
Radiomic prediction of mutation status based on MR imaging of 
lung cancer brain metastases

Bihong T. Chen, MD1,*, Taihao Jin, PhD1, Ningrong Ye, MD1, Isa Mambetsariev, BA2, 
Ebenezer Daniel, PhD1, Tao Wang, MD3, Chi Wah Wong, PhD4, Russell C. Rockne, PhD5, 
Rivka Colen, MD6, Andrei I. Holodny, MD7, Sagus Sampath, MD8, Ravi Salgia, MD2

1Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United 
States

2Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive 
Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA

3Departments of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, 
Nanjing, Jiangsu, P.R. China

4Center for Informatics, City of Hope National Medical Center, Duarte 91010, CA, United States

5Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA, United 
States

6Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 
Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania

7Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States

8Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United 
States

*Correspondence: Bihong T. Chen, Bechen@coh.org, Department of Diagnostic Radiology, City of Hope Medical Center, 1500 East 
Duarte Road, Duarte, CA 91010, Phone: 626 218 2318 Fax: 626 930 5451.
7.Author Contributions
BTC and RS designed and conducted the study. IM and RS provided the list of lung cancer patients with brain metastases and their 
mutation status from City of Hope data base. BTC, TJ, NY, TW, IM and RS acquired and evaluated the brain MR imaging data. NY 
and TW performed tumor segmentation and radiomic feature extraction. BTC and TW reviewed the segmented tumor images for 
consistency. TJ developed the pipeline for predictive modeling and machine learning. TJ and NY made the figures and tables. TJ and 
NY performed statistical analysis. BTC, TJ, NY, IM, ED, CWW, RR, TW, RC, AH, SS and RS contributed to interpretation and 
description of the data. TJ, NY, IM, CWW, RR and RS contributed to the manuscript writing process. BTC prepared the first draft of 
the entire manuscript and subsequent revisions. All authors approved the final manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.
6.Conflict of Interest
All authors declared that the research was conducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.
9.Supplementary Material
The supplementary Material for this article can be found online.
10.Data Availability Statement
The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any 
qualified researcher.

HHS Public Access
Author manuscript
Magn Reson Imaging. Author manuscript; available in PMC 2021 June 01.

Published in final edited form as:
Magn Reson Imaging. 2020 June ; 69: 49–56. doi:10.1016/j.mri.2020.03.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abstract

Lung cancer metastases comprise most of all brain metastases in adults and most brain metastases 

are diagnosed by magnetic resonance (MR) scans. The purpose of this study was to conduct an 

MR imaging-based radiomic analysis of brain metastatic lesions from patients with primary lung 

cancer to classify mutational status of the metastatic disease. We retrospectively identified lung 

cancer patients with brain metastases treated at our institution between 2009 and 2017 who 

underwent genotype testing of their primary lung cancer. Brain MR Images were used for 

segmentation of enhancing tumors and peritumoral edema, and for radiomic feature extraction. 

The most relevant radiomic features were identified and used with clinical data to train random 

forest classifiers to classify the mutation status. Of 110 patients in the study cohort (mean age 

57.51 ± 12.32 years; M: F=37:73), 75 had an EGFR mutation, 21 had an ALK translocation, and 

15 had a KRAS mutation. One patient had both ALK translocation and EGFR mutation. Majority 

of radiomic features most relevant for mutation classification were textural. Model building using 

both radiomic features and clinical data yielded more accurate classifications than using either 

alone. For classification of EGFR, ALK, and KRAS mutation status, the model built with both 

radiomic features and clinical data resulted in area-under-the-curve (AUC) values based on cross-

validation of 0.912, 0.915, and 0.985, respectively. Our study demonstrated that MR imaging-

based radiomic analysis of brain metastases in patients with primary lung cancer may be used to 

classify mutation status. This approach may be useful for devising treatment strategies and 

informing prognosis.
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1. Introduction

The prognosis of lung cancer patients who develop brain metastasis is poor. Lung cancer is 

the most common form of cancer to metastasize to the brain [1] with about 7–10% of non-

small cell lung cancer (NSCLC) patients presenting with brain metastases upon diagnosis, 

and 20–40% developing brain metastases later on [2]. Options for the treatment of patients 

with NSCLC have greatly expanded in the past decade with the advent of targeted therapy. 

Treatment options are determined according to mutation status. Whereas alterations in 

epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS proto-

oncogene 1 (ROS-1), v-Raf murine sarcoma viral oncogene homolog B (BRAF), and 

neurotrophic tropomyosin receptor kinase (NTRK) genes can be targeted with FDA-

approved drugs, alterations in the Kirsten rat sarcoma virus (KRAS) gene—which are 

estimated to comprise around 27% of lung cancer cases—are not targetable [3-5]. 

Nevertheless, patients with no actionable alterations may be treated with other therapies 

such as immunotherapy [6]. The treatment strategy for brain metastases arising from 

primary lung cancer should similarly be determined according to the genetic mutation status. 

However, brain metastases are usually small and can be scattered all over the brain, so it is 

not practical nor always feasible to invasively biopsy or surgically resect the metastases for 

molecular testing. As a result, most metastatic brain lesions are identified on magnetic 
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resonance (MR) imaging without pathological tissue confirmation. Therefore, it is prudent to 

develop non-invasive imaging-based methods to evaluate the mutation status of brain 

metastases in lung cancer patients [7].

Radiomic analysis, which involves the computerized extraction of data from clinically 

obtained medical images and it can be used to scrutinize spatially and temporally 

heterogeneous tumors comprehensively over multiple time points to monitor disease status 

and treatment-related changes [8]. Conventional imaging evaluation of brain metastatic 

lesions typically includes only lesion size and location, enhancing characteristics, and the 

extent of peritumoral edema. By contrast, radiomic analysis of clinically acquired scans can 

extract highly detailed characteristics regarding tumor texture, shape, and image intensity, 

which are not discernable to the human eye [9, 10]. Therefore, radiomic analysis is a 

potentially useful tool that could be used not only to evaluate brain metastases in lung cancer 

patients but also to identify genetic mutations to guide personalized treatment regimens.

Prior studies have demonstrated the ability of radiomic features to predict the mutation 

status of driver oncogenes [9, 11, 12]. Most studies in lung cancer were performed in 

primary lung cancer using computed tomography (CT) images. For example, Aerts and 

colleagues used features extracted from CT images to identify a prognostic radiomic 

signature associated with the gene expression profiles of patients with lung cancer and head-

and-neck cancer [9]. Gevaert and colleagues developed a signature based on the CT images 

of primary lung cancer that could predict EGFR but not KRAS mutation status [11]. Liu and 

colleagues identified a set of five CTbased features that could be used to predict EGFR 
mutation status [12]. However, some patients may present with neurological symptoms such 
as headache leading to brain MRI scans and subsequent imaging diagnosis of brain 
metastases prior to confirmation of their primary lung cancer. In addition, a complimentary 
non-invasive imaging-focused method to predict mutation status from brain metastases is 
desirable than relying solely on the primary lung cancer. Although lung cancer frequently 
metastasizes to the brain leading to poor prognosis [1], prior radiomic studies have mostly 
focused on the primary lung cancer rather than brain metastases to predict mutation status, 
leaving a gap in knowledge and a need for further study.

There is limited information on the radiomic features of brain metastases. Existing radiomic 

studies of brain metastases have focused on developing models to distinguish between 

different primary cancers, such as lung cancer versus breast cancer or melanoma or between 

various lung cancer subtypes such as small cell lung carcinoma and NSCLC [13-16]. 

However, to the best of our knowledge, no studies have been published using radiomic 

approaches and predictive modeling to classify the mutation status of brain metastases in 

lung cancer patients. To address this need, we collected brain magnetic resonance (MR) 

scans obtained for clinical care of lung cancer patients with brain metastatic lesions, 

segmented the tumors, extracted radiomic features, and used machine learning algorithms to 

classify the mutation status from the brain metastases. We hypothesized that radiomic 

features extracted from MR images of brain metastases could be used to classify EGFR, 

ALK, and KRAS mutation status in patients with primary lung cancer.
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2. Materials and methods

2.1. Patient selection

We obtained data from retrospectively identified consecutive patients with lung cancer 

treated at City of Hope National Medical Center (Duarte, CA) between 2009 and 2017 under 

a protocol approved by the Institutional Review Board of our hospital. The inclusion criteria 

were: diagnosis of lung cancer; confirmation of EGFR, ALK, or KRAS mutation; having 

brain metastasis; and having brain MR scans for the diagnosis of and prior to treatment for 

brain metastasis. Demographic and clinical information, including gender, age, race, 

smoking history, and metastatic sites, were retrieved from electronic medical records (EMR; 

Table 1). The mutation status of the patients was also retrieved from EMR. All patients in 

the study underwent genotype testing of their primary lung cancer at the discretion of their 

clinical providers. Tissue samples were obtained through lung biopsy or lung surgery and 

tested using several clinically available molecular testing platforms, such as fluorescence in 

situ hybridization (FISH), immunohistochemistry (IHC), and next-generation sequencing 

(NGS).

Data for a total of 138 lung cancer patients with brain metastasis with confirmed EGFR, 

ALK, and/or KRAS alteration status were retrieved from the database of patients treated at 

City of Hope National Medical Center between 2009 and 2017. Thirteen patients were 

excluded because their brain lesions were too small (smaller than 5 mm), three patients were 

excluded because the FLAIR sequence was not available in their brain MR scans, and 12 

patients were excluded because the brain MR images were blurry due to head motion during 

image acquisition. Therefore, a total of 110 patients (mean age 57.51 ± 12.32 years; M: 

F=37:73; age range: 22–85) were included in the final study cohort (Table 1).

The study was approved by the institutional review board at City of Hope National Medical 

Center and informed consent was waived due to the retrospective nature of this study. The 

study was conducted in accordance with the Declaration of Helsinki.

2.2. Brain tumor segmentation

Pre-segmentation image registration was performed with both T1-weighted 

contrastenhanced (TIC) and T2-weighted fluid-attenuated inversion recovery (FLAIR) 

images affinely co-registered into the same geometric space using the elastix toolbox [17]. 

Image transformation and re-slicing were performed using FMRIB Software Library (FSL) 

scripts.

TIC and FLAIR images were used for segmentation of enhancing tumors and peritumoral 

edema, respectively. Most of the brain MRI scans were performed on the same in-house 3T 
VERIO Siemens scanner (Siemens, Erlangen, Germany). For the T1C sequence, axial T1-
weighted three-dimensional (3D) magnetization prepared rapid gradient echo (MPRAGE) 
imaging data were acquired with the following parameters: repetition time (TR)=1400 ms, 
echo time (TE)=2.91 millisecond (ms), imaging matrix=256 x 232, flip angle = 12, with a 
voxel size of 1 x 1 x 1 mm3 in the axial, coronal, and sagittal planes. MultiHance® 
(gadobenate dimeglumine) at 0.1 mmol/Kg was administered as an intravenous injection for 

Chen et al. Page 4

Magn Reson Imaging. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the T1C sequence. For the FLAIR sequence, the imaging parameters included TR=9000, 
TE=119, slice thickness=4 mm, acquisition matrix=256x204.

Delineation of tumor boundaries was performed in a semi-automated fashion on a slice-by-

slice basis using ITK-SNAP, an open-source 3D image analysis software [18]. Tumors 

smaller than 5 mm in diameter were not segmented, as they were not reliably covered in two 

consecutive slices, which was the minimal requirement for the 3D approach. The segmented 

T1C and FLAIR images were reviewed for tumor delineation and consistency by two 

neuroradiologists (BTC with over 15 years of experience and TW with 8 years of 

experience). The delineated images of the two segmented tumor phenotypes (enhancing 

tumor and peritumoral edema) were exported for radiomic analysis. Among the segmented 

tumors, those smaller than 5x5x5 voxels were excluded from the final analysis due to 

unreliable feature extraction. For patients with more than 10 tumors, only the 10 largest 

tumors from each patient were included in the analysis. The entire dataset contained a total 

of 452 lesions from 110 patients. Fig. 1 presents the schema for brain tumor segmentation, 

radiomic feature extraction, and predictive modeling.

2.3. Radiomic feature extraction

Radiomic features related to the enhancing tumors and peritumoral edema were extracted 

from T1C and FLAIR images, respectively, using the corresponding tumor and edema 

masks. To emphasize specific features and to suppress noise, each image was pre-processed 

with 6 image filters (Wavelet (HH, HL, LL, HH, LLL), Laplacian of Gaussian (sigma=1, 2, 

3), Square, Square Root, Logarithm, Local Binary Pattern, Gradient, and Exponential) 

before radiomic feature extraction. Three categories of radiomic features were extracted 
from each image: (i) 18 intensity-based features (Minimum, Maximum, Mean, etc.); (ii) 13 
shape-based features (Volume, Surface Area, Sphericity, etc.); and (iii) 74 textural features, 
including Gray Level Co-occurrence Matrix (GLCM, 23 features), Gray Level Run Length 
Matrix (GLRLM, 16 features), Gray Level Size Zone Matrix (GLSZM, 16 features), 
Neighboring Gray Tone Difference Matrix (NGTDM, 5 features), and Gray Level 
Dependence Matrix (GLDM, 14). A total of 2786 radiomic features were extracted from 
each tumor, with equal numbers numbers of features for the enhancing tumor from the T1C 
sequence and for the peritumoral edema from the FLAIR sequence. The radiomic features 
were extracted using the open-source python package Pyradiomics (https://github.com/
Radiomics/pyradiomics) [19].

To test the variability of radiomic features and to obtain stable features for the modeling, we 

randomly selected 20 patients and had their brain tumors independently segmented by the 

two neuroradiologists in this study (BTC and TW). We then used the interclass correlation 

coefficient (ICC) test to assess the consistency of the radiomic features between the two 

neuroradiologists in this study. Using ICC score larger than 0.8 (corrected p value <0.05) 

Three categories of radiomic features were extracted from each image: (i) 18 intensity-based 

features (Minimum, Maximum, Mean, etc.); (ii) 13 shape-based features (Volume, Surface 

Area, Sphericity, etc.); and (iii) 74 textural features, including Gray Level Co-occurrence 

Matrix (GLCM, 23 features), Gray Level Run Length Matrix (GLRLM, 16 features), Gray 

Level Size Zone Matrix (GLSZM, 16 features), Neighboring Gray Tone Difference Matrix 
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(NGTDM, 5 features), and Gray Level Dependence Matrix (GLDM, 14). A total of 2786 

radiomic features were extracted from each tumor, with eq03C;0.05) as cut-off, 2520 stable 

features were obtained. We then performed feature selection with a minimum redundancy 

and maximum relevance (MRMR) algorithm and identified the 50 most relevant radiomic 

features from the 2520 radiomic features which were then included in the modeling process.

The pipeline for radiomic feature extraction consisted of 4 steps: (i) skull-stripping, (ii) bias 

field correction, (iii) image intensity normalization, and (iv) radiomic feature extraction. In 

the first step, both the Brain Extraction Tool (BET; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) 

and Free Surfer (https://surfer.nmr.mgh.harvard.edu/) were used to remove non-brain tissue 

from the anatomical brain MR images. All skull-stripping results were then checked 

manually to ensure accuracy. The “N4 ITK Bias Field Correction” module of the nipype 

framework (https://nipype.readthedocs.io/en/0.12.0/index.html) was used to correct non-

uniform intensity caused by field inhomogeneity. An intensity normalization algorithm was 

applied to standardize the intensity scales across MR images. We used a python module 
NyulNormalizer (https://gitlab.com/eferrante/nyul/blob/master/NyulNormalizer.py) which 
implemented a method for intensity normalization as indicated in the references [20-22]. 

This was performed to account for inter-scanner and within-sequence differences in imaging 

protocols. Finally, radiomic features were extracted using the open-source python package 

Pyradiomics [19].

2.4. Building predictive models for mutation status

Independent classifiers were built to classify the EGFR, ALK, and KRAS mutation status, as 

determined by genotype testing of the patients’ primary lung cancers. To build each 

classifier, all 462 lesions from the 110 patients were divided into positive and negative 

groups. For example, to build the EGFR mutation status classifier, the positive group 

included lesions from all patients who were EGFR mutation positive, including the patient 

with double mutations. The lesions from the remaining patients were in the mutation 

negative group.

2.5. Feature selection and machine learning algorithm

Classifications were performed using Scikit-Learn software [23]. Leave one out cross 
validation (LOOCV) was used to evaluate classification performance [24]. Briefly, for a 
dataset of N samples, the cross validation was performed in N round of training and testing. 
In each round, one sample in the dataset was successively taken out to test the model that 
was trained using the rest of the dataset (N-1). During the training process in each round, the 
50 most relevant radiomic features were selected from a total of 2520 radiomic features 
using a minimum redundancy and maximum relevance (MRMR) algorithm (https://

github.com/fbrundu/pymrmr) [25], and the synthetic minority over-sampling technique 
(SMOTE) was used to improve learning from imbalanced sample sizes [26]. Clinical data, 

including demographic information, additional sites of metastases, and tumor information, 

were also used for the classification of each mutation. Demographic information included 

gender (male, female), race (Caucasian, Asian, other), and smoking history (yes, no). 

Clinical data also included clinical information such as the presence or absence of additional 

metastasis at 11 sites, including bone, lymph, liver, lung, kidney, pancreas, breast, spinal 
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cord, mediastinum, pericardium, and pleura. Tumor information included the number of 

tumors, the volume of the tumor core, and the edema/tumor volume ratio. In total, there 

were 18 items of clinical data. To select the most suitable machine learning algorithms for 

classifying mutation status, we tested 30 classifiers implemented in Scikit-Learn and ranked 

their performances according to the area under curve (AUC) of the receiver operating 

characteristic curve (ROC). The ROC curves were constructed using the class probability 

predicted by the classifiers. The area under the curve (AUC) was computed using Scikit-

Learn. Other classification performance metrics including accuracy, sensitivity, and 

specificity were computed based on the prediction results of the classifiers. A total of four 

classifiers (random forest, extra tree, bagging, and gradient boosting), which were all 

ensemble learning-based classifiers, ranked among the top three classifiers for at least one of 

the three predictive models (Table 1S). The random forest classifier was ultimately selected 

as the most suitable algorithm because it was among the top three classifiers for all three 

predictive models and this classifier has been widely used in the field [27]. The random 
forest classifier was selected based on the performance using radiomic features only. The 
same classifier was used for building the model using both radiomic features and clinical 
data. We also made the nomograms based on the top 20 radiomic features selected by the 
Random Forest Algorithm and the nomograms were included in the supplementary file (Fig. 

1S).

2.6. Statistical analysis

We used the statistical analysis package in the SciPy: Open Source Scientific Tools for 

Python library (https://www.scipy.org/) to analyze patient and tumor information (Table 1). 

Analysis of variance (ANOVA) test was used to determine the statistical significance of 

differences in the means of age among the three patient groups. Fisher’s exact test was used 

to determine the statistical significance of group differences in the distributions of the 

categorical variables, including gender, race, smoking history, histology, and other 

metastatic sites. P-values were two-sided and values less than 0.05 were considered 

statistically significant.

3. RESULTS

3.1. Patient information

Of the 110 patients included in the final study cohort (Table 1), 75 were EGFR mutation-

positive, 21 were ALK translocation-positive, and 15 were KRAS mutation-positive. One 

patient was positive for both ALK and EGFR alterations.

There were statistically significant group differences in racial distribution (p<0.05) and 

smoking history (p<0.001). Pairwise comparisons revealed that the KRAS group had a 

significantly greater percentage of Caucasian patients and fewer Asian patients (p=0.005; 

Table 1). Pairwise comparisons also revealed that the KRAS group had a higher percentage 

of smokers than the EGFR (p=0.0002) and ALK (p=0.0019) groups.

We performed comparisons of the demographic data between the mutation positive group 

and the mutation negative groups for each gene mutation, i.e. EGFR (+) versus EGFR (−), 
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ALK (+) versus ALK (−), and KRAS (+) versus KRAS (−). We found that the EGFR (+) 

group had a significantly greater percentage of Asian patients than the EGFR (−) group 

(p=0.042). The KRAS (+) group in our cohort was significantly older than the KRAS (−) 

group (p=0.002) and had a higher percentage of smokers than the KRAS (−) group (p= 

0.0001) in our cohort.

We also performed feature ranking of the clinical data based on the feature importance 

assessed by the Random Forest Classifier. For EGFR mutation, the top 5 clinical data in 

decreasing order were Metastatic Sites (Lung), Metastatic Sites (Lymph Nodes), Age at 

Diagnosis, Metastatic Sites (Liver) and Smoker_Yes. For ALK mutation, the top 5 clinical 

data in decreasing order were Age at Diagnosis, Race_Asian, Metastatic Sites (Lung), 

Metastatic Sites (Lymph Nodes), Race_Caucasian. For KRAS, the top 5 clinical data in 

decreasing order were Smoker_Yes, Age at Diagnosis, Metastatic Sites (Lung), Metastatic 

Sites (Lymph Nodes), and Race_Caucasian.

3.2. Classification of mutation status

Classification using 50 most relevant radiomic features alone to classify molecular mutation 

status was better than using the18 items of clinical data alone, and combining radiomic 

features and clinical data was better than using either alone (Fig. 2). The AUCs for the 

classification of EGFR mutation status were 0.847, 0.609, and 0.912 when using radiomic 

features alone, clinical data alone, and radiomic feature and clinical data combined, 

respectively. The AUCs for the classification of ALK alteration status were 0.813, 0.603 and 

0.915 when using radiomic features alone, clinical data alone, and radiomic feature and 

clinical data combined, respectively. The AUCs for the classification of KRAS mutation 

status were 0.938, 0.684, and 0.985 when using radiomic features alone, clinical data alone, 

and radiomic feature and clinical data combined, respectively.

Table 2 presents the performance data, including the accuracy, AUC, sensitivity, and 

specificity, for the classification of EGFR, ALK, and KRAS alteration status using both 

radiomic features and clinical data. The ‘number of lesions’ in Table 2 indicated the lesions 
for each positive mutation group, i.e., EGFR, or ALK, or KRAS. In the classification of each 
mutation status, the total number of 462 lesions was divided into two classes for each 
mutation, those positive to the particular mutation versus the rest of the lesions. The total 
number of lesions was the sum of all lesions (n=462) including the EGFR positive mutation 
(n=335), ALK positive mutation (n=71) and KRAS positive mutation (n=56).

The top 20 radiomic features for the classification of EGFR, ALK, and KRAS mutation 

status with ranking based on random forest feature selection, are presented in the heat maps 

in Fig. 3 and Table 2S in the supplementary file. The majority of the top 20 radiomic 

features were textural features.

4. DISCUSSION

In this study, we extracted radiomic features from MR images of brain metastatic lesions and 

used the radiomic features, as well as clinical data, to build machine learning models for 

classification of molecular alteration status of the three most common oncogenes in lung 
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cancer patients, i.e., EGFR, ALK, and KRAS. Our study showed that the MR imaging-based 

radiomic analysis of brain metastases could potentially serve as a non-invasive technique to 

classify EGFR, ALK, and KRAS mutations in lung cancer patients.

Our work was novel in that we analyzed MR images of brain metastatic lesions using a 

radiomic approach to classify the mutation status of the primary lung cancer, whereas prior 

studies focused on using radiomics to differentiate brain metastases from various primary 

cancers or from different lung cancer subtypes. For example, Li and colleagues used 

quantitative radiomic features extracted from MR images of brain metastatic lesions to 

predict the pathological subtypes of the originating lung cancers [15]. They achieved 

misclassification rates of 3.1%, 4.3%, 5.8%, and 8.1%, for small cell lung carcinoma, 

squamous cell carcinoma, adenocarcinoma, and large cell lung carcinoma, respectively. 

Bérésova and colleagues demonstrated the ability of textural radiomic analysis of MR 

images to differentiate between brain metastases originating from lung cancer versus breast 

cancer [13]. Ortiz-Ramon and colleagues used radiomic features from MR images of brain 

metastatic lesions to predict whether the primary cancer type was lung cancer or melanoma 

[14]. Their best predictive model (a naïve Bayes algorithm) achieved AUC of 0.947 ± 0.067.

Our work is relevant for clinical care because identifying the mutation status of the common 

oncogenes may help to determine the prognosis and treatment strategy for patients with lung 

cancer. On the one hand, patients with common lung cancer driver mutations, such as 

mutations of EGFR and translocations of ALK, are particularly prone to developing brain 

metastases [28]. Therefore, identification of these mutations may help to consult the patients 

about the likelihood of developing brain metastases and thus poor prognosis. On the other 

hand, tyrosine kinase inhibitors and ALK inhibitors can significantly increase the 

progression-free and overall survival of patients who have EGFR and ALK alterations, 

respectively [7]. Knowledge of mutation status may help to devise a targeted therapy. 

Although the mutation status of the patients in our study was obtained from the primary lung 

cancer, our radiomic study of mutations focusing on the brain metastases should still have 

merit. First of all, about 10% of NSCLC patients presents with brain metastases upon initial 

diagnosis of lung cancer [1, 2]. These patients may not have had their molecular genotype 

testing performed on the biopsy or resection specimen of the primary lung cancer yet. 

Therefore, a radiomic analysis of their brain metastases may potentially contribute useful 

information on the mutation status of their primary lung cancer. Second, the mutation status 

of lung cancer may not always available in clinical practice. It is conceivable that 

individualized treatment plan with targeted therapy may be devised if the mutation status of 

the primary lung cancer could be inferred from the radiomic analysis of brain metastases. 

Third, brain MR scans are non-invasive and can be readily obtained in a much easier way 

than invasive biopsy or surgery of either the primary lung cancer or the brain metastases. In 

addition, brain MR scans can be performed at multiple time points throughout the treatment 

while repeated invasive biopsies or surgical resections might not be practical or feasible even 

in the event of non-diagnostic biopsies.

We used the leave one out cross validation (LOOCV) method to evaluate classification 

performance for the following reasons. First, we chose multiple candidates in the first round 

of model selection based on LOOCV. Our top 3 algorithms for the prediction of each of the 
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three mutation status are all decision-tree based ensemble learners. Second, the same 

algorithms were also ranked as top performers in the published research evaluating the 

performance of machine learning algorithms trained with radiomic features [29, 30]. Third, 

we intended to choose an approach that would most reliably evaluate the classification 

performance of each classifier, especially in terms of generalization error [31]. For 

performance estimation purpose, Molinaro and colleagues have suggested that LOOCV 

performed well with regard to Mean Square Error and bias. As pointed out by Arlot and 

colleagues [24], LOOCV was a better risk estimator than the K-fold CV. Zhang and 

colleagues also pointed out that the 10-fold CV was riskier than LOOCV for predictive 

performance estimation [32]. Lastly, we chose LOOCV because it used the most probable 

portion of the dataset to train the algorithms for our modest sample size. These results may 

provide us the performance metrics of the algorithms closer to their potential performance 

for a sufficiently larger data size, which may inform on our future studies.

Despite considerable progress in recently reported studies using radiomics to determine 

mutation status [12, 29, 33], the performance, reliability, and reproducibility of this approach 

have not reached acceptable standards for clinical practice. Most studies in the field have 

used radiomic features extracted from lung CT images. The highest reported AUCs for 

predicting EGFR, ALK, and KRAS mutation status based on lung CT images were 0.89, 

0.649, and 0.667, respectively [11, 12, 29, 33]. To develop more reliable and accurate 

predictive models, it is necessary to evaluate radiomic features extracted from various 

imaging sources including both the primary cancer and the metastatic lesions. In addition, it 

is also important to optimize modeling process by using a combination of clinical, 

pathological and imaging features, and by testing a wide range of machine learning 

algorithms. The performance of our predictive models based on radiomic features extracted 

from brain MR images compared favorably to the published results using data extracted 

from lung CT images [11, 12, 29, 33]. Importantly, our study cohort was similar to those 

used in previously published studies, enabling a reasonable comparison of our results to 

others. For example, there was a significantly higher percentage of smokers in our KRAS 
mutation-positive group than in our EGFR and ALK alteration-positive groups, which was 

similar to the study by Sweis and colleagues [34]. Our models for classifying EGFR, ALK, 

and KRAS mutation status achieved AUC values of 0.917, 0.916, and 0.986, respectively. 

The modeling algorithms used in our models for feature selection (MRMR) and machine 

learning (random forest algorithm) were determined to be the top performing algorithms in a 

study by Parmar and colleagues, who systematically compared the prognostic performances 

of various combinations of feature selections and machine learning algorithms [30]. Our 

study suggests that combining radiomic features extracted from MR images with clinical 

data will improve predictive modeling performance and reliability.

There were several limitations to this study. First, this was a retrospective study based on 

MR imaging of brain metastases in lung cancer patients identified through a database search 

of patients treated at our institution over a 9-year interval. Some confounding variables, such 

as the imaging protocols, the MR scanners used, and treatment regimen, could not be 

properly controlled for. For example, we were not able to control the variation in contrast 

administration (e.g., route and timing of contrast injection) or the timing of image 

acquisition after contrast administration. Furthermore, the patients in our study cohort 
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received a wide range of treatments, as lung cancer treatment has evolved significantly over 

the last nine years, and we did not have the statistical power to control for the effects of 

different treatment regimens on the predictive modeling of mutation status. Second, although 

our study might be one of the larger retrospective studies performed in brain metastases 

using a radiomic method, with a total of 110 patients, this sample size is still modest. This 

limitation was compounded by the fact that the three mutation groups were unevenly 

distributed. Whereas there were 75 patients in the EGFR mutation-positive group, there were 

only 21 in the ALK mutation-positive group and 15 in the KRAS mutation-positive group. 

To address this issue, we used the SMOTE to improve learning based on imbalanced sample 

sizes [26]. Third, genetic mutation status was obtained from the primary lung cancer through 

biopsy or surgical resection because there was no tissue confirmation for most of the brain 

metastatic lesions for which the radiomic features were extracted. Therefore, we could not 

detect or account for potentially rare cases in which the primary lung cancer and brain 

metastases from the same patient may have different mutations. Lastly, the current study was 

performed on data collected from a single institution with no validation of external cohorts, 

which limited its generalizability. Our study approach needs to be validated in the setting of 

a multi-center study with larger cohorts across different institutions. Nevertheless, the results 

reported here may serve as preliminary data to support future prospective studies using 

machine learning algorithms to classify mutation status of patients with brain metastases. To 

the best of our knowledge, our study is the first to use MR imaging-based radiomic analysis 

of brain metastatic lesions and machine learning algorithms to classify mutation status of 

patients with primary lung cancer.

In summary, our study showed that a radiomic approach capturing the critical radiological 

features of brain metastases from patients with lung cancer could be used to differentiate the 

three common mutations, i.e., EGFR, ALK and KRAS. The detection of mutation status 

using this approach may be useful for informing treatment strategies and prognosis for lung 

cancer patients with brain metastases. Future studies should be performed with a larger 

sample size and external cohorts to validate our results.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schema for brain tumor segmentation and radiomic feature extraction. (A) Representative 

images of post contrast T1-weighted (T1C) and fluid-attenuated inversion recovery (FLAIR) 

images. (B) Segmented enhancing tumor and peritumoral edema masks (top panel) 

overlapping the T1C images (middle panel) and FLAIR images (bottom panel). (C) 
Illustrations of the three categories of radiomic features extracted from the images, including 

shape, intensity, and texture. GLCM: Gray Level Co-occurrence Matrix; GLRLM: Gray 

Level Run Length Matrix; GLSZM: Gray Level Size Zone Matrix; NGTDM: Neighboring 

Gray Tone Difference Matrix. (D) The left panel indicates the top 50 radiomic features used 

for classifying each of the three types of mutation status. The right panel shows the receiver 

operating characteristic curves for classifying the three types of mutation status.
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Fig. 2. 
Receiver operating characteristic curves for classifying (A) EGFR, (B) ALK, and (C) KRAS 
mutation status. Curves are shown for models using clinical data only (green), radiomic 

features only (blue), and a combination of both clinical data and radiomic features (red). The 

areas under the receiver operating characteristic curves (AUCs) are indicated in each panel.
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Fig. 3. 
Heat maps showing the top 20 radiomic features for classifying (A) EGFR, (B) ALK, and 

(C) KRAS mutation status. Each row represents one of the top 20 radiomic features 

determined by random forest feature selection. Each column represents a lesion. The 

mutation status of the patients is indicted by light gray (mutation negative) and black 

(mutation positive) color bars at the bottom of each panel. The tumor delineations from 

which the radiomic features were extracted are indicated by vertical red (enhancing tumor) 

and orange (peritumoral edema) color bars in the right side of each panel. The categories of 

radiomic features are indicated by vertical blue (textural) and green (intensity-based, 

abbreviated: Int.) color bars. The normalized values for each radiomic feature are indicated 

according to the color scale on the left side of each panel. The detailed description for each 

of the top 20 radiomic features for each panel is listed in Table 2S in the supplementary file.
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Table 1

Demographic and clinical information for the study cohort

EGFR (+) ALK (+) KRAS (+)
p

N = 75 N = 21 N = 15

Gender

Male 24 (32%) 8 (38.10%) 5 (33.33%)
0.83

Female 51 (68%) 13 (61.90%) 10 (66.67%)

Age

Mean ± SD 57.43 ± 12.09 53.81 ± 14.79 63.67 ± 6.40 0.09

Race

Asian 35 (46.67%) 7 (33.33%) 1 (6.67%)

Caucasian 34 (45.33%) 13(61.90%) 11 (73.33%) 0.016

Other* 6 (8%) 1 (0.04%) 3 (20%)

History of Smoking

Yes 20 (26.67%) 5 (23.80%) 12 (80%)
<0.001

No 55 (73.33%) 16 (76.19%) 3 (20%)

Histology

Adenocarcinoma 71 (94.67%) 21 (100%) 13 (86.67%)
0.50

Other** 4 (5.33%) 0 (0%) 2 (13.33%)

Other Metastatic Sites

Bones 45 (60%) 9 (34.62%) 4 (26.67%)

Lymph Nodes 27 (36%) 4 (15.38%) 3 (20%)

Lung 26 (34.67%) 4 (15.38%) 1 (6.67%) 0.99

Liver 22 (29.33%) 5 (19.23%) 2 (13.33%)

Pleura 13 (17.33%) 2 (7.69%) 1 (6.67%)

Other*** 9 (12%) 0 (0%) 0 (0%)

*
American Indian or Alaska Native, African American, Native Hawaiian, or Pacific Islander

**
Squamous cell lung carcinoma, adenosquamous cell lung cancer, lung carcinosarcoma, non-small cell lung carcinoma (NOS)

***
Kidneys, mediastinum, pancreas, pericardium
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Table 2

Performance data for EGFR, ALK, and KRAS mutation classification models using both clinical data and 

radiomic features.

Mutation Accuracy AUC* Sensitivity Specificity Number of lesions

EGFR 77.7% 0.912 73.1% 90.6% 335

ALK 86.7% 0.915 76.1% 88.7% 71

KRAS 96.7% 0.985 89.3% 97.7% 56

*
AUC: area under the receiver operating characteristic curve

Note: Number of lesions indicates the lesions for each positive gene mutation, i.e., EGFR, or ALK, or KRAS. In the classification of each mutation 
status, the total number of 462 lesions were divided into two classes for each mutation, those positive to the particular mutation versus the rest of 
the lesions.
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