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Abstract

Aims/hypothesis—Gestational diabetes mellitus (GDM) affects up to 20% of pregnancies, and 

almost half of the women affected progress to type 2 diabetes later in life, making GDM the most 

significant risk factor for the development of future type 2 diabetes. An accurate prediction of 

future type 2 diabetes risk in the early postpartum period after GDM would allow for timely 

interventions to prevent or delay type 2 diabetes. In addition, new targets for interventions may be 

revealed by understanding the underlying pathophysiology of the transition from GDM to type 2 

diabetes. The aim of this study is to identify both a predictive signature and early-stage 

pathophysiology of the transition from GDM to type 2 diabetes.

Methods—We used a well-characterised prospective cohort of women with a history of GDM 

pregnancy, all of whom were enrolled at 6–9 weeks postpartum(baseline),were confirmed not to 
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have diabetes via 2 h 75 g OGTT and tested anually for type 2 diabetes on an ongoing basis (2 

years of follow-up). A large-scale targeted lipidomic study was implemented to analyse ~1100 

lipid metabolites in baseline plasma samples using a nested pair-matched case–control design, 

with 55 incident cases matched to 85 non-case control participants. The relationships between the 

concentrations of baseline plasma lipids and respective follow-up status (either type 2 diabetes or 

no type 2 diabetes) were employed to discover both a predictive signature and the underlying 

pathophysiology of the transition from GDM to type 2 diabetes. In addition, the underlying 

pathophysiology was examined in vivo and in vitro.

Results—Machine learning optimisation in a decision tree format revealed a seven-lipid 

metabolite type 2 diabetes predictive signature with a discriminating power (AUC) of 0.92 (87% 

sensitivity, 93% specificity and 91% accuracy). The signature was highly robust as it includes 45-

fold cross-validation under a high confidence threshold (1.0) and binary output, which together 

minimise the chance of data overfitting and bias selection. Concurrent analysis of differentially 

expressed lipid metabolite pathways uncovered the upregulation of α-linolenic/linoleic acid 

metabolism (false discovery rate [FDR] 0.002) and fatty acid biosynthesis (FDR 0.005) and the 

downregulation of sphingolipid metabolism (FDR 0.009) as being strongly associated with the risk 

of developing future type 2 diabetes. Focusing specifically on sphingolipids, the downregulation of 

sphingolipid metabolism using the pharmacological inhibitors fumonisin B1 (FB1) and myriocin 

in mouse islets and Min6 K8 cells (a pancreatic beta-cell like cell line) significantly impaired 

glucose-stimulated insulin secretion but had no significant impact on whole-body glucose 

homeostasis or insulin sensitivity.

Conclusions/interpretation—We reveal a novel predictive signature and associate reduced 

sphingolipids with the pathophysiology of transition from GDM to type 2 diabetes. Attenuating 

sphingolipid metabolism in islets impairs glucose-stimulated insulin secretion.
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Introduction

Gestational diabetes mellitus (GDM), defined as glucose intolerance first recognised during 

pregnancy, affects up to14% of pregnancies worldwide [1, 2]. Although the cause remains 

uncertain, GDM is suspected to arise from the diminished capacity of the pancreas to 

produce sufficient insulin and impaired insulin action related to pregnancy. GDM pregnancy 

increases maternal complications [3] and infants of mothers with GDM are at significantly 

higher risk of obesity, dyslipidaemia and type 2 diabetes [4]. While maternal glucose 

tolerance generally returns to normal after delivery, GDM is associated with persistent long-

term metabolic dysfunction and elevated risk of overt diabetes [5]. Up to 50% of women 

with GDM may progress to type 2 diabetes within 5–10 years postpartum [6, 7]. These 

women develop type 2 diabetes at a relatively younger age (e.g. <40 years) than the general 

population and have a higher risk of cardiovascular disease, non-alcoholic fatty liver, renal 
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disease and early mortality [8–15]. The underlying cause of the transition from GDM to type 

2 diabetes and the accurate prediction of this transition are therefore critical.

The ADA recommends that all women with GDM undergo screening for type 2 diabetes via 

a 2 h 75 g OGTT at 6– 12 weeks postpartum followed by subsequent screening every 1–3 

years via fasting plasma glucose (FPG) measurement and 2 h 75 g OGTT [16]. The 

discriminating power (AUC) of 2 h plasma glucose in the OGTT is at best 65–77% across 

studies [17–19]. Moreover, the compliance with ADA recommendations among this group 

for screening via an OGTT is very low (~19%) in many settings [19, 20]. This low 

compliance could in part be due to the time-consuming and/or unpleasant nature of the tests 

or healthcare system limitations [19, 21–24]. A simplified and more accurate prognostic test 

would be desirable to reclassify glucose tolerance after pregnancy and predict future type 2 

diabetes progression following GDM pregnancy.

It is well known that the elevation in blood glucose in type 2 diabetes occurs long after the 

underlying metabolic changes that promote disease development. Thus, discovery-based 

metabolomics is considered a promising approach for both the early prediction and the 

identification of underlying pathways of future type 2 diabetes onset. This methodology has 

led to the identification of several biomarkers for future type 2 diabetes incidence [25–27]. 

Our group previously identified metabolic biomarkers of subsequent type 2 diabetes onset 

among women with recent GDM enrolled in the Study of Women, Infant Feeding and Type 

2 Diabetes after GDM (SWIFT) prospective cohort [19]. Using clinical variables combined 

with metabolic biomarkers, including lipid species, we developed a simple four-structure 

metabolic signature—phosphatidylcholine (PC) aeC40:5, hexoses, branched-chain amino 

acids (BCAAs) and sphingomyelin (SM) (OH)C14:1—that predicted type 2 diabetes 

incidence with 83% discrimination power (AUC) in a nested pair-matched (1:1) case–control 

study of 244 SWIFT participants, where 12% of 1010 women with GDM progressed to type 

2 diabetes within about 2 years post-delivery [19]. A smaller nested case–control study of 

metabolomics (lipidomics), targeting >300 lipid species in blood samples taken from 104 

women with GDM at 12 weeks post-delivery, of whom 21 (20%) progressed to type 2 

diabetes within 12 years, showed 83.6% accuracy in type 2 diabetes prediction based on 

three lipids—phosphatidylethanolamine (PE) P-36:2, phosphatidylserine (PS) 38:4 and 

cholesteryl ester (CE) 20:4—in combination with six other risk factors (age, BMI, 

pregnancy fasting glucose, postpartum fasting glucose, total triacylglycerols [TAGs] and 

total cholesterol) [28]. These promising findings provide evidence that novel metabolite 

markers combined with other factors can facilitate the prediction of type 2 diabetes risk.

Metabolomic studies can also be used to illuminate the pathophysiology of type 2 diabetes 

and its progression. Both stearoylcarnitine and BCAA levels increased in those who 

developed type 2 diabetes [29, 30], possibly linked to impaired pancreatic beta cell function 

[31]. Several specialised lipid metabolites (sphingomyelins [SMs], phosphatidylcholines 

[PCs] and lysophosphatidylcholines [LPCs]) were inversely associated with type 2 diabetes 

risk [32]. Our previous metabolomics study in the SWIFT cohort of women with GDM also 

showed decreased levels of several specialised lipid metabolites (sphingolipids and PCs) in 

the transition from GDM to type 2 diabetes [19]. These lipid metabolites are known core 

components of cell membranes and may be linked to type 2 diabetes progression [32, 33].
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There is substantial evidence to suggest that lipid imbalances both predict and cause type 2 

diabetes. Given the apparent links between lipid biosynthesis, metabolism and beta cell 

dysfunction leading to type 2 diabetes, the role of lipids has been collectively understudied 

with respect to diabetes risk. Herein, we used lipidomics to screen a large and broad 

spectrum of lipid metabolites in relation to subsequent type 2 diabetes development. This 

lipidomic study sought to identify lipid biomarkers and putative early-stage pathophysiology 

that may predict and influence future progression to type 2 diabetes in women after GDM 

pregnancy.

Methods

Study population

The prospective SWIFT cohort enrolled a racially and ethnically diverse group of 1035 

women, with GDM (age 20– 45 years), who delivered singleton pregnancies at ≥35 weeks of 

gestation at Kaiser Permanente Northern California (KPNC) hospitals between 2008 and 

2011 [34, 35]. Each participant provided informed consent at the in-person examination at 

6–9 weeks postpartum (baseline) before collection of blood specimens from a 2 h 75 g 

OGTT, completion of surveys, anthropometric and body composition measurements, and 

annual in-person follow-up examinations for 2 years. The KPNC Institutional Review Board 

approved the study protocol. The study recruitment, selection criteria, methodologies and 

other detailed information have been described previously [34–36]. At each 2 h 75 g OGTT, 

trained research staff collected fasting blood samples and processed and stored plasma 

samples at −80°C for future studies.

Study design

For this study, we selected the incident diabetes cases among Hispanic and Asian groups, 

and pair-matched (1:1.5) them to control women without progression to diabetes during the 

2 year follow-up by age (±2 years), race and ethnicity (completely matched), pre-pregnancy 

BMI (±0.96 kg/m2) and glucose tolerance at 6–9 weeks postpartum (completely matched). 

We selected only matched pairs of Hispanic (n = 90) and Asian (n = 50) women to ensure 

homogeneity of race and ethnic groups. The nested case–control design with pair-matching 

greater than 1:1 does not allow direct comparisons of incidence rates among the ethnic and 

racial groups for this subset analysis. The fasting plasma samples were collected from these 

140 women at the baseline examination (at 6–9 weeks postpartum), all confirmed not to 

have-type 2 diabetes at the baseline exam via the 2 h 75 g OGTT. Details of the SWIFT 

prospective cohort design and follow-up are published elsewhere [30, 37–40]. For women 

who progressed to type 2 diabetes during the 2 years follow-up period (n = 55), termed here 

as the ‘follow-up’ time point, the newly diagnosed incident type 2 diabetes was referred to 

as ‘case’. Women who did not develop type 2 diabetes during the follow-up period (n = 85) 

are referred to as ‘control’ (Fig. 1). Please see electronic supplementary materials (ESM) 

Methods for details.
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Targeted lipid profiling (targeted-lipidomics analysis)

Fasting plasma samples collected at 6–9 weeks postpartum during the SWIFT study were 

sent to Metabolon (Morrisville, NC, USA) for a single-blind targeted-lipidomics analysis of 

1100 lipid species on each plasma sample. For details of lipidomics see ESM Methods.

Data preparation and statistical analysis of the quality of the final dataset

A stringent protocol was followed to prepare the final dataset, which was further scrutinised 

for quality in terms of the presence of confounding factors and the certainty of the class 

separation through principal component analysis (PCA) and a partial least squares-

discriminant analysis (PLS-DA), respectively, using MetaboAnalyst 3.0 (https://

www.metaboanalyst.ca/) in default setting (e.g. tenfold cross-validation). For details of this 

protocol, see ESM Methods.

Differential expression analysis and pathway analysis

A non-parametric test (Wilcoxon–Mann–Whitney test, α value set at p < 0.05) followed by 

multiple comparisons with false discovery rate (FDR) analysis (α value set at p < 0.05) was 

carried out to identify the differentially expressed lipid metabolites between the case and 

control. These differentially expressed lipid metabolites were used for the pathway analysis 

by adopting two approaches: (1) a direct approach where differentially expressed lipid 

metabolites were used in both over-representation pathway analysis using Kyoto 

Encyclopedia of Genes and Genomes (KEGG; Kanehisa Laboratories, Kyoto, Japan) 

pathways and metabolite set enrichment pathways (MSEP) analysis and (2) an in silico 

approach where the interacting proteins with the differentially expressed lipid metabolites 

were used. All analyses were carried out using one of the following platforms (or a 

combination of them): MetaboAnalyst 3.0, MBrole 2.0 (Madrid, Spain), and String 10.5 

platforms (https://string-db.org). For details of the pathway analyses, see ESM Methods.

Predictive analytics

The biomarker analysis module of MetaboAnalyst 3.0 was used for univariate receiver 

operating characteristic (ROC) analysis. In the multivariate ROC analysis, the stepwise (both 

ways) multiple logistic regression (MLR) was carried out in R-studio (Boston, MA, USA) 

using the ‘glm’ function under the removal of data redundancy protocol and significant 

contributor calculation (R-script is available in ESM Methods). Machine learning analyses 

were carried out through WEKA 3.8 (University of Waikato, Hamilton, NZ). The final 

classifier was further optimised for balancing between the chance of data overfitting, higher 

ROC possibility and F-score (a measurement of a test’s accuracy based on precision and 

sensitivity). Optimisation was carried out by applying K-fold cross-validation, confident 

threshold 1.0 and binary output selection. A series of cross-validation up to K = 100 was 

conducted to test the stress tolerability of the signature. Forty-five-fold cross-validation (K = 

45) was chosen as per ‘one standard error rule’ for final reporting. High confidence 

threshold (1.0) ensures the proper cleaning of bias from the final signature. Binary output 

selection further protects the signature from data overfitting and bias selection. The 

discriminating power of ROC analysis is presented in the form of an AUC. See ESM 

Methods for details.
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In vivo and in vitro functional studies

Animal care—C57BL/6 J male mice were obtained from Charles River (Sherbrook, QB, 

Canada) at the age of 8 weeks for both in vivo and in vitro islets studies. Mice were housed 

in the Division of Comparative Medicine facility, University of Toronto. All mouse 

procedures and maintenance were conducted in compliance with protocols approved by the 

Animal Care Committee at the University of Toronto and the guidelines of the Canadian 

Council of Animal Care.

Intraperitoneal injections and monitoring—The mice were injected intraperitoneally 

either by using 1 mg kg−1 day−1 fumonisin B1 (FB1) (Cayman, Michigan, USA) or vehicle 

(DMSO–saline [154 mmol/l NaCl]) for 3 weeks. Weight gain and blood glucose were 

monitored on a weekly basis.

Insulin tolerance test and IPGTT—Both ITTs and GTTs were conducted using 

standard protocols that are described elsewhere [41].

Sphingolipid profiling and insulin staining of pancreas—After 3 weeks of 

treatment, mice were euthanised to collect plasma and pancreatic tissue. Plasma samples (n 

= 3) were subjected to sphingolipid profiling through LC-MS/MS at the Analytical Facility 

for Bioactive Molecules, SickKids, Toronto. The pancreases (n = 7) were fixed for insulin 

staining by using the standard protocol [37] of the Centre for Phenogenomics (TCP), Sinai 

Health System Institute, Toronto. The 40× images of pancreatic slices were produced at TCP 

and analysed by Aperio ImageScope software package (Wetzlar, Germany).

In vitro glucose-stimulated insulin secretion Glucose-stimulated insulin secretion (GSIS) 

was assessed, as previously described [41],in both Min6 K8 cells (agift from S. Seino [Kobe 

University, Kobe, Japan] and J. Miyazaki [Osaka University, Suita, Japan] and isolated male 

murine C57BL/6 islets in vitro after treatment with either 1 μmol/l FB1 or50 nmol/l 

myriocin (Cayman, Ann Arbor, MI, USA) for 24 h.

Results

Baseline sociodemographic and clinical characteristics of participants

This nested pair-matched case–control study included a subset of 140 Asian and Hispanic 

women from the SWIFT cohort (Fig. 1). Sociodemographic and clinical characteristics of 

case and control groups are summarised in Table 1. There were no statistically significant 

differences observed in either pre-pregnancy or baseline (6–9 weeks postpartum) BMI, total 

energy intake or physical activity. Baseline FPG (p < 0.01), 2 h plasma glucose (p < 0.001), 

fasting insulin (p < 0.01) and fasting TAG (p < 0.05) measurements and median HOMA-IR 

(p < 0.01) were significantly higher in the type 2 diabetes case group. The case group was 

more likely than matched control participants to have been treated with insulin or oral 

medications during pregnancy and were more likely to have a family history of diabetes.
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Statistical analysis of the quality of the final dataset from lipidomics

The final dataset was composed of 626 detectable lipid metabolites. The unsupervised PCA 

showed two major principal components, with the first comprising 32.8% of the total study 

population and the second comprising 11.8%. Since the lipidomic analysis was performed at 

baseline before the earliest diagnosis, it would be overly optimistic to get a higher value for 

the major principal components. Other components were small contributors in the separation 

of the study population (ESM Fig. 1a). The supervised PLS-DA, where the groups were pre-

identified as control and case, showed distinguishable separation and was presented in a 

two-dimensional score plot (ESM Fig. 1b). A cross-validation analysis determined that the 

performance of PLS-DA had a 63% and 64% accuracy for these two clusters, respectively, 

based on R2 and Q2 (ESM Fig. 1c). Furthermore, the empirical Bayes estimation (here with 

1000 random permutations) was applied to confirm that the distinct separation between the 

two groups found in PLS-DAwas not due to random chance. The empirical p value was 

significant (0.014; ESM Fig. 1d), indicating that the separation was true for 986 times out of 

1000. The distribution of (quantile) normalised and log2-transformed data is showed in ESM 

Fig. 1e.

Univariate and multivariate ROC analysis and predictive capability of metabolites to 
predict future type 2 diabetes

The strategies for predictive biomarker discovery are illustrated in Fig. 2a. FPG, HOMA-IR 

and 2 h post-load glucose in 75 g OGTT are frequently used for diagnostic purposes and 

their values for cases vs controls already showed a significant difference at baseline (p < 

0.01, p < 0.01 and p < 0.001, respectively). In addition, the total fasting TAG levels were 

significantly higher in cases vs controls (p < 0.05). However, the ROC-AUCs of FPG, 

HOMA-IR, 2 h glucose and total fasting TAGs were 0.64, 0.65, 0.71 and 0.61 respectively 

(Fig. 2b–e, ROC analyses) in classic univariate ROC analyses. These low AUC values 

indicated a relatively weak ability to predict type 2 diabetes. Although mean differences 

were statistically significant (p < 0.01, p < 0.01, p < 0.001 and p < 0.05, respectively) (Fig. 

2b–e, box plots), low AUC scores led to limitations. Each lipid metabolite was also 

subjected to classic univariate ROC analysis to find the lipid metabolite with the highest 

predictive capability for future type 2 diabetes status. Among all lipid metabolites, TAG 

54:0-FA 16:0 scored the highest AUC of 0.69 (Fig. 2f). Although its mean difference for 

cases vs controls was statistically significant (p < 0.001) (Fig. 2f, box plot), its relatively low 

ROC-AUC score indicated weak predictability. The low ROC-AUC of TAG 54:0-FA 16:0 

was in part due to high heterogeneity in the distribution of its concentration within the 

population. The low AUCs in univariate ROC analyses suggested that one analyte-based 

diagnostic would not be the best approach to predict type 2 diabetes incidence.

Since type 2 diabetes is a multifactorial disease, multivariate analyses could have better 

strength in predicting future type 2 diabetes onset. Thus, a popular multivariate ROC 

analysis, stepwise multiple (both ways) logistic analysis [38, 39], was carried out here to 

select a signature panel (containing multiple variables) to improve the discrimination power 

(AUC). In the stepwise MLR analysis with both statistically significant biochemical clinical 

variables (FPG, 2 h glucose, HOMA-IR and total TAG) and clinical factors (family history 

of diabetes and type of GDM treatment), a panel of three clinical variables (FPG, 2 h 
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glucose and family history of diabetes) produced an AUC of 77% (95% CI 69%, 85%) (Fig. 

2g). In the stepwise MLR analysis with lipids, a panel of 12 lipid metabolites produced an 

AUC of 84% (95% CI 77%, 90%) (Fig. 2h).

The predictive signatures/biomarkers in machine learning approach and comparison with 
other methods

The artificial intelligence-assisted machine learning algorithms were further employed using 

Weka 3.8 to find a predictive signature with a better predictability than the multivariate 

signature panel. The highest ROC-AUC was found in the filtered classifier algorithm. The 

ROC-AUC of this panel was 0.92 for both case and control participants (Fig. 3a, b) with 

91% accuracy (Fig. 3e). It revealed a predictive signature consisting of seven lipid 

metabolites with a decision tree having 17 nodes (branching points) and nine leaves 

(decision points) (Fig. 3c). Although both biochemical and historical clinical variables (total 

TAGs, FPG, 2 h glucose, HOMA-IR, family history of diabetes and type of GDM treatment) 

were evaluated with the lipid dataset, they did not appear in the predictive signature, 

indicating the superior predictive power of lipid metabolites over these clinical variables as 

well as matching variables (age, race/ethnicity and BMI) in this nested case–control study 

sample. This signature was validated through a rigorous cross-validation protocol, where a 

45-fold cross-validation was selected by adopting one standard error calculation (Fig. 3d). 

The K = 45 cross-validated model showed no significant difference in misclassification 

errors in comparison with the K = 20- to 100-fold cross-validated models, having relatively 

lower standard mean errors and no overfitting due to being outside of the saturation of 

accuracy (K = 60 to 90). K = 85 cross-validation, which produced the lowest 

misclassification errors (or highest accuracy), was the most over-fitted model. The K = 45 

cross-validated model was further optimised under confidence threshold 1.0 and binary 

output selection criteria. Altogether, this ensured the signature did not suffer from data 

overfitting and bias selection. The comparison among the best signatures found using 

different approaches is summarised in Fig. 3e. Comparisons were made in terms of accuracy, 

sensitivity, specificity, precision and AUC. The machine learning approach-derived signature 

had an AUC of 0.92, an accuracy of 91% (correctly predicted 127 out of 140 participants), a 

sensitivity of 87% (correctly predicted 48 cases out of 55) and a specificity of 93% 

(predicted 79 controls correctly out of 85).

Differential expression and putative pathway analysis based on lipidomics

A total of 75 lipid metabolites were differentially expressed significantly between the case 

and control groups (Table 2). The putative pathway analysis (Fig. 4a) involved both a direct 

approach (based on differentially expressed lipids) and an in silico approach (based on the 

interacting putative proteins of the differentially expressed lipids). In the case group, 46 lipid 

metabolites were significantly upregulated and 29 were significantly downregulated (Fig. 

4b). The significantly upregulated lipid metabolites were predominantly TAG lipid species 

whereas the significantly downregulated lipid metabolites consisted of CE, ceramide (Cer), 

NEFA, lactosylceramide (LCer), LPC, lysophosphatidyl-ethanolamine (LPE), PE and SM 

lipid species (Fig. 4b). The volcano plot for all lipid metabolites and heat map for the 

differentially expressed lipid metabolites are presented in ESM Fig. 2a, b. The volcano plot 

showed a subtle fold change between the two groups at this stage before type 2 diabetes 
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development. The heat map of differentially expressed significant lipid metabolites showed 

the heterogenicity over the studied population.

To identify lipid pathways associated with altered lipid metabolites, KEGG pathway analysis 

was carried out. A significant downregulation of sphingolipid metabolism (FDR 0.009) and 

upregulation of fatty acid biosynthesis (FDR 0.005) (Fig. 4c) was observed. To understand 

the predicted consequence of such modulation, metabolite set enrichment analysis was 

performed. The analysis identified the upregulation of α-linolenic acid and linoleic acid 

metabolism (FDR 0.002) as the predicted net consequence of upregulated fatty acid 

biosynthesis (Fig. 4c). The lipid metabolites belonging to the identified different pathways 

are summarised in ESM Fig. 3a. The upregulated fatty acid synthesis was identified due to 

the significantly higher concentrations of myristic acid (C14:0), palmitic acid (C16:0), 

stearic acid (C18:0) and oleic acid (C18:1). The discovery of upregulated α-linolenic acid 

and linoleic acid metabolism was based on the significantly higher concentrations of linoleic 

acid (C18:2), dihomo-γlinoleic acid (C20:3), eicosapentaenoic acid (C20:5) and 

docosahexaenoic acid (C22:5). In the case of downregulated sphingolipid metabolism, a 

number of significantly decreased ceramides [Cer(16:0), Cer(20:0), Cer(22:0) and 

Cer(24:1)], lactosylceramides [LCer(16:0), LCer(24:1)] and sphingomyelin [SM(20:1)] 

species were identified. The specific alterations in these pathways were linked to increased 

type 2 diabetes risk (ESM Fig. 3a).

Using an in silico approach employing KEGG pathway mapping (ESM Fig. 3b), we 

identified the upregulation of specific inflammation pathways (loci-1) and the 

downregulation of sphingolipid metabolism and related pathways (loci-4) as the dominant 

changes associated with future type 2 diabetes status. Loci-2, the upregulated fatty acid 

biosynthesis, was found between the connectomes of loci-1 and loci-4. Additionally, the 

downregulated glycosylphosphatidylinositol (GPI) anchor biosynthesis (loci-3) represents an 

island locus. GPI proteins are essential for Cer-remodelling and transportation of Cers from 

the endoplasmic reticulum to the Golgi apparatus where glycosphingolipids and 

sphingomyelins are formed [40].

In vivo inhibition of sphingolipid metabolism

Our population-based lipidomics data indicate that a number of Cers, SMs and LCers are 

significantly downregulated years before type2 diabetes onset(Fig. 4b), suggesting that the 

down regulation of sphingolipid metabolism could be in part responsible for the future onset 

of type 2 diabetes among women with previous GDM. To investigate this possibility, an 

approach was taken to inhibit sphingolipid metabolism. FB1, a pharmacological inhibitor of 

sphingolipid biosynthesis, was used to induce overall downregulation of sphingolipid 

metabolism in C57BL/6 mice (n≥ 14). Due to the very short half-life of FB1 (liver 4.07 h, 

kidney 7.07 h, plasma 3.15 h [42]), our treatment could only transiently block sphingolipid 

metabolism. This transient downregulation of sphingolipid metabolism was chosen to depict 

the very early stage of type 2 diabetes pathophysiology. Figure 5a illustrates the sphingolipid 

metabolism pathway as a target of these inhibitors, with FB1 (1 mg/kg) being delivered 

intraperitoneally to mice as depicted in Fig. 5b. Serum samples were collected at the end of 

the treatment and sphingolipid species were profiled by MS (n = 3 per group). The FB1-
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treated mice showed significant accumulation of sphingosine (So) species So(d18:1) (Fig. 

5c, d). In the SWIFT cohort lipidomics study, four Cers—Cer(16:0), Cer(20:0), Cer(22:0) 

and Cer(24:1)—were found to be significantly downregulated. In the FB1-treated mice, 

although levels of these four lipid metabolites decreased, the decrease was statistically 

significant only for Cer (16:0) (Fig. 5e).

Effects of downregulation of sphingolipid metabolism on glucose homeostasis

At the end of the 3 weeks of treatment, mice (n ≥ 14) were evaluated for weight gain, FPG, 

fasting insulin and OGTT and ITT were performed. No significant difference were observed 

between control and treatment groups for weight gain, FPG and fasting insulin (ESM Fig. 

4a–c). During the GTT, no difference in blood glucose was observed when comparing 

control and FB1-treated mice (Fig. 5f). During the ITT, the treatment group (FB1) showed 

overall reduced responsiveness to insulin in comparison with the control group, most notably 

(significant) during the later stages of the ITT (Fig. 5g). Interestingly, the islets in the 

pancreas of FB1-treated mice (n ≥ 5) displayed a small but significant reduction in the 

insulin-positive area compared with the control mouse islets (Fig. 5h–j).

Pancreatic beta cell function in vitro in response to sphingolipid metabolism 
downregulation

To assess the effects of downregulated sphingolipid metabolism on beta cell function and 

insulin secretion more directly, murine (C57B/L6) islets and Min6 K8 cells were treated in 

vitro with either FB1 (1 μmol/l) or a second inhibitor myriocin (50 nmol/l) and GSIS was 

assessed (Fig. 6). In Min6 K8 cells, both inhibitors significantly decreased GSIS without 

affecting basal (low glucose) insulin secretion (Fig. 6a–d). The inhibitors also significantly 

decreased insulin secretion in response to cell depolarisation with KCl (Fig. 6e, g) and 

decreased total insulin content in Min6 K8 cells (Fig. 6f, h). In murine islets, both inhibitors 

significantly decreased GSIS (Fig. 6j, l). Moreover, myriocin caused a significant increase in 

basal insulin secretion (Fig. 6k). In murine islets, neither KCl-stimulated insulin secretion 

nor total insulin content were significantly altered by either treatment (data not shown).

Discussion

By employing artificial intelligence-based machine learning, we identified a predictive 

signature with an overall discriminating power (AUC) of0.92with 91% accuracy. The 

accuracy of this predictive signature is not compromised by either sensitivity (87%) or 

specificity (93%). This accuracy is better than that provided by well-known clinical 

diagnostics, including fasting glucose, 2 h post-load glucose in 75 g OGTT, HOMA-IR, 

family history of diabetes and type of GDM treatment, as well as that reported in some 

recently published metabolomics-based diagnostic studies [19, 43, 44]. Moreover, unlike 

other signatures [19, 28], a strength of our predictive signature is that it does not rely on 

clinical variables since case and control participants were matched on early postpartum 

glucose tolerance (normal or impaired), age and BMI to reduce confounding of metabolite 

prediction by these clinical risk factors. The strong suit of the signature was the 45-fold 

cross-validation under a high confidence threshold (1.0) and binary output, which together 

minimise the chance ofdata overfitting and bias selection.This protocol ensures the 
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reliability of this signature in making a predictive decision for any unknown blood sample. 

However, this predictive signature applies specifically to Hispanic and Asian women in 

predicting early progression to type 2 diabetes within 2 years following GDM pregnancy. 

Only two racial and ethnic groups were selected for this study, to achieve sample 

homogeneity. In future, these analyses may be extended to other race groups in the SWIFT 

cohort, in order to test the signature’s ability to predict progression to overt diabetes after 

GDM pregnancy within a much longer follow-up period of 10 years.

For the first time in a population-based study, we identified downregulation of sphingolipid 

metabolism as an antecedent early-stage event in women with previous GDM who 

developed type 2 diabetes (Fig. 4), together with other known pathways (e.g. upregulated 

fatty acid biosynthesis and upregulated α-linolenic acid and linoleic acid metabolism). 

Downregulated sphingolipid metabolism was identified based on a number of significantly 

downregulated nodes in the pathway (Table 2 and Fig. 4b). However, several cross-sectional 

clinical studies have shown that Cer levels (a single upstream node of the whole pathway) 

are higher in obese individuals with type 2 diabetes [45, 46]. These studies evaluated obesity 

as a covariant in their analyses. However, in this study, obesity was controlled by pair-

matching of BMI between groups. Moreover, we employed a prospective postpartum GDM 

cohort, leaving open the possibility that some nodes of sphingolipid metabolism may arise 

after disease onset.

To understand the role of sphingolipid metabolism in the early-stage pathophysiology of 

type 2 diabetes, we used FB1 to inhibit de novo sphingolipid biosynthesis transiently in mice 

without high-fat diet intervention. The in vivo studies showed that transient inhibition of 

sphingolipid metabolism has no significant effect on insulin sensitivity, except in the late-

phase (indicating disrupted hepatic glucose uptake and/or high gluconeogenesis) in the 

treatment group. However, this modulation of sphingolipid metabolism appeared to reduce 

pancreatic beta cell area. Further studies are required to determine whether this impairment 

of insulin biosynthesis will eventually lead to glucose intolerance in the long term.

The role of downregulated sphingolipid metabolism in overt type 2 diabetes phenotypes has 

been studied. Park et al [47] showed that Cer synthase 2 null mice with impaired synthesis 

of sphingolipids C22–24 develop glucose intolerance due to abrogated Akt phosphorylation 

of the insulin receptor in the liver. Alexaki et al [48] showed that adipocyte-specific Sptlc1-

knockout mice exhibit insulin resistance with agedependent loss of adipose tissue, increased 

macrophage infiltration and tissue fibrosis. Furthermore, Lee et al [49] showed that 

adipocyte-specific Sptlc2-knockout mice display systemic insulin 

resistanceandhyperglycaemia. Taken together with our observations, chronic sphingolipid 

metabolism downregulation could thus potentially interfere with liver, muscle, adipose and 

beta cell function, contributing to type 2 diabetes onset.

The inhibition of sphingomyelin synthase in INS-1 beta cells significantly reduced insulin 

exocytosis [50]. Kavishwar and Moore [51] identified sphingolipid patches on the surfaces 

of pancreatic beta cells as a predictor of their functional capacity; the patches decreased in 

diabetes, suggesting the importance of sphingolipids in this cell type. In this study, both FB1 

and myriocin decreased GSIS. Moreover, myriocin treatment yielded significantly increased 
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basal insulin secretion in murine islets. Furthermore, downregulation of sphingolipid 

metabolism reduced insulin content. Although both FB1 and myriocin showed similar 

effects on GSIS in vitro, potential noise from off-target effects of these two inhibitors cannot 

be ruled out. Stanford et al [52] reported similar results (i.e. decreased GSIS in Min6 cells 

and murine islets) after inhibiting specific components of sphingolipid metabolism. Recently 

Ye et al [53] showed that during diet-induced obesity, mice with knockout of pancreatic beta 

cellspecific LDL receptor-relatedprotein 1 (apleiotropic mediator of cholesterol, insulin, 

energy metabolism and other cellular processes) were unable to compensate beta cell 

function partly due todownregulation ofsphingolipidmetabolism. Therefore, downregulated 

sphingolipid metabolism may play a causal role in pancreatic beta cell dysfunction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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MLR Multiple logistic regression

PC Phosphatidylcholine

PCA Principal component analysis

PE Phosphatidylethanolamine

PLS-DA Partial least squares-discriminant analysis

ROC Receiver operating characteristic

SM Sphingomyelin

So Sphingosine
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Fig. 1. 
The schematic flow diagram of the study design. This was a nested case–control study 

within the SWIFT study, a prospective cohort of 1035 women diagnosed with GDM and 

followed up to 2 years postpartum. A total of 140 women were selected out of the 1035 

SWIFT participants. These women did not have type 2 diabetesmellitus (T2DM) at 6–9 

weeks postpartum(study baseline) based on 2 h 75 g OGTT. Of the 140 selected, 55 women 

were diagnosed as having T2DM, via 2 h 75 g OGTTs, within 2 years post baseline. This 

group was termed as ‘case’. The remaining 85 women did not develop T2DMbased on the 

results of the 2 h 75 g OGTTs within 2 years post baseline. This group was termed ‘control’ 

(non-T2DM). The fasting plasma from the baseline examination was used for LC-MS-based 

targeted lipidomics aimed at finding the relation in terms of a predictive signature and the 

earlier stage pathophysiology of T2DM prospectively within the 2 year follow-up period
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Fig. 2. 
Predictive signatures/biomarkers for progression to type 2 diabetes. (a) Schematic flow 

diagram of the predictive signatures/biomarkers. (b) Univariate ROC analysis and box plot 

for FPG. The FPG value at 5.7 mmol/l (red circle) is the optimal cut-off for the mean AUC 

0.64 within the 95% CI. (c) Univariate ROC analysis and box plot for HOMA-IR. The 

HOMA-IR value at −0.17 (red circle) is the optimal cut-off and provides the mean AUC 0.65 

within the 95% CI. (d) Univariate ROC analysis and the box plot for 2 h post-load glucose in 

75 g OGTT (2 h Glu). The 2 h glucose value at 6.58 mmol/l (red circle) is the optimal cut-

off and provides the mean AUC 0.71 within the 95% CI. (e) Univariate ROC analysis and 

box plot for total fasting TAGs (T-TAG). The T-TAG value at 1.12 mmol/l (red circle) is the 

optimal cut-off and provides the mean AUC 0.61 within the 95% CI. (f) Univariate ROC 

analysis and box plot for the top AUC exhibiting lipid metabolite TAG54:0-FA16:0. The 

value at −0.03 mmol/l (red circle) is the optimal cut-off and provides the mean AUC 0.69 
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within the 95% CI. In the box plots (b–f), the distribution of population (case and control) 

based on FPG, HOMA-IR, 2 h glucose, T-TAG and TAG54:0-FA16:0 is shown, with the y-

axis in mmol/l, except for HOMA-IR (unitless). The bottom and top of the box are the Q1 

and Q3 (25th and 75th percentile), respectively, and the central band is the median (Q2 or 

50th percentile). The bottom whisker is located within 1.5 IQR of the lower quartile, and the 

upper whisker is located within 1.5 IQR of the upper quartile. Outliers are presented in the 

outside of whiskers. The red line in each box plot shows the point that separates the whole 

population into two groups, case and control, to provide maximum class separation. A two-

tailed, paired t test was carried out for each comparison; unadjusted p values: *p<0.05, 

**p<0.01, ***p<0.001 vs control. (g) In stepwise MLR with clinical variables, the signature 

with three variables (2 h glucose, FPG and family history of diabetes) provides the mean 

AUC 77%. (h) In stepwise MLR with lipid metabolites, the signature with 12 variables 

(lipids, shown on the right) provides the mean AUC 84%
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Fig. 3. 
The machine learning approach in predictive signature discovery. (a, b) ROC curve for type 

2 diabetes (T2DM) cases (a) and control participants (b) in the filtered classifier algorithm. 

The mean AUC was 0.92 for both case (a) and control (b) within the 95% CI. (c) The 

decision tree generated from the filtered classifier algorithm. (d) The selection of cross-

validation through the ‘one standard error’ rule where K=45 was selected. (e) Comparison 

table for the top biomarkers found using the different approaches
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Fig. 4. 
The putative pathway analysis for the development of type 2 diabetes. (a) Schematic flow 

diagram of the putative pathway analysis. (b) The distribution of the differentially expressed 

lipid species (75) within the final dataset (626); the bar graphs show the binary logarithm of 

fold changes (case/control) of all significant metabolites with ± SEM. (c) Pathway analysis: 

metabolite set enrichment (MSE) analysis based on FDR <0.05 (−log10 of FDR <1.3) and 

KEGG pathway analysis based on FDR <0.05 (−log10 of FDR <1.3). Red bars, upregulation; 

green bars, downregulation. HCer, hexosylceramide
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Fig. 5. 
In vivo functional studies. (a) Schematic flow diagram of the sphingolipid metabolism 

pathway showing targets of FB1 (pharmacological inhibitor). (b) The in vivo study design 

(n≥14): the control group of mice was injected with vehicle while the treatment group was 

injected with FB1 (1 mg/kg) daily. Every week, the weight gain and the FPG were 

monitored. At the end of the third week, GTT and ITT were performed. Finally, all mice 

were euthanised to collect whole pancreases and plasma. (c) So concentration in control and 

FB1-treated mice (n=3). (d) Representative chromatogram of So. (e) Comparison of the four 

Cer species found to significantly differ in the SWIFT cohort (values were mean-centred 

[n=3] and divided by the SD of each variable). In the boxplots (c, e), the bottom and top of 

the box are the Q1 and Q3 (25th and 75th percentile), respectively, and the central band is 

the median (Q2 or 50th percentile). The bottom whisker is located within 1.5 IQR of the 

lower quartile, and the upper whisker is located within 1.5 IQR of the upper quartile. (f) 
GTT single time point comparison between control (black line) and FB1 group (green line) 

at the end of 3 weeks treatment (n≥7). (g) ITT single time point comparison between control 

(black line) and FB1 group (green line) at the end of 3 weeks treatment (n≥7); inset shows 

AUC (mmol/l × min). (h, i) Representative insulin-stained pancreas (5 μm thickness, 
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longitudinally sectioned through the pancreatic headto-tail axis) from control (h) and FB1-

treated mice (i); scale bars, 3 mm; insets show ×40 magnification. (j) Insulin-positive area in 

pancreases of control and FB1-treated mice (n≥5). A two-tailed, unpaired t test was carried 

out for each comparison. Data are presented as mean ± SEM; unadjusted p values: *p<0.05 

vs control
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Fig. 6. 
GSIS studies in vitro. (a–h) In Min6 K8 cells, FB1 treatment (green) did not alter basal (LG) 

insulin secretion (a) but significantly decreased GSIS (high glucose [HG]-stimulated) (b). 

Myriocin treatment (pink) did not alter basal insulin secretion (c) but significantly decreased 

GSIS (d). FB1 treatment significantly decreased KCl-stimulated insulin secretion (e) and 

total insulin (f). Myriocin treatment significantly decreased both KCl-stimulated insulin 

secretion (g) and total insulin (h). In Min6 K8 cells, 0 mmol/l glucose was used for LG and 

10 mmol/l glucose was used in HG stimulation. For KCl stimulation, 25 mmol/l KCl was 

added to HG solution. (i–l) In murine islets, FB1 treatment significantly decreased both 

basal insulin secretion (i) and GSIS (j). Myriocin treatment significantly increased basal 

insulin secretion (k) and significantly decreased GSIS (l). In murine islets, 2.8 mmol/l 

glucose was used for LG and 16.7 mmol/l glucose was used in HG stimulation. For KCl 
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stimulation, 25 mmol/l KCl was added to HG solution. Vehicle included 0.04% (v/v) DMSO 

for FB1 treatments (blue) or 0.0001 (v/v) DMSO for myriocin treatments (white). Data are 

presented as mean ± SEM (n=3 for FB1 in Min6 cells, n=5 for myriocin in Min6 cells, n≥6 

for FB1 in C57BL/6 murine islets, n=3 for myriocin in C57BL/6 murine islets). A two-

tailed, unpaired t test was carried out for each comparison (unadjusted p values: *p<0.05, 

**p<0.01, ***p<0.001 vs vehicle)
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