
from the KCC2 3’UTR was cloned into the pIS2 vector using 
the XhoI and NotI restriction sites in the multiple cloning region 
downstream of the luciferase reporter gene. Mutagenesis of the 

binding site on KCC2 3’UTR was performed using the Quick-
Change II Site-directed Mutagenesis Kit (Stratagene, La Jolla, CA) 
according to the manufacturer's protocol. All plasmid clones were 
then verified by sequencing.

Dual luciferase transfection assays were performed as previously 
described [20, 21]. In brief, HEK293 cells in 24-well plates were 
transfected with sh-miR-137 (pCR2.1 TOPO vector) and pIS2-
3’UTR or mutated pIS2-3’UTR using Lipofectamine 2000 (Invi-
trogen). Meanwhile, pIS2 vector with no 3’UTR was cotranfected 
with U6-neg-shRNA (pCR2.1 TOPO vector) or sh-miR-137 to set 
up as a control. All Luciferase readings were recorded using Dual-
Luciferase Reporter 1000 System (Promega) following manufac-
turer's instructions.

Electrophysiological recordings

Whole-cell patch-clamp recordings were carried out using an 
Axopatch 700B amplifier (Axon Instruments, Union City, CA). 
The pClamp10.6 software was used for data acquisition and analy-
sis. Patch pipettes (6~10 MΩ) were pulled from borosilicate glass 
capillaries with a micropipette puller (Sutter instrument, USA). 
The internal pipette solution contained (in mM): 135 K-gluconate, 
10 HEPES, 2 MgCl2, 10 EGTA, 0.3 MgGTP, and 0.5 Na2ATP (pH 
7.3 with KOH). The membrane potential was held at -65 mV. Se-
ries resistances and cell capacitance compensation were carried 
out prior to recording. The recordings were included only in those 
with high resistance seal (>1 GΩ) and a series resistance <25 MΩ.

RNA extraction and qRT-PCR

Total RNA was extracted from hippocampus tissue or cultured 
neurons using TRIzol reagent (Invitrogen). Two micrograms of to-
tal RNA were reverse transcribed with either oligo (dT) primers or 
specific primers by a Transcriptor First Strand cDNA Synthesis Kit 
(Roche). For qRT-PCR analysis, 25 ng of cDNA and 0.5 μM prim-
ers were used in a final volume of 20 μl according to the manufac-
turer’s instructions (SYBR Green Master, Roche). Each reaction 
was run in triplicate and analyzed following the △△CT method 
using U6 or GAPDH as a normalization control. The following 
primers are used: KCC2 (forward: 5’-GGGCAGAGAGTAC-
GATGGC-3’; reverse: 5’-TGGGGTAGGTTGGTGTAGTTG-3’), 
GAPDH (forward: 5’-AAGGTCATCCCAGAGCTGAA-3’; re-
verse: 5’-AGGAGACAACCTGGTCCTCA-3’).

Protein quantification

Hippocampal tissues or cultured neurons were lysed in a buffer 
containing 25 mM HEPES at pH7.9, 150 mM NaCl, 1 mM PMSF, 
20 mM NaF, 1 mM DTT, 0.1% NP40, and proteinase inhibitor 
cocktails (Roche). Protein concentrations were determined by 
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Folin phenol method with bovine serum albumin as protein stan-
dard. Twenty micrograms of protein were separated on 8~12% 
SDS-PAGE gels (Bio-Rad) and transferred to PVDF membranes 
(Millipore). The membranes were then blocked in 5% BSA in TBS-
T with 0.05% Tween-20, and incubated with primary antibodies 
at 4℃ overnights. Dilutions of primary antibodies were 1:1,000 
for KCC2 (Millipore, #07–432), and 1:10,000 for β-actin antibody 
(Sigma). As for the secondary antibodies, we used HRP-linked 
goat anti-rabbit at 1:500. Enhanced chemo luminescence (ECL, 
Pierce) was used for detection. Quantifications of Western blots 
were determined using Quantity One V4.4.0 (BioRad).

Immunohistochemistry

Mice were anesthetized and transcardially perfused with cold 
PBS, followed by 4% PFA in PBS (pH 7.4). Brain tissue was dis-
sected out, equilibrated in 30% sucrose, and sectioned into 40 μm-
thick sections. The brain sections were washed in PBS for 15 min 
three times, and then blocked in a blocking solution (3% BSA, 
0.3%Triton X-100, 0.2% sodium azide) at room temperature for 
1 h. The primary antibodies we used were as follows: anti-KCC2 
(1:1,000, Millipore, #07–432), anti-Map2 (1:1,000, Millipore, 
Mab3418). After overnight incubation with primary antibody at 
4℃, the brain sections were washed with TBS for 30 min three 
times and then incubated with the secondary antibodies conju-
gated with Alexa Fluor 488 or 594 (1:500). Sections were finally 
stained with DAPI and mounted on glass-slides using adhesion 
anti-fade medium.

Lentivirus production and in vivo grafting

KCC2 shRNA sequence (CUACGAGAA GACAUUAGUA) 
[22] was inserted in the U6-shRNA lentiviral construct. Lenti-sh-
KCC2 and lenti-sh-Neg (negative control) viruses were produced 
with titers at a range around 1×109 TU/ml as described previously 
[23, 24]. Lentivirus was grafted stereotaxically into the hippocam-
pus of 8-week-old male MIR137 WT and cKO mice as described 
by Heldt et al. [25]. 

Behavioral tests

Mice were kept in groups of 4~5 animals on a 12:12 h light:dark 
cycle. The open field test and the light-dark preference test were 
performed during the light phase at week 3 after lentiviral injec-
tion as previously described [19]. Videos were recorded and ana-
lyzed by the software Smart V3.0.03 (Panlab, Barcelona, Spain). 

Statistical analyses

Either unpaired Student’s two-tailed t tests or ANOVA with 
Tukey’s post hoc tests were conducted using IBM SPSS Statistics 

V26 software. Samples sizes were provided in each figure legend. 
All data were presented as mean±SEM. Differences were consid-
ered statistically significant when p<0.05.

RESULTS

Loss of miR-137 impairs the homeostasis of potassium in 

primary hippocampal neurons

We originally generated miR-137 conditional knockout mice 
that displayed dysregulated synaptic plasticity, repetitive behavior, 
anxiety-like behavior, and impaired learning and social behav-
ior [10]. Since neurological and neuropsychological diseases are 
pathophysiologically linked to potassium channel dysfunction [26, 
27], we speculated that loss of miR-137 may play a role in regulat-
ing K+ currents and thus result in neurodysfunction.

To examine the electrophysiological properties of primary hip-
pocampal neurons isolated from MIR137  cKO and WT mice, 
we performed whole-cell patch-clamp recording of the electrical 
activity of neurons at 14 days in culture (Fig. 1A). We found that all 
primary hippocampal neurons elicited multiple action potentials 
upon the injection of depolarizing currents (Fig. 1B) (WT, n=9; 
cKO, n=10) and large fast-inactivating inward currents followed 
by outward potassium currents when evoked by a series of voltage 
steps (Fig. 1C) (WT, n=12; cKO, n=13). We observed no significant 
difference in spike frequency of action potential (Fig. 1D, resting 
membrane potential (RMP) (Fig. 1E), membrane resistance (Rin) 
(Fig. 1F), and membrane capacitance (Cm) (Fig. 1G) between 
MIR137 cKO and WT neurons. However, the peak of the voltage-
gated K+ current was significantly higher in MIR137 cKO neurons 
(Fig. 1H and 1I). These data indicate that the deletion of MIR137 
impairs the homeostasis of potassium in hippocampal neurons.

K+–Cl- cotransporter 2 (KCC2) is a direct downstream 

target of miR-137

To get more insight into the molecular mechanism underlying 
the effect of miR-137 loss-of-function on voltage-gated K+ cur-
rent, we performed a combined computational and experimental 
study to identify the downstream targets of miR-137 in the brain. 
We first used the TargetScan program to predict mRNA targets 
[28]. TargetScan analysis identified 15 potassium channel associ-
ated targets predicted to be responsive to miR-137 and conserved 
among species. Among these candidate targets, the K+–Cl- cotrans-
porter 2 (aka: KCC2 and SLC12A5) is known to play pivotal roles 
in the physiology of neurons, and its malfunction has been linked 
to multiple neurological diseases including seizures, epilepsy, and 
schizophrenia [29-33]. Indeed, there is a highly conserved binding 
site of miR-137 on the 3’-UTR sequence of mouse Kcc2  mRNA 
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(position 2229-2235; Fig. 2A). To determine whether miR-137 di-
rectly targets Kcc2 mRNA, we cloned the wildtype or mutated 3’-
UTR of Kcc2 containing the predicted miR-137 target site into a 
Renilla luciferase reporter construct, which allowed us to examine 
KCC2 protein translation by measuring luciferase activities. We 
found that miR-137 could significantly repress the expression of 
Renilla luciferase through the 3’-UTR of Kcc2, while miR-137 had 
no effect on luciferase activity when the conserved binding site 
was mutated (Fig. 2B). 

Next, we examined the expression levels of KCC2 in MIR137 
cKO and WT brains. Elevated KCC2 mRNA expression levels 
were observed in the hippocampus and prefrontal cortex of 
MIR137  cKO mice compared to their WT littermates (Fig. 2C). 
Furthermore, our western blot analysis demonstrated that KCC2 

protein levels were dramatically increased in the hippocampus 
and prefrontal cortex of MIR137 cKO mice compared to their WT 
littermates (Fig. 2D). Consistently, immunostaining of cultured 
hippocampal neurons at DIV 14 with antibodies against KCC2 
revealed enhanced KCC2 immunoreactivity in  MIR137 cKO neu-
rons (Fig. 3A and 3B). Moreover, KCC2 immunohistochemistry 
analysis showed a stronger fluorescence intensity in brain sections 
including hippocampus (Fig. 3C and 3D) and cortex (Fig. 3E 
and 3F) of MIR137 cKO mice compared to their WT littermates. 
Taken together, these data support the idea that Kcc2  is a direct 
downstream target of miR-137 in neurons.

Fig. 1. MiR-137 deficiency impairs K+ efflux of potassium in primary mouse hippocampal neurons. (A) Phase-contrast images of  primary mouse hip-
pocampal neurons during patch clamp recordings at DIV 14. (B) Representative traces of action potentials in response to step current injections in pri-
mary mouse hippocampal neurons at DIV 14. Membrane potential was maintained at approximately -40 mV. Step currents were injected from -50 pA to 
+250 pA in 50 pA increments (middle panel). All neurons elicited multiple action potentials upon the injection of depolarizing currents. (C) Represen-
tative traces of whole-cell currents in voltage-clamp mode. Primary neurons from MIR137 WT or cKO mice were held at -70 mV. Step depolarization 
from -80 mV to +60 mV at 10-mV intervals was delivered (middle panel). Insets were respective traces on an expanded scale. (D) Characterization of 
action potentials generation properties in terms of spikes frequency with current-pulse amplitude, recorded from primary mouse hippocampal neurons 
of MIR137 WT or cKO mice (n=12 and 9, respectively). (E~G) Statistics of intrinsic membrane properties of MIR137 WT and cKO neurons (n =14 and 9, 
respectively). RMP, resting membrane potential (E); Rin, membrane input resistance (F); Cm, capacitance (G). (H) The relationship between voltage and 
K+ current (WT, n=12; cKO, n=8). (I) The peak amplitude of K+ current was elevated in MIR137 cKO neurons. *p<0.05.
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 KCC2 antagonist maintains potassium homeostasis in 

MIR137 cKO neurons

To further explore the role of KCC2 in the electrophysiologi-
cal properties of neurons, we used a pharmacological agent, the 
KCC2 antagonist VU0240551, to intervene the function of KCC2 
by preincubating neurons with the agent for 1 hour (10 μM), and 
performed the whole-cell patch-clamp recordings of primary hip-
pocampal neurons at DIV 14. All primary hippocampal neurons 
elicited multiple action potentials upon the injection of depolar-
izing currents (Fig. 4A) and large fast-inactivating inward currents 
followed by outward potassium currents when evoked by a series 
of voltage steps (Fig. 4B). We then assessed membrane proper-
ties of hippocampal neurons that threated with VU0240551 by 

recording voltage-dependent currents in voltage-clamp mode. 
We found that maximum peak outward potassium amplitude of 
VU0240551-treated MIR137  cKO neurons were adjusted to the 
similar level of WT neurons (Fig. 4C and 4D).  VU0240551 did 
not affect the resting membrane potential (RMP) (Fig. 4E), mem-
brane resistance (Rin) (Fig. 4F), and membrane capacitance (Cm) 
(Fig. 4G) of hippocampal neurons. Therefore, these data indicate 
that KCC2 antagonist could maintain potassium homeostasis in 
MIR137 cKO neurons.

 Knockdown of KCC2  ameliorates anxiety-like behavior in 

MIR137 cKO mice

Recently, we found that  mice with forebrain-specific miR-137 

Fig. 2. KCC2 is a direct target of miR-137. (A) Sequence alignment of miR-137 and the KCC2 3’-UTR, which contains a predicted conserved miR-
137-biding site. The seed-recognizing site in the KCC2 3’-UTR is indicated in red, while the mutant KCC2 3’-UTR site is denoted in green. (B) KCC2 
WT 3’-UTR-dependent expression of a Renilla luciferase was reduced, while mutation of the miR-137 binding site in the KCC2 3’-UTR did not affect 
the Renilla luciferase activity. (C) KCC2 mRNA expression levels were upregulated both in the hippocampus and in the prefrontal cortex of MIR137 
cKO mice. (D) KCC2 protein expression levels were upregulated both in the hippocampus and in the prefrontal cortex of MIR137 cKO mice. Left panel, 
representative images of Western blot. Right panel, quantifications of Western blots with ImageJ. n=3 independent experiments; n.s non-significant, 
*p<0.05, **p<0.01.
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loss-of-function can survive to adulthood, but exhibit anxiety-like 
behavior [19]. To examine whether knockdown of KCC2 might 
be beneficial to ameliorate anxiety-like behavior in MIR137 cKO 
mice, we injected lenti-sh-KCC2 virus into the hippocampus and 
performed behavioral assays at week 3 after grafting.

In the open field test, sh-KCC2 significantly ameliorates the anx-
iety-like behavior in MIR137 cKO mice, as indicated by increased 
numbers of entries (Fig. 5A) and time spent (Fig. 5B) in the central 
zone. In consistent with this, the light-dark box test showed that 
sh-KCC2 did improve entries (Fig. 5C) and time spent (Fig. 5D) in 
light compartment in MIR137 cKO mice.

DISCUSSION

Dysfunction of miR-137 has been linked with the pathogenesis 
of schizophrenia [3], bipolar disorder [4], anxiety and depression 
[19], and autism spectrum disorders [5, 10]. Fine-tuning the ex-
pression of miR-137 is critical in regulating  neural development 

and synaptic plasticity [9, 20, 34]. Overexpression of miR-137 
results in changes in synaptic vesicle pool distribution, impaired 
induction of mossy fiber long-term potentiation and deficits in 
hippocampus-dependent learning and memory [9]. He et al. [34] 
then confirmed these observed changes in synaptic transmission 
upon miR-137 overexpression. Although selective synaptic vesicle 
docking defects were not obtained, miR-137 overexpression had 
remarkable effects on docking, active zone length and total vesicle 
number [34]. Syt1, complexin-1 and neuroligin-3 are known miR-
137 targets involved in synapse development [9, 34]. In contrast, a 
complete knockout of MIR137 in the mouse germline or nervous 
system leads to postnatal lethality [10, 35], while heterozygous 
knockout mice display synapse overgrowth, dysregulated synaptic 
plasticity, repetitive behavior, and anxiety-like behaviors [10, 19]. 
PDE10a and EZH2 are key experimentally validated targets of 
miR-137, and knockdown of PDE10a or EZH2 ameliorates the 
deficits observed in the heterozygous knockout mice [10, 19]. Here 
we provide the first evidence that miR-137 also plays an impor-

Fig. 3. KCC2 is upregulated upon the loss of miR-137 both in vitro and in vivo. (A) Representative images of immunostaining of hippocampal neurons 
at DIV-14) for KCC2 (green) and a mature neuronal marker MAP2 (red). Scale bars, 20 μm. (B) Quantitative analysis showing higher expression of 
KCC2 in MIR137 cKO hippocampal neurons at DIV-14. (C) Representative images of KCC2 immunostaining of MIR137 WT and cKO hippocampal 
sections. Scale bars, 50 μm. (D) Quantitative analysis demonstrating a higher KCC2 immunofluorescence intensity in MIR137 cKO hippocampus. (E) 
Representative images of KCC2 immunostaining of MIR137 WT and cKO prefrontal cortex sections. Scale bars, 50 μm. (F) Quantification showing an 
elevated KCC2 immunofluorescence signal in MIR137 cKO prefrontal cortex. n=4 mice per group; *p<0.05.
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tant role in the homeostasis of potassium in neurons  at least by 
targeting KCC2, which is a neuron-specific chloride–potassium 
cotransporter and is highly expressed in the mature CNS [36]. 

KCC2 mutations or dysfunctions have been identified as a criti-
cal component in the development of autism spectrum disorder 

[37], schizophrenia, epilepsy and seizures [38-42], neuropathic 
pain [43].  KCC2 has been well-known for its role in maintaining 
a low intracellular Cl- concentration ([Cl-]i) essential for hyperpo-
larizing inhibition mediated by GABAA receptors [44], its loss-
of-function results in enhanced [Cl-]i which thereby represses the 

Fig. 4. KCC2 antagonist maintains potassium homeostasis in mouse MIR137 cKO neurons. (A) Representative traces of action potentials in response 
to step current injections in primary neurons at DIV-14. Membrane potential was maintained at approximately –65 mV. Step currents were injected 
from -50 pA to +300 pA in 50 pA increments (bottom panel). WT, n=21; cKO, n=32; cKO+VU0240551, n=26. (B) Representative traces of whole-cell 
currents in voltage-clamp mode. Primary neurons were held at -70 mV. Step depolarization from -80 mV to +60 mV at 10-mV intervals was delivered 
(bottom panel). Insets showing respective traces on an expanded scale. WT, n=23; cKO, n=28; cKO+VU0240551, n=33. (C) The relationship between 
voltage and K+ current. (D) The peak amplitude of K+ current was reduced to normal in MIR137 cKO neurons that were treated with VU0240551, a 
specific antagonist for KCC2. (E~G) Statistics of intrinsic membrane properties in MIR137 WT and cKO hippocampal neurons treated with or without 
VU0240551. RMP, resting membrane potential (E); Rin, membrane input resistance (F); Cm, capacitance (G). *p<0.05, **p<0.01.

Fig. 5. KCC2 knockdown rescues anxiety-like behaviors in MIR137 cKO mice. (A-B) In the open field test, MIR137 cKO mice with sh-KCC2 treatment 
dramatically increased the number of entries (A) and time spent (B) in the central zone (n=12~13 mice per group, **p<0.01, *p<0.05). (C, D) In the light/
dark box test, sh-KCC2-treated mice demonstrated improved entries (C) and time spent (D) in light box (n=12~13 mice per group, **p<0.01, *p<0.05).
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inhibitory strength of GABA and glycine, whose cognate receptors 
are ligand-gated ion channels permeable to Cl- and HCO3

- ions 
[45-47]. Besides its central role in hyperpolarizing inhibitory sig-
naling based on chloride currents which are mediated by GABA- 
or glycine-gated receptor channels, KCC2 also acts a structural 
protein crucially involved in the maturation and regulation of 
excitatory glutamatergic synapses [48-51]. KCC2 is required for 
neuronal maturation by rendering GABA hyperpolarizing [49, 52-
54], and overexpression of KCC2 enhances dendritic spines in the 
adult nervous system in mice [55]. Therefore, we speculate that the 
elevated expression of KCC2 may also contribute to dysregulated 
synaptic plasticity and altered behaviors in MIR137 cKO mice. 

Potassium is essential for the proper function of all cells [56]. In 
neurons, the sodium-potassium flux generates the electrical po-
tential that aids the conduction of nerve impulses [56]. Potassium 
channels participate in cell ionic balance and serve the fundamen-
tal function of supporting action potentials and electrical signal 
propagation along the neurons and their myelinated axons [57-
59]. The increased outward K+ currents in MIR137  cKO mouse 
neurons were just indirectly measured by mediating voltage gated 
K+ channels in this study, lacking evidences showing the decreased 
intracellular Cl- concentration, which presumably also results 
from the KCC2 up-regulation. Although detailed mechanisms 
underlying the enhanced K+ currents in MIR137  cKO mouse 
neurons need further investigations by considering various types 
of neurons, different developmental stages and brain regions, it 
is possible that elevated levels of KCC2 in MIR137 cKO neurons 
simultaneously export more K+ and Cl- ions, while extrusion of Cl- 
via KCC-mediated K-Cl cotransport is driven by the K+ gradient 
[60]. A recent study reported that KCC2 interacts with the leak K+ 
channel Task-3, and promotes its membrane expression, which 
results in altered neuronal excitability in rat dentate granule cells 
[61]. The increased outward K+ currents in MIR137 cKO neurons 
might also reflect a direct modulation of leak K+ channels (e.g. 
TASK-3) by up-regulated KCC2, not only altered (i.e., decreased) 
intracellular K+ concentration.

S urprisingly, increased K+ currents in MIR137 cKO mouse neu-
rons in our study did not result in a decrease in action potential 
firing in these cells as compared to the WT neurons. This could 
be explained by postulating that primary cultured hippocampal 
neurons constitute a developmentally and functionally hetero-
geneous cell population which might not be a good model to 
examine action potentials. For example, a recent study reported 
that the KCC2 inhibitor increases the firing rate of P0–P2 rat hip-
pocampal CA3 pyramidal neurons in the absence of glutamatergic 
transmission, but no change in the output of interneurons synaps-
ing was observed onto pyramidal neurons [62]. Furthermore, we 

cannot exclude the possibility that other unknown targets of miR-
137 might play an opposite role in action potentials. For instance, 
NKCC1 (Slc12a2) is a predicted target of miR-137 by TargetScan 
algorithm [63]. In mature neurons, NKCC1 and  KCC2 respec-
tively mediate inward and outward cotransport of chloride and 
potassium ions under basal conditions [60]. Whether NKCC1 and 
other iron transporters also affect the homeostasis of potassium in 
MIR137 cKO neurons remains to be investigated.

In summary, we show here that miR-137 is a crucial player in 
the homeostasis of potassium by directly targeting KCC2, and 
treatment with the KCC2 antagonist can maintain potassium 
homeostasis in MIR137  knockout hippocampal neurons. More-
over, knockdown of KCC2 ameliorates anxiety-like behavior in 
MIR137  cKO mice. Considering drugs frequently have ‘hidden 
phenotypes’ that result from their binding to unknown targets 
or from unknown interactions between the intended drug target 
and other biochemical pathways [64], the safety and efficiency of 
targeting the miR-137-KCC2 pathway in treating neurological 
disorders should be the focus of future studies.
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