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Abstract

Aims/hypothesis—Gestational diabetes mellitus (GDM) affects up to 20% of pregnancies, and
almost half of the women affected progress to type 2 diabetes later in life, making GDM the most
significant risk factor for the development of future type 2 diabetes. An accurate prediction of
future type 2 diabetes risk in the early postpartum period after GDM would allow for timely
interventions to prevent or delay type 2 diabetes. In addition, new targets for interventions may be
revealed by understanding the underlying pathophysiology of the transition from GDM to type 2
diabetes. The aim of this study is to identify both a predictive signature and early-stage
pathophysiology of the transition from GDM to type 2 diabetes.

Methods—We used a well-characterised prospective cohort of women with a history of GDM
pregnancy, all of whom were enrolled at 6-9 weeks postpartum(baseline),were confirmed not to
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have diabetes via 2 h 75 g OGTT and tested anually for type 2 diabetes on an ongoing basis (2
years of follow-up). A large-scale targeted lipidomic study was implemented to analyse ~1100
lipid metabolites in baseline plasma samples using a nested pair-matched case—control design,
with 55 incident cases matched to 85 non-case control participants. The relationships between the
concentrations of baseline plasma lipids and respective follow-up status (either type 2 diabetes or
no type 2 diabetes) were employed to discover both a predictive signature and the underlying
pathophysiology of the transition from GDM to type 2 diabetes. In addition, the underlying
pathophysiology was examined in vivo and in vitro.

Results—Machine learning optimisation in a decision tree format revealed a seven-lipid
metabolite type 2 diabetes predictive signature with a discriminating power (AUC) of 0.92 (87%
sensitivity, 93% specificity and 91% accuracy). The signature was highly robust as it includes 45-
fold cross-validation under a high confidence threshold (1.0) and binary output, which together
minimise the chance of data overfitting and bias selection. Concurrent analysis of differentially
expressed lipid metabolite pathways uncovered the upregulation of a-linolenic/linoleic acid
metabolism (false discovery rate [FDR] 0.002) and fatty acid biosynthesis (FDR 0.005) and the
downregulation of sphingolipid metabolism (FDR 0.009) as being strongly associated with the risk
of developing future type 2 diabetes. Focusing specifically on sphingolipids, the downregulation of
sphingolipid metabolism using the pharmacological inhibitors fumonisin B1 (FB1) and myriocin
in mouse islets and Min6 K8 cells (a pancreatic beta-cell like cell line) significantly impaired
glucose-stimulated insulin secretion but had no significant impact on whole-body glucose
homeostasis or insulin sensitivity.

Conclusions/interpretation—We reveal a novel predictive signature and associate reduced
sphingolipids with the pathophysiology of transition from GDM to type 2 diabetes. Attenuating
sphingolipid metabolism in islets impairs glucose-stimulated insulin secretion.
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learning; Multiple logistic regression; Pathophysiology; Predictive biomarker; Prospective cohort;
Sphingolipid metabolism; Type 2 diabetes

Introduction

Gestational diabetes mellitus (GDM), defined as glucose intolerance first recognised during
pregnancy, affects up to14% of pregnancies worldwide [1, 2]. Although the cause remains
uncertain, GDM is suspected to arise from the diminished capacity of the pancreas to
produce sufficient insulin and impaired insulin action related to pregnancy. GDM pregnancy
increases maternal complications [3] and infants of mothers with GDM are at significantly
higher risk of obesity, dyslipidaemia and type 2 diabetes [4]. While maternal glucose
tolerance generally returns to normal after delivery, GDM is associated with persistent long-
term metabolic dysfunction and elevated risk of overt diabetes [5]. Up to 50% of women
with GDM may progress to type 2 diabetes within 5-10 years postpartum [6, 7]. These
women develop type 2 diabetes at a relatively younger age (e.g. <40 years) than the general
population and have a higher risk of cardiovascular disease, non-alcoholic fatty liver, renal
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disease and early mortality [8-15]. The underlying cause of the transition from GDM to type
2 diabetes and the accurate prediction of this transition are therefore critical.

The ADA recommends that all women with GDM undergo screening for type 2 diabetes via
a2h759gOGTT at 6— 12 weeks postpartum followed by subsequent screening every 1-3
years via fasting plasma glucose (FPG) measurement and 2 h 75 g OGTT [16]. The
discriminating power (AUC) of 2 h plasma glucose in the OGTT is at best 65-77% across
studies [17-19]. Moreover, the compliance with ADA recommendations among this group
for screening via an OGTT is very low (~19%) in many settings [19, 20]. This low
compliance could in part be due to the time-consuming and/or unpleasant nature of the tests
or healthcare system limitations [19, 21-24]. A simplified and more accurate prognostic test
would be desirable to reclassify glucose tolerance after pregnancy and predict future type 2
diabetes progression following GDM pregnancy.

It is well known that the elevation in blood glucose in type 2 diabetes occurs long after the
underlying metabolic changes that promote disease development. Thus, discovery-based
metabolomics is considered a promising approach for both the early prediction and the
identification of underlying pathways of future type 2 diabetes onset. This methodology has
led to the identification of several biomarkers for future type 2 diabetes incidence [25-27].
Our group previously identified metabolic biomarkers of subsequent type 2 diabetes onset
among women with recent GDM enrolled in the Study of Women, Infant Feeding and Type
2 Diabetes after GDM (SWIFT) prospective cohort [19]. Using clinical variables combined
with metabolic biomarkers, including lipid species, we developed a simple four-structure
metabolic signature—phosphatidylcholine (PC) aeC40:5, hexoses, branched-chain amino
acids (BCAAs) and sphingomyelin (SM) (OH)C14:1—that predicted type 2 diabetes
incidence with 83% discrimination power (AUC) in a nested pair-matched (1:1) case—control
study of 244 SWIFT participants, where 12% of 1010 women with GDM progressed to type
2 diabetes within about 2 years post-delivery [19]. A smaller nested case—control study of
metabolomics (lipidomics), targeting >300 lipid species in blood samples taken from 104
women with GDM at 12 weeks post-delivery, of whom 21 (20%) progressed to type 2
diabetes within 12 years, showed 83.6% accuracy in type 2 diabetes prediction based on
three lipids—phosphatidylethanolamine (PE) P-36:2, phosphatidylserine (PS) 38:4 and
cholesteryl ester (CE) 20:4—in combination with six other risk factors (age, BMI,
pregnancy fasting glucose, postpartum fasting glucose, total triacylglycerols [TAGs] and
total cholesterol) [28]. These promising findings provide evidence that novel metabolite
markers combined with other factors can facilitate the prediction of type 2 diabetes risk.

Metabolomic studies can also be used to illuminate the pathophysiology of type 2 diabetes
and its progression. Both stearoylcarnitine and BCAA levels increased in those who
developed type 2 diabetes [29, 30], possibly linked to impaired pancreatic beta cell function
[31]. Several specialised lipid metabolites (sphingomyelins [SMs], phosphatidylcholines
[PCs] and lysophosphatidylcholines [LPCs]) were inversely associated with type 2 diabetes
risk [32]. Our previous metabolomics study in the SWIFT cohort of women with GDM also
showed decreased levels of several specialised lipid metabolites (sphingolipids and PCs) in
the transition from GDM to type 2 diabetes [19]. These lipid metabolites are known core
components of cell membranes and may be linked to type 2 diabetes progression [32, 33].
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There is substantial evidence to suggest that lipid imbalances both predict and cause type 2
diabetes. Given the apparent links between lipid biosynthesis, metabolism and beta cell
dysfunction leading to type 2 diabetes, the role of lipids has been collectively understudied
with respect to diabetes risk. Herein, we used lipidomics to screen a large and broad
spectrum of lipid metabolites in relation to subsequent type 2 diabetes development. This
lipidomic study sought to identify lipid biomarkers and putative early-stage pathophysiology
that may predict and influence future progression to type 2 diabetes in women after GDM
pregnancy.

Study population

The prospective SWIFT cohort enrolled a racially and ethnically diverse group of 1035
women, with GDM (age 20- 45 years), who delivered singleton pregnancies at =35 weeks of
gestation at Kaiser Permanente Northern California (KPNC) hospitals between 2008 and
2011 [34, 35]. Each participant provided informed consent at the in-person examination at
6-9 weeks postpartum (baseline) before collection of blood specimens froma2h 75 g
OGTT, completion of surveys, anthropometric and body composition measurements, and
annual in-person follow-up examinations for 2 years. The KPNC Institutional Review Board
approved the study protocol. The study recruitment, selection criteria, methodologies and
other detailed information have been described previously [34-36]. At each 2 h 75 g OGTT,
trained research staff collected fasting blood samples and processed and stored plasma
samples at —80°C for future studies.

Study design

For this study, we selected the incident diabetes cases among Hispanic and Asian groups,
and pair-matched (1:1.5) them to control women without progression to diabetes during the
2 year follow-up by age (£2 years), race and ethnicity (completely matched), pre-pregnancy
BMI (£0.96 kg/m?) and glucose tolerance at 6-9 weeks postpartum (completely matched).
We selected only matched pairs of Hispanic (n = 90) and Asian (nh = 50) women to ensure
homogeneity of race and ethnic groups. The nested case—control design with pair-matching
greater than 1:1 does not allow direct comparisons of incidence rates among the ethnic and
racial groups for this subset analysis. The fasting plasma samples were collected from these
140 women at the baseline examination (at 69 weeks postpartum), all confirmed not to
have-type 2 diabetes at the baseline exam via the 2 h 75 g OGTT. Details of the SWIFT
prospective cohort design and follow-up are published elsewhere [30, 37-40]. For women
who progressed to type 2 diabetes during the 2 years follow-up period (n = 55), termed here
as the “follow-up’ time point, the newly diagnosed incident type 2 diabetes was referred to
as ‘case’. Women who did not develop type 2 diabetes during the follow-up period (n = 85)
are referred to as ‘control’ (Fig. 1). Please see electronic supplementary materials (ESM)
Methods for details.
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Targeted lipid profiling (targeted-lipidomics analysis)
Fasting plasma samples collected at 6-9 weeks postpartum during the SWIFT study were

sent to Metabolon (Morrisville, NC, USA) for a single-blind targeted-lipidomics analysis of
1100 lipid species on each plasma sample. For details of lipidomics see ESM Methods.

Data preparation and statistical analysis of the quality of the final dataset

A stringent protocol was followed to prepare the final dataset, which was further scrutinised
for quality in terms of the presence of confounding factors and the certainty of the class
separation through principal component analysis (PCA) and a partial least squares-
discriminant analysis (PLS-DA), respectively, using MetaboAnalyst 3.0 (https://
www.metaboanalyst.ca/) in default setting (e.g. tenfold cross-validation). For details of this
protocol, see ESM Methods.

Differential expression analysis and pathway analysis

A non-parametric test (Wilcoxon—Mann-Whitney test, a value set at p < 0.05) followed by
multiple comparisons with false discovery rate (FDR) analysis (a value set at p < 0.05) was
carried out to identify the differentially expressed lipid metabolites between the case and
control. These differentially expressed lipid metabolites were used for the pathway analysis
by adopting two approaches: (1) a direct approach where differentially expressed lipid
metabolites were used in both over-representation pathway analysis using Kyoto
Encyclopedia of Genes and Genomes (KEGG; Kanehisa Laboratories, Kyoto, Japan)
pathways and metabolite set enrichment pathways (MSEP) analysis and (2) an in silico
approach where the interacting proteins with the differentially expressed lipid metabolites
were used. All analyses were carried out using one of the following platforms (or a
combination of them): MetaboAnalyst 3.0, MBrole 2.0 (Madrid, Spain), and String 10.5
platforms (https://string-db.org). For details of the pathway analyses, see ESM Methods.

Predictive analytics

The biomarker analysis module of MetaboAnalyst 3.0 was used for univariate receiver
operating characteristic (ROC) analysis. In the multivariate ROC analysis, the stepwise (both
ways) multiple logistic regression (MLR) was carried out in R-studio (Boston, MA, USA)
using the ‘glm’ function under the removal of data redundancy protocol and significant
contributor calculation (R-script is available in ESM Methods). Machine learning analyses
were carried out through WEKA 3.8 (University of Waikato, Hamilton, NZ). The final
classifier was further optimised for balancing between the chance of data overfitting, higher
ROC possibility and F-score (a measurement of a test’s accuracy based on precision and
sensitivity). Optimisation was carried out by applying K-fold cross-validation, confident
threshold 1.0 and binary output selection. A series of cross-validation up to K = 100 was
conducted to test the stress tolerability of the signature. Forty-five-fold cross-validation (K =
45) was chosen as per ‘one standard error rule’ for final reporting. High confidence
threshold (1.0) ensures the proper cleaning of bias from the final signature. Binary output
selection further protects the signature from data overfitting and bias selection. The
discriminating power of ROC analysis is presented in the form of an AUC. See ESM
Methods for details.

Diabetologia. Author manuscript; available in PMC 2020 May 20.


https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://string-db.org/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Khan et al.

Page 6

In vivo and in vitro functional studies

Results

Animal care—C57BL/6 J male mice were obtained from Charles River (Sherbrook, QB,
Canada) at the age of 8 weeks for both in vivo and in vitro islets studies. Mice were housed
in the Division of Comparative Medicine facility, University of Toronto. All mouse
procedures and maintenance were conducted in compliance with protocols approved by the
Animal Care Committee at the University of Toronto and the guidelines of the Canadian
Council of Animal Care.

Intraperitoneal injections and monitoring—The mice were injected intraperitoneally
either by using 1 mg kg™t day~1 fumonisin B1 (FB1) (Cayman, Michigan, USA) or vehicle
(DMSO-saline [154 mmol/lI NaCl]) for 3 weeks. Weight gain and blood glucose were
monitored on a weekly basis.

Insulin tolerance test and IPGTT—Both ITTs and GTTs were conducted using
standard protocols that are described elsewhere [41].

Sphingolipid profiling and insulin staining of pancreas—After 3 weeks of
treatment, mice were euthanised to collect plasma and pancreatic tissue. Plasma samples (n
= 3) were subjected to sphingolipid profiling through LC-MS/MS at the Analytical Facility
for Bioactive Molecules, SickKids, Toronto. The pancreases (n = 7) were fixed for insulin
staining by using the standard protocol [37] of the Centre for Phenogenomics (TCP), Sinai
Health System Institute, Toronto. The 40x images of pancreatic slices were produced at TCP
and analysed by Aperio ImageScope software package (Wetzlar, Germany).

In vitro glucose-stimulated insulin secretion Glucose-stimulated insulin secretion (GSIS)
was assessed, as previously described [41],in both Min6 K8 cells (agift from S. Seino [Kobe
University, Kobe, Japan] and J. Miyazaki [Osaka University, Suita, Japan] and isolated male
murine C57BL/6 islets in vitro after treatment with either 1 pmol/l FB1 or50 nmol/Il
myriocin (Cayman, Ann Arbor, MI, USA) for 24 h.

Baseline sociodemographic and clinical characteristics of participants

This nested pair-matched case—control study included a subset of 140 Asian and Hispanic
women from the SWIFT cohort (Fig. 1). Sociodemographic and clinical characteristics of
case and control groups are summarised in Table 1. There were no statistically significant
differences observed in either pre-pregnancy or baseline (69 weeks postpartum) BMI, total
energy intake or physical activity. Baseline FPG (p < 0.01), 2 h plasma glucose (p < 0.001),
fasting insulin (p < 0.01) and fasting TAG (p < 0.05) measurements and median HOMA-IR
(p < 0.01) were significantly higher in the type 2 diabetes case group. The case group was
more likely than matched control participants to have been treated with insulin or oral
medications during pregnancy and were more likely to have a family history of diabetes.
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Statistical analysis of the quality of the final dataset from lipidomics

The final dataset was composed of 626 detectable lipid metabolites. The unsupervised PCA
showed two major principal components, with the first comprising 32.8% of the total study
population and the second comprising 11.8%. Since the lipidomic analysis was performed at
baseline before the earliest diagnosis, it would be overly optimistic to get a higher value for
the major principal components. Other components were small contributors in the separation
of the study population (ESM Fig. 1a). The supervised PLS-DA, where the groups were pre-
identified as control and case, showed distinguishable separation and was presented in a
two-dimensional score plot (ESM Fig. 1b). A cross-validation analysis determined that the
performance of PLS-DA had a 63% and 64% accuracy for these two clusters, respectively,
based on R2 and Q2 (ESM Fig. 1c). Furthermore, the empirical Bayes estimation (here with
1000 random permutations) was applied to confirm that the distinct separation between the
two groups found in PLS-DAwas not due to random chance. The empirical p value was
significant (0.014; ESM Fig. 1d), indicating that the separation was true for 986 times out of
1000. The distribution of (quantile) normalised and log,-transformed data is showed in ESM
Fig. le.

Univariate and multivariate ROC analysis and predictive capability of metabolites to
predict future type 2 diabetes

The strategies for predictive biomarker discovery are illustrated in Fig. 2a. FPG, HOMA-IR
and 2 h post-load glucose in 75 g OGTT are frequently used for diagnostic purposes and
their values for cases vs controls already showed a significant difference at baseline (p <
0.01, p <0.01 and p < 0.001, respectively). In addition, the total fasting TAG levels were
significantly higher in cases vs controls (p < 0.05). However, the ROC-AUCs of FPG,
HOMA-IR, 2 h glucose and total fasting TAGs were 0.64, 0.65, 0.71 and 0.61 respectively
(Fig. 2b—e, ROC analyses) in classic univariate ROC analyses. These low AUC values
indicated a relatively weak ability to predict type 2 diabetes. Although mean differences
were statistically significant (p < 0.01, p < 0.01, p < 0.001 and p < 0.05, respectively) (Fig.
2b-e, box plots), low AUC scores led to limitations. Each lipid metabolite was also
subjected to classic univariate ROC analysis to find the lipid metabolite with the highest
predictive capability for future type 2 diabetes status. Among all lipid metabolites, TAG
54:0-FA 16:0 scored the highest AUC of 0.69 (Fig. 2f). Although its mean difference for
cases vs controls was statistically significant (p < 0.001) (Fig. 2f, box plot), its relatively low
ROC-AUC score indicated weak predictability. The low ROC-AUC of TAG 54:0-FA 16:0
was in part due to high heterogeneity in the distribution of its concentration within the
population. The low AUCs in univariate ROC analyses suggested that one analyte-based
diagnostic would not be the best approach to predict type 2 diabetes incidence.

Since type 2 diabetes is a multifactorial disease, multivariate analyses could have better
strength in predicting future type 2 diabetes onset. Thus, a popular multivariate ROC
analysis, stepwise multiple (both ways) logistic analysis [38, 39], was carried out here to
select a signature panel (containing multiple variables) to improve the discrimination power
(AUC). In the stepwise MLR analysis with both statistically significant biochemical clinical
variables (FPG, 2 h glucose, HOMA-IR and total TAG) and clinical factors (family history
of diabetes and type of GDM treatment), a panel of three clinical variables (FPG, 2 h
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glucose and family history of diabetes) produced an AUC of 77% (95% CI 69%, 85%) (Fig.
29). In the stepwise MLR analysis with lipids, a panel of 12 lipid metabolites produced an
AUC of 84% (95% CI 77%, 90%) (Fig. 2h).

The predictive signatures/biomarkers in machine learning approach and comparison with
other methods

The artificial intelligence-assisted machine learning algorithms were further employed using
Weka 3.8 to find a predictive signature with a better predictability than the multivariate
signature panel. The highest ROC-AUC was found in the filtered classifier algorithm. The
ROC-AUC of this panel was 0.92 for both case and control participants (Fig. 3a, b) with
91% accuracy (Fig. 3e). It revealed a predictive signature consisting of seven lipid
metabolites with a decision tree having 17 nodes (branching points) and nine leaves
(decision points) (Fig. 3c). Although both biochemical and historical clinical variables (total
TAGS, FPG, 2 h glucose, HOMA-IR, family history of diabetes and type of GDM treatment)
were evaluated with the lipid dataset, they did not appear in the predictive signature,
indicating the superior predictive power of lipid metabolites over these clinical variables as
well as matching variables (age, race/ethnicity and BMI) in this nested case—control study
sample. This signature was validated through a rigorous cross-validation protocol, where a
45-fold cross-validation was selected by adopting one standard error calculation (Fig. 3d).
The K = 45 cross-validated model showed no significant difference in misclassification
errors in comparison with the K = 20- to 100-fold cross-validated models, having relatively
lower standard mean errors and no overfitting due to being outside of the saturation of
accuracy (K =60 to 90). K = 85 cross-validation, which produced the lowest
misclassification errors (or highest accuracy), was the most over-fitted model. The K = 45
cross-validated model was further optimised under confidence threshold 1.0 and binary
output selection criteria. Altogether, this ensured the signature did not suffer from data
overfitting and bias selection. The comparison among the best signatures found using
different approaches is summarised in Fig. 3e. Comparisons were made in terms of accuracy,
sensitivity, specificity, precision and AUC. The machine learning approach-derived signature
had an AUC of 0.92, an accuracy of 91% (correctly predicted 127 out of 140 participants), a
sensitivity of 87% (correctly predicted 48 cases out of 55) and a specificity of 93%
(predicted 79 controls correctly out of 85).

Differential expression and putative pathway analysis based on lipidomics

A total of 75 lipid metabolites were differentially expressed significantly between the case
and control groups (Table 2). The putative pathway analysis (Fig. 4a) involved both a direct
approach (based on differentially expressed lipids) and an in silico approach (based on the
interacting putative proteins of the differentially expressed lipids). In the case group, 46 lipid
metabolites were significantly upregulated and 29 were significantly downregulated (Fig.
4b). The significantly upregulated lipid metabolites were predominantly TAG lipid species
whereas the significantly downregulated lipid metabolites consisted of CE, ceramide (Cer),
NEFA, lactosylceramide (LCer), LPC, lysophosphatidyl-ethanolamine (LPE), PE and SM
lipid species (Fig. 4b). The volcano plot for all lipid metabolites and heat map for the
differentially expressed lipid metabolites are presented in ESM Fig. 2a, b. The volcano plot
showed a subtle fold change between the two groups at this stage before type 2 diabetes
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development. The heat map of differentially expressed significant lipid metabolites showed
the heterogenicity over the studied population.

To identify lipid pathways associated with altered lipid metabolites, KEGG pathway analysis
was carried out. A significant downregulation of sphingolipid metabolism (FDR 0.009) and
upregulation of fatty acid biosynthesis (FDR 0.005) (Fig. 4c) was observed. To understand
the predicted consequence of such modulation, metabolite set enrichment analysis was
performed. The analysis identified the upregulation of a-linolenic acid and linoleic acid
metabolism (FDR 0.002) as the predicted net consequence of upregulated fatty acid
biosynthesis (Fig. 4c). The lipid metabolites belonging to the identified different pathways
are summarised in ESM Fig. 3a. The upregulated fatty acid synthesis was identified due to
the significantly higher concentrations of myristic acid (C14:0), palmitic acid (C16:0),
stearic acid (C18:0) and oleic acid (C18:1). The discovery of upregulated a-linolenic acid
and linoleic acid metabolism was based on the significantly higher concentrations of linoleic
acid (C18:2), dihomo-ylinoleic acid (C20:3), eicosapentaenoic acid (C20:5) and
docosahexaenoic acid (C22:5). In the case of downregulated sphingolipid metabolism, a
number of significantly decreased ceramides [Cer(16:0), Cer(20:0), Cer(22:0) and
Cer(24:1)], lactosylceramides [LCer(16:0), LCer(24:1)] and sphingomyelin [SM(20:1)]
species were identified. The specific alterations in these pathways were linked to increased
type 2 diabetes risk (ESM Fig. 3a).

Using an in silico approach employing KEGG pathway mapping (ESM Fig. 3b), we
identified the upregulation of specific inflammation pathways (loci-1) and the
downregulation of sphingolipid metabolism and related pathways (loci-4) as the dominant
changes associated with future type 2 diabetes status. Loci-2, the upregulated fatty acid
biosynthesis, was found between the connectomes of loci-1 and loci-4. Additionally, the
downregulated glycosylphosphatidylinositol (GPI) anchor biosynthesis (loci-3) represents an
island locus. GPI proteins are essential for Cer-remodelling and transportation of Cers from
the endoplasmic reticulum to the Golgi apparatus where glycosphingolipids and
sphingomyelins are formed [40].

In vivo inhibition of sphingolipid metabolism

Our population-based lipidomics data indicate that a number of Cers, SMs and LCers are
significantly downregulated years before type2 diabetes onset(Fig. 4b), suggesting that the
down regulation of sphingolipid metabolism could be in part responsible for the future onset
of type 2 diabetes among women with previous GDM. To investigate this possibility, an
approach was taken to inhibit sphingolipid metabolism. FB1, a pharmacological inhibitor of
sphingolipid biosynthesis, was used to induce overall downregulation of sphingolipid
metabolism in C57BL/6 mice (n= 14). Due to the very short half-life of FB1 (liver 4.07 h,
kidney 7.07 h, plasma 3.15 h [42]), our treatment could only transiently block sphingolipid
metabolism. This transient downregulation of sphingolipid metabolism was chosen to depict
the very early stage of type 2 diabetes pathophysiology. Figure 5a illustrates the sphingolipid
metabolism pathway as a target of these inhibitors, with FB1 (1 mg/kg) being delivered
intraperitoneally to mice as depicted in Fig. 5b. Serum samples were collected at the end of
the treatment and sphingolipid species were profiled by MS (n = 3 per group). The FB1-
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treated mice showed significant accumulation of sphingosine (So) species So(d18:1) (Fig.
5¢, d). In the SWIFT cohort lipidomics study, four Cers—Cer(16:0), Cer(20:0), Cer(22:0)
and Cer(24:1)—were found to be significantly downregulated. In the FB1-treated mice,
although levels of these four lipid metabolites decreased, the decrease was statistically
significant only for Cer (16:0) (Fig. 5e).

Effects of downregulation of sphingolipid metabolism on glucose homeostasis

At the end of the 3 weeks of treatment, mice (n = 14) were evaluated for weight gain, FPG,
fasting insulin and OGTT and ITT were performed. No significant difference were observed
between control and treatment groups for weight gain, FPG and fasting insulin (ESM Fig.
4a—c). During the GTT, no difference in blood glucose was observed when comparing
control and FB1-treated mice (Fig. 5f). During the ITT, the treatment group (FB1) showed
overall reduced responsiveness to insulin in comparison with the control group, most notably
(significant) during the later stages of the ITT (Fig. 5g). Interestingly, the islets in the
pancreas of FB1-treated mice (n = 5) displayed a small but significant reduction in the
insulin-positive area compared with the control mouse islets (Fig. 5h—j).

Pancreatic beta cell function in vitro in response to sphingolipid metabolism
downregulation

To assess the effects of downregulated sphingolipid metabolism on beta cell function and
insulin secretion more directly, murine (C57B/L6) islets and Min6 K8 cells were treated in
vitro with either FB1 (1 pmol/l) or a second inhibitor myriocin (50 nmol/l) and GSIS was
assessed (Fig. 6). In Min6 K8 cells, both inhibitors significantly decreased GSIS without
affecting basal (low glucose) insulin secretion (Fig. 6a—d). The inhibitors also significantly
decreased insulin secretion in response to cell depolarisation with KCI (Fig. 6e, g) and
decreased total insulin content in Min6 K8 cells (Fig. 6f, h). In murine islets, both inhibitors
significantly decreased GSIS (Fig. 6j, I). Moreover, myriocin caused a significant increase in
basal insulin secretion (Fig. 6K). In murine islets, neither KCI-stimulated insulin secretion
nor total insulin content were significantly altered by either treatment (data not shown).

Discussion

By employing artificial intelligence-based machine learning, we identified a predictive
signature with an overall discriminating power (AUC) 0f0.92with 91% accuracy. The
accuracy of this predictive signature is not compromised by either sensitivity (87%) or
specificity (93%). This accuracy is better than that provided by well-known clinical
diagnostics, including fasting glucose, 2 h post-load glucose in 75 g OGTT, HOMA-IR,
family history of diabetes and type of GDM treatment, as well as that reported in some
recently published metabolomics-based diagnostic studies [19, 43, 44]. Moreover, unlike
other signatures [19, 28], a strength of our predictive signature is that it does not rely on
clinical variables since case and control participants were matched on early postpartum
glucose tolerance (normal or impaired), age and BMI to reduce confounding of metabolite
prediction by these clinical risk factors. The strong suit of the signature was the 45-fold
cross-validation under a high confidence threshold (1.0) and binary output, which together
minimise the chance ofdata overfitting and bias selection.This protocol ensures the
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reliability of this signature in making a predictive decision for any unknown blood sample.
However, this predictive signature applies specifically to Hispanic and Asian women in
predicting early progression to type 2 diabetes within 2 years following GDM pregnancy.
Only two racial and ethnic groups were selected for this study, to achieve sample
homogeneity. In future, these analyses may be extended to other race groups in the SWIFT
cohort, in order to test the signature’s ability to predict progression to overt diabetes after
GDM pregnancy within a much longer follow-up period of 10 years.

For the first time in a population-based study, we identified downregulation of sphingolipid
metabolism as an antecedent early-stage event in women with previous GDM who
developed type 2 diabetes (Fig. 4), together with other known pathways (e.g. upregulated
fatty acid biosynthesis and upregulated a-linolenic acid and linoleic acid metabolism).
Downregulated sphingolipid metabolism was identified based on a number of significantly
downregulated nodes in the pathway (Table 2 and Fig. 4b). However, several cross-sectional
clinical studies have shown that Cer levels (a single upstream node of the whole pathway)
are higher in obese individuals with type 2 diabetes [45, 46]. These studies evaluated obesity
as a covariant in their analyses. However, in this study, obesity was controlled by pair-
matching of BMI between groups. Moreover, we employed a prospective postpartum GDM
cohort, leaving open the possibility that some nodes of sphingolipid metabolism may arise
after disease onset.

To understand the role of sphingolipid metabolism in the early-stage pathophysiology of
type 2 diabetes, we used FB1 to inhibit de novo sphingolipid biosynthesis transiently in mice
without high-fat diet intervention. The in vivo studies showed that transient inhibition of
sphingolipid metabolism has no significant effect on insulin sensitivity, except in the late-
phase (indicating disrupted hepatic glucose uptake and/or high gluconeogenesis) in the
treatment group. However, this modulation of sphingolipid metabolism appeared to reduce
pancreatic beta cell area. Further studies are required to determine whether this impairment
of insulin biosynthesis will eventually lead to glucose intolerance in the long term.

The role of downregulated sphingolipid metabolism in overt type 2 diabetes phenotypes has
been studied. Park et al [47] showed that Cer synthase 2 null mice with impaired synthesis
of sphingolipids C22-24 develop glucose intolerance due to abrogated Akt phosphorylation
of the insulin receptor in the liver. Alexaki et al [48] showed that adipocyte-specific Sptlc1-
knockout mice exhibit insulin resistance with agedependent loss of adipose tissue, increased
macrophage infiltration and tissue fibrosis. Furthermore, Lee et al [49] showed that
adipocyte-specific Sptlc2-knockout mice display systemic insulin
resistanceandhyperglycaemia. Taken together with our observations, chronic sphingolipid
metabolism downregulation could thus potentially interfere with liver, muscle, adipose and
beta cell function, contributing to type 2 diabetes onset.

The inhibition of sphingomyelin synthase in INS-1 beta cells significantly reduced insulin
exocytosis [50]. Kavishwar and Moore [51] identified sphingolipid patches on the surfaces
of pancreatic beta cells as a predictor of their functional capacity; the patches decreased in
diabetes, suggesting the importance of sphingolipids in this cell type. In this study, both FB1
and myriocin decreased GSIS. Moreover, myriocin treatment yielded significantly increased
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basal insulin secretion in murine islets. Furthermore, downregulation of sphingolipid
metabolism reduced insulin content. Although both FB1 and myriocin showed similar
effects on GSIS in vitro, potential noise from off-target effects of these two inhibitors cannot
be ruled out. Stanford et al [52] reported similar results (i.e. decreased GSIS in Min6 cells
and murine islets) after inhibiting specific components of sphingolipid metabolism. Recently
Ye et al [53] showed that during diet-induced obesity, mice with knockout of pancreatic beta
cellspecific LDL receptor-relatedprotein 1 (apleiotropic mediator of cholesterol, insulin,
energy metabolism and other cellular processes) were unable to compensate beta cell
function partly due todownregulation ofsphingolipidmetabolism. Therefore, downregulated
sphingolipid metabolism may play a causal role in pancreatic beta cell dysfunction.
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Fig. 1.

Tr?e schematic flow diagram of the study design. This was a nested case—control study
within the SWIFT study, a prospective cohort of 1035 women diagnosed with GDM and
followed up to 2 years postpartum. A total of 140 women were selected out of the 1035
SWIFT participants. These women did not have type 2 diabetesmellitus (T2DM) at 6-9
weeks postpartum(study baseline) based on 2 h 75 g OGTT. Of the 140 selected, 55 women
were diagnosed as having T2DM, via 2 h 75 g OGTTs, within 2 years post baseline. This
group was termed as ‘case’. The remaining 85 women did not develop T2DMbased on the
results of the 2 h 75 g OGTTs within 2 years post baseline. This group was termed “control’
(non-T2DM). The fasting plasma from the baseline examination was used for LC-MS-based
targeted lipidomics aimed at finding the relation in terms of a predictive signature and the
earlier stage pathophysiology of T2DM prospectively within the 2 year follow-up period
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Fig. 2.

Predictive signatures/biomarkers for progression to type 2 diabetes. (a) Schematic flow
diagram of the predictive signatures/biomarkers. (b) Univariate ROC analysis and box plot
for FPG. The FPG value at 5.7 mmol/l (red circle) is the optimal cut-off for the mean AUC
0.64 within the 95% CI. (c) Univariate ROC analysis and box plot for HOMA-IR. The
HOMA-IR value at —0.17 (red circle) is the optimal cut-off and provides the mean AUC 0.65
within the 95% CI. (d) Univariate ROC analysis and the box plot for 2 h post-load glucose in
759 OGTT (2 h Glu). The 2 h glucose value at 6.58 mmol/l (red circle) is the optimal cut-
off and provides the mean AUC 0.71 within the 95% CI. (e) Univariate ROC analysis and
box plot for total fasting TAGs (T-TAG). The T-TAG value at 1.12 mmol/I (red circle) is the
optimal cut-off and provides the mean AUC 0.61 within the 95% CI. (f) Univariate ROC
analysis and box plot for the top AUC exhibiting lipid metabolite TAG54:0-FA16:0. The
value at —0.03 mmol/I (red circle) is the optimal cut-off and provides the mean AUC 0.69
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within the 95% CI. In the box plots (b—f), the distribution of population (case and control)
based on FPG, HOMA-IR, 2 h glucose, T-TAG and TAG54:0-FA16:0 is shown, with the y-
axis in mmol/l, except for HOMA-IR (unitless). The bottom and top of the box are the Q1
and Q3 (25th and 75th percentile), respectively, and the central band is the median (Q2 or
50th percentile). The bottom whisker is located within 1.5 IQR of the lower quartile, and the
upper whisker is located within 1.5 IQR of the upper quartile. Outliers are presented in the
outside of whiskers. The red line in each box plot shows the point that separates the whole
population into two groups, case and control, to provide maximum class separation. A two-
tailed, paired t test was carried out for each comparison; unadjusted p values: *p<0.05,
**<0.01, ***p<0.001 vs control. (g) In stepwise MLR with clinical variables, the signature
with three variables (2 h glucose, FPG and family history of diabetes) provides the mean
AUC 77%. (h) In stepwise MLR with lipid metabolites, the signature with 12 variables
(lipids, shown on the right) provides the mean AUC 84%

Diabetologia. Author manuscript; available in PMC 2020 May 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Khan et al.

1Y)

Sensitivity

(ep

Sensitivity

Misclassification error (%) Q.

1.0
0.8
AUC 0.92
0.6 95% C10.89, 0.95
0.4
0.2
T2DM (case)
0

0 02 04 06 08 1
1 - Specificity

0.8

0.6 AUC 0.92
95% C1 0.89, 0.95
0.4
0.2 Control
0

0 02 04 06 08 1
1 - Specificity

30
2 K-fold cross-validation
20 K =5to 100
K=45 chosen as per
/| ‘one standard error
15 / rule’
10
5

0 20 40 60 80 100
K-fold cross-validation

Fig. 3.

Cc

\/ CE(16:0)

= (439.9 to < 442) pmol/l #(439.9 to < 442) pmolll
T2DM (22/0) NEFA(22:4) |

= (0.014 — 0.024) pmol/ m (0.014 — 0.024) pmol/l

TAG 48:2FA16:1 |

<13.67 pmoll /\j 13.67 pmol/l

T2DM (6/0)

T2DM (17/0)

| CE(20:4) \

= (323 - 333.73) pmol/l /\¢ (323 - 333.73) pmol/l

T2DM (3/0)

PE(P-18:0/18:1) |

<0.66 pmol/l
T2DM (2/0)

> 0.66 pmol/l

CE(16:0) |

< 431.63 pmol/l /\> 431.63 pmol/l

Controls (58/1)

TAG 54:0 FA 16:0

<0.144 pmol/ /\ > 0.144 pmol/

Controls (19/0)

TAG 50:1 FA 16:0

<144 pmol/l /\ > 144 pymol/l

Page 20

T2DM (3/0)  Controls (10/1)
Approach AUC | Accuracy | Sensitivity | Specificity | Precision | F-score
2h glicose 1% | 4% 70% 60% 71% | NA
(univariate ROC analysis)
Stepwise r_nult_lple regression ft_Jr lipids 84% 7% 63% 86% 77% NA
(multivariate ROC analysis)
Flitered ciceifar 2% | 91% 87% 93% 91% | 091

(machine learning)

The machine learning approach in predictive signature discovery. (a, b) ROC curve for type
2 diabetes (T2DM) cases (a) and control participants (b) in the filtered classifier algorithm.

The mean AUC was 0.92 for both case (a) and control (b) within the 95% CI. (c) The

decision tree generated from the filtered classifier algorithm. (d) The selection of cross-
validation through the ‘one standard error’ rule where K=45 was selected. (€) Comparison
table for the top biomarkers found using the different approaches
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Fig. 4.

The putative pathway analysis for the development of type 2 diabetes. (a) Schematic flow
diagram of the putative pathway analysis. (b) The distribution of the differentially expressed
lipid species (75) within the final dataset (626); the bar graphs show the binary logarithm of
fold changes (case/control) of all significant metabolites with £ SEM. (c) Pathway analysis:
metabolite set enrichment (MSE) analysis based on FDR <0.05 (-logyg of FDR <1.3) and
KEGG pathway analysis based on FDR <0.05 (-log;q of FDR <1.3). Red bars, upregulation;
green bars, downregulation. HCer, hexosylceramide
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Fig. 5.

Ingvivo functional studies. (a) Schematic flow diagram of the sphingolipid metabolism
pathway showing targets of FB1 (pharmacological inhibitor). (b) The in vivo study design
(r=14): the control group of mice was injected with vehicle while the treatment group was
injected with FB1 (1 mg/kg) daily. Every week, the weight gain and the FPG were
monitored. At the end of the third week, GTT and ITT were performed. Finally, all mice
were euthanised to collect whole pancreases and plasma. (¢) So concentration in control and
FB1-treated mice (n=3). (d) Representative chromatogram of So. () Comparison of the four
Cer species found to significantly differ in the SWIFT cohort (values were mean-centred
[n=3] and divided by the SD of each variable). In the boxplots (c, €), the bottom and top of
the box are the Q1 and Q3 (25th and 75th percentile), respectively, and the central band is
the median (Q2 or 50th percentile). The bottom whisker is located within 1.5 IQR of the
lower quartile, and the upper whisker is located within 1.5 IQR of the upper quartile. (f)
GTT single time point comparison between control (black line) and FB1 group (green line)
at the end of 3 weeks treatment (/27). (g) ITT single time point comparison between control
(black line) and FB1 group (green line) at the end of 3 weeks treatment (/27); inset shows
AUC (mmol/l x min). (h, i) Representative insulin-stained pancreas (5 pm thickness,

Diabetologia. Author manuscript; available in PMC 2020 May 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Khan et al.

Page 23

longitudinally sectioned through the pancreatic headto-tail axis) from control (h) and FB1-
treated mice (i); scale bars, 3 mm; insets show x40 magnification. (j) Insulin-positive area in
pancreases of control and FB1-treated mice (/25). A two-tailed, unpaired t test was carried
out for each comparison. Data are presented as mean + SEM; unadjusted p values: *p<0.05
vs control
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GSIS studies in vitro. (a—h) In Min6 K8 cells, FB1 treatment (green) did not alter basal (LG)
insulin secretion (a) but significantly decreased GSIS (high glucose [HG]-stimulated) (b).
Myriocin treatment (pink) did not alter basal insulin secretion (c) but significantly decreased
GSIS (d). FB1 treatment significantly decreased KCI-stimulated insulin secretion (e) and
total insulin (f). Myriocin treatment significantly decreased both KCI-stimulated insulin
secretion (g) and total insulin (h). In Min6 K8 cells, 0 mmol/l glucose was used for LG and
10 mmol/I glucose was used in HG stimulation. For KCI stimulation, 25 mmol/l KCI was
added to HG solution. (i-I) In murine islets, FB1 treatment significantly decreased both
basal insulin secretion (i) and GSIS (j). Myriocin treatment significantly increased basal
insulin secretion (k) and significantly decreased GSIS (I). In murine islets, 2.8 mmol/l
glucose was used for LG and 16.7 mmol/l glucose was used in HG stimulation. For KCI
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stimulation, 25 mmol/l KCI was added to HG solution. Vehicle included 0.04% (v/v) DMSO
for FB1 treatments (blue) or 0.0001 (v/v) DMSO for myriocin treatments (white). Data are
presented as mean + SEM (n=3 for FB1 in Min6 cells, /=5 for myriocin in Min6 cells, n=6
for FB1 in C57BL/6 murine islets, /7/=3 for myriocin in C57BL/6 murine islets). A two-
tailed, unpaired t test was carried out for each comparison (unadjusted p values: *p<0.05,
**<0.01, ***p<0.001 vs vehicle)
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