Skip to main content
. 2019 Nov 12;23(2):295–302. doi: 10.1038/s41391-019-0185-7

Table 2.

Univariable (UVA) and multivariable (MVA) logistic regression model for prediction of treatment recommendation for clinical utility cohort

UVA MVA
Variable Category OR (95% CI) P value OR (95% CI) P value
Age 1.0 (1.0–1.0) 0.563 1.0 (0.9–1.0) 0.006*
PSA 1.0 (1.0–1.0) 0.065 1.0 (1.0–1.0) 0.519
Pathological GG 3 vs 1–2 2.5 (2.0–3.3) <0.001* 2.1 (1.4–2.9) <0.001*
4–5 vs 1–2 3.5 (2.7–4.5) <0.001* 1.8 (1.2–2.6) 0.003*
Pathological T stage pT3a vs pT2 1.4 (1.1–1.9) 0.013* 1.3 (0.8–2.0) 0.251
pT3b vs pT2 2.8 (2.1–3.8) <0.001* 1.7 (1.1–2.7) 0.030*
SM Yes vs no 1.2 (1.0–1.5) 0.056 1.4 (1.0–2.0) 0.024*
GC risk group Intermediate vs low 2.5 (1.7–3.8) <0.001* 1.9 (1.1–3.3) 0.024*
High vs low 9.5 (6.8–13.3) <0.001* 8.5 (5.3–13.6) <0.001*
CAPRA-S 3–5 vs 0–2 4.3 (1.5–12.1) 0.005* 3.9 (1.4–11.2) 0.011*
6–12 vs 0–2 8.8 (3.2–24.6) <0.001* 6.2 (2.1–17.6) <0.001*
GC risk group Intermediate vs low 2.5 (1.7–3.8) <0.001* 1.9 (1.1–3.4) 0.019*
High vs low 9.5 (6.8–13.3) <0.001* 8.7 (5.4–13.8) <0.001*

CAPRA-S Cancer of the Prostate Risk Assessment score, GC genomic classifiers, GG grade group, MVA multivariable analysis, OR odds ratio, PSA prostate-specific antigen, SM surgical margin, UVA univariable analysis, 95% CI 95% confidence interval, *significant p-value