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Multi-objective optimization 
of tumor response to drug 
release from vasculature-bound 
nanoparticles
Ibrahim M. Chamseddine1, Hermann B. Frieboes   2,3,4,7 ✉ & Michael Kokkolaras5,6,7 ✉

The pharmacokinetics of nanoparticle-borne drugs targeting tumors depends critically on nanoparticle 
design. Empirical approaches to evaluate such designs in order to maximize treatment efficacy are time- 
and cost-intensive. We have recently proposed the use of computational modeling of nanoparticle-
mediated drug delivery targeting tumor vasculature coupled with numerical optimization to pursue 
optimal nanoparticle targeting and tumor uptake. Here, we build upon these studies to evaluate the 
effect of tumor size on optimal nanoparticle design by considering a cohort of heterogeneously-sized 
tumor lesions, as would be clinically expected. The results indicate that smaller nanoparticles yield 
higher tumor targeting and lesion regression for larger-sized tumors. We then augment the nanoparticle 
design optimization problem by considering drug diffusivity, which yields a two-fold tumor size 
decrease compared to optimizing nanoparticles without this consideration. We quantify the tradeoff 
between tumor targeting and size decrease using bi-objective optimization, and generate five Pareto-
optimal nanoparticle designs. The results provide a spectrum of treatment outcomes – considering 
tumor targeting vs. antitumor effect – with the goal to enable therapy customization based on clinical 
need. This approach could be extended to other nanoparticle-based cancer therapies, and support the 
development of personalized nanomedicine in the longer term.

Chemotherapy is the treatment of choice to control metastatic cancer - a stage often reported in patients at the 
time of clinical presentation. Unfortunately, patients undergoing chemotherapy may have low median survival, 
especially for pancreatic, lung, and liver cancer1. Negative response to treatment is attributed to a number of fac-
tors, including tumor microenvironmental barriers, evolution of resistance to drug, and chemotherapeutic toxic-
ity. It has been shown that nanoparticle-mediated drug delivery may substantially enhance the pharmacokinetics 
of anticancer drugs while addressing some of these factors2. However, while many nano-based formulations have 
undergone pre-clinical and clinical evaluation, few have been translated to the clinic3.

The targeting potential of nanotherapy is strongly associated with nanoparticle biophysical and biochemical 
properties4–6. These properties include size7, shape (e.g., sphere or ellipsoid)5, stiffness4,8, and binding affinity of 
nanoparticle surface ligands to receptors upregulated in cells in tumors5. Computational studies have investigated 
the effect of these properties on treatment efficacy in an attempt to find nanoparticles optimized for maximal 
anti-tumor activity. Nanoparticle margination6 and adhesion to tumor vasculature5 have been modeled as a func-
tion of nanoparticle properties (size, aspect ratio, ligand surface density, and ligand-receptor binding affinity). 
Uncertainties in ligand surface density and ligand-receptor affinity have been quantified and incorporated in a 
nanoparticle-tumor adhesion model using a Bayesian hierarchical approach9. Uncertainties in tumor vessel diam-
eter, flow velocity, and hematocrit were considered in a nanoparticle transport model, showing that the transport 
and dispersion of nanoparticles can be very sensitive to the tumor microvasculature10. A continuous-discrete 
model of nanoparticle-mediated drug delivery in heterogeneously vascularized tumors was presented in11. 
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Building upon the spatial tumor model in12, the nanoparticle delivery model was previously extended to study 
the influence of interstitial pressure13, hypo-vascularization14, tumor acidity15, immune activity16–18, and vascular 
density19,20 on heterogeneous nanoparticle uptake and tumor response. Further background on mathematical 
modeling of nanoparticle-mediated drug delivery can be found in21–24 and references therein. Of particular rel-
evance to the study here, the transport of tumor vasculature-adhering nanoparticles of differing diameters was 
modeled in7 and the resulting drug response was simulated in25.

In a recent study, we utilized rigorous derivative-free optimization to obtain optimal nanoparticle diameters 
and aspect ratios that maximize nanoparticle accumulation and spatial distribution in tumor tissue using a con-
tinuous 2D model of blood flow, nanoparticle accumulation, and drug transport26. We quantified the tradeoff 
between maximizing tumor nanoparticle accumulation and maximizing tumor tissue exposed to drug. The 
results yielded a set of optimal nanoparticle sizes and aspect ratios. We then integrated the spatial tumor model 
reported in25 and conducted numerical optimization studies to obtain nanoparticle sizes that maximize tumor 
targeting while minimizing tumor diameter27. However, the tradeoff between these two competing objectives 
was not quantified, and drug potency was treated as a parameter to be controlled in order to relax the competing 
effects of treatment. In this work, we address the issue of competing objectives and perform optimization studies 
to increase treatment efficacy beyond what was previously achieved. In particular, we increase the robustness of 
the nanoparticle design optimization framework by considering drug properties in the nanoparticle design and 
the tradeoff between treatment efficacy and toxicity.

Results
Optimizing nanoparticle design for a cohort of tumors.  Clinically, tumor size is an indication of 
cancer stage, which is primarily used for tumor stratification28. Tumors of different sizes are expected to respond 
differently to treatment. Tumor growth results in changes in vascular density29, cell organization30, and ECM stiff-
ness31, all of which impact drug pharmacodynamics. This has promoted preclinical investigations of the effect of 
tumor size on treatment selection. Approaches used include grouping tumors by size, utilizing machine learning 
(e.g.32,33,), and designing treatments for average tumors and studying treatment robustness (e.g., with immuno-
therapy protocols34). Here, we seek to optimize treatment based on tumor size at the time of treatment.

The nanoparticle diameter d and avidity α are used as suitable treatment parameters that can be optimized 
to maximize treatment efficacy. A cohort of 8 tumors grown to different sizes is considered. Two optimization 
problems are then formulated and solved: one to minimize ratio of tumor diameter after treatment to diameter at 
start of treatment (TD) and one to maximize the percent of injected nanoparticles that accumulate in the tumor 
(TNP).
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Eq. (1) finds the values of d and α that minimize the tumor diameter ratio. Similarly, Eq. (2) finds the values of 
the 2 design variables (d and α) that maximize the tumoral nanoparticle accumulation. The inequalities in both 
equations define the upper and lower bounds of each design variable. The two optimization problems in Eqs. (1) 
and (2) are solved for each tumor in the cohort (Fig. 1(A)). The optimal nanoparticle diameters that minimize 
tumor size are shown in Fig. 1(B), revealing a monotonically decreasing relation between nanoparticle and tumor 
diameters; smaller nanoparticles yield more tumor regression than larger particles when the initial tumor size is 
large. Physically, this means that larger tumors would benefit from targeting by small nanoparticles to allow ade-
quate time for them to circulate through the vasculature and reach the tumor core. The rationale is that the nan-
oparticle size affects the interaction area between the nanoparticle surface and the blood vessel wall, the number 
of ligand-receptor pairings, and the hemodynamic force and torque exerted on the nanoparticle. Accordingly, 
large nanoparticles have generally strong binding affinities to the endothelial layer5,26,27, and due to this interac-
tion, they tend to adhere to the vessel walls at the tumor periphery26. In contrast, smaller nanoparticles have 
longer circulation times35,36 that allow them to reach the tumor core. A similar pattern was obtained for the max-
imizers of TNP as shown in Fig. 1(C). A higher percentage of smaller nanoparticles adhere at the vessels of large 
tumors. This trend could be caused by an increase in vascularization as the tumor progresses. The values of the 
optimal solutions for both optimization studies are listed in Table 1. Surprisingly, the optimal value of nanoparti-
cle avidity is consistently at the lower bound, in agreement with the results obtained in27 and highlighting that low 
nanoparticle avidity is optimal despite changes in initial tumor size. Although TD and TNP are competing objec-
tive functions, as demonstrated in27, the optimizers of both objectives follow a decreasing function with respect 
to tumor size. If the two curves in Fig. 1(B,C) are combined in the same plot, the area encapsulated between them 
is a tradeoff region. For instance, a tumor with an initial diameter of 760 μm is minimized when targeted with 
nanoparticles of diameter argmin(TD) = 334 nm. The nanoparticle accumulation administered to such a tumor 
is maximized when the nanoparticle diameter is argmax(TNP) = 288 nm. Selecting a nanoparticle with diameter 
between 288 nm and 334 nm presents a tradeoff between TD and TNP. This tradeoff is quantified below.
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Optimizing nanoparticle design along with drug diffusivity.  Nanoparticles adhering to tumor ves-
sels release cytotoxic drugs that internalize to the tumor tissue and cause cell death when the drug concentration 
reaches a therapeutic value. In the previous section, optimal nanoparticle sizes and avidities were obtained that 
maximize nanoparticle accumulation in tumors and minimize tumor size, considering fixed properties of the 
drugs carried by the nanoparticles. The spatial distribution of the drug molecules, however, depends on how far 
they transport in the tissue. We now consider the drug diffusivity as a design variable to be optimized, allowing 
determination of the optimal spatial drug distribution in the tissue, and thus with the potential to induce further 
cell death. Since the drug concentration profile in the tissue depends on the location of nanoparticles in the ves-
sels (source of release), the drug diffusion coefficient D is optimized simultaneously with the nanoparticle size 
and avidity with the goal to achieve further tumor regression. This enables integrating the optimal selection of 
a drug property and nanoparticle design. The following optimization problem is formulated as an extension to 
that in Eq. (1).
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Note that only the TD minimization problem is considered for the selection of drug diffusivity, since this 
design variable does not affect nanoparticle accumulation but only the transport of drug in the tissue after the 
nanoparticles adhere to the vasculature. A wide range of diffusion coefficients are considered in the optimiza-
tion study accounting for small (D~10−3 mm2/s as upper bound, similar to oxygen) and large (D~10−6 mm2/s) 

Figure 1.  Optimizing nanoparticle designs for tumors of different sizes. (A) Tumors of different sizes at which 
the treatment starts. Change in optimal nanoparticle diameters that (B) minimizes tumor size after one day of 
treatment and (C) maximizes percent accumulation of nanoparticles in tumor tissue as a function of tumor 
size at start of treatment. Black lines represent the second order polynomial fit obtained by minimizing the least 
linear square. Red: proliferating tumor tissue; blue: hypoxic tissue; brown: necrotic tissue. Orthogonal grid 
represents pre-existing capillary network surrounding the growing tumor. Irregular lines simulate capillary 
growth in response to a net balance of pro-angiogenic factors released by hypoxic tumor tissue.

Tumor diameter at start 
of treatment (μm)

argmin(TD) 
(nm)

TD* 
(%)

argmin(TNP) 
(nm)

TNP* 
(%)

105 1000 125 797 7.5e-3

188 777 75 729 0.45

366 520 45 535 5.4

425 678 40 447 4.6

517 352 26 404 7.4

675 382 15 322 9.9

760 334 51 288 13.7

813 276 57 285 20.5

Table 1.  Optimal nanoparticle diameters obtained by solving the optimization problems in Eqs. (1) and (2) for 
the chosen cohort of tumors. Asterisks indicate optimal values. TD: ratio of tumor diameter after treatment to 
diameter at start of treatment; TNP: percent of injected nanoparticles that accumulate in tumor tissue.
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molecules. As the diffusivity increases, the drug distributes deeper into the tissue. One may anticipate that if nan-
oparticle diameter and binding affinity provide uniform nanoparticle distribution in the tissue, and if a tumor is 
well vascularized, then a small value of diffusivity is desired (drug stays close to release site). On the other hand, 
if the nanoparticle design variables (size and avidity) do not provide sufficient uniformity in distribution of nano-
particles in the tumor vessels, the optimal diffusion coefficient of the drug should be high to allow it to reach cells 
farther from the vessels.

The optimization problem in Eq. (3) is solved using mesh adaptive direct search (MADS): only 52 blackbox 
evaluations (out of millions of possible combinations of design variables) were needed to converge to the mini-
mal value of TD (Fig. 2(A)). The trial points selected by MADS are shown in Fig. 2(B). The optimal value of the 
variables is d* = 229 nm, α* = 10e10 m−2 and D* = 10−6 mm2/s. The associated value of TD is 26% representing 
a 2-fold increase in tumor regression as compared to the case where the drug diffusivity was not included in the 
design variables.

Multi-objective optimization of tumor diameter and nanoparticle accumulation with respect to 
nanoparticle size.  In certain ranges of nanoparticle diameters, tumor regression and nanoparticle accumu-
lation at the tumor are two competing objective functions: optimizing one of them may compromise the other. 
As shown for the tumor and nanoparticle conditions in27, a nanoparticle of diameter of 288 maximizes the nano-
particle accumulation in the tumor, but a larger nanoparticle (334 nm) is needed to minimize the tumor size. The 
range of nanoparticle diameters between 288 nm and 334 nm represents a tradeoff between tumoral nanoparticle 
accumulation and tumor regression. Multiple optimal nanoparticle designs that quantify this tradeoff between 
TD and TNP were generated by solving the multiobjective optimization problem
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The solution of the problem in Eq. (4) is a set of nanoparticle diameters. The utopia point is the unattainable 
design that optimizes both TNP and TD simultaneously. It lies on the upper left corner of the plot in Fig. 3(A), 
which also shows all the trial points selected by MADS during the convergence to the optimal designs. We iden-
tify 5 optimal diameters at the Pareto front. Table 2 lists the values of these diameters as well as the corresponding 
value of each objective function, TD and TNP. Note that as the nanoparticle diameter increases, TNP favorably 
increases and TD unfavorably increases. Similarly, as the nanoparticle diameter decreases, TD is enhanced at the 
cost of deceasing TNP. However, since the optimal designs are selected from the Pareto front, the compromise of 
the two objective functions is minimal. Figure 3(B) qualitatively displays the tumor regression corresponding to 
these values.

Discussion
We extend our previous work on numerical optimization of nanoparticles for cancer nanotherapy to generate 
Pareto-optimal, tumor size-specific nanoparticle designs. Previously, we utilized optimization to find nanoparti-
cle sizes and avidities that minimize tumor size and maximize tumoral nanoparticle accumulation27, enhancing 
both factors as compared with previous results without the use of optimization25. Here, we investigate the effect of 
tumor size on the optimal nanoparticle design, as size is an important indicator of clinical staging of the disease. 
A virtual cohort of tumors is grown to different sizes, and for each tumor two separate optimization problems are 
solved: one to minimize tumor diameter and the other to maximize tumor nanoparticle accumulation. Results 

Figure 2.  Optimization of nanoparticle size, avidity, and drug diffusivity. (A) Progress of MADS in obtaining 
the optimal solution. (B) Trial points selected by MADS, where the color and size of the points correspond to 
the value of TD. The smallest point refers to the optimal solution of TD minimization problem (shown by the 
arrow).
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showed that minimization of different tumor sizes was associated with different nanoparticle designs. Using a 
2nd-order polynomial fit, a monotonically decreasing relation between tumor size and optimal nanoparticle diam-
eter to be administered was identified (Fig. 1(B,C)). This result is consistent with previous studies35–37 that support 
the benefit of increased nanoparticle circulation time in larger tumors.

This optimization study presents a quantitative methodology to support clinical decisions based on tumor 
specific properties. The optimization problem that minimizes tumor size informs optimal selection of therapeu-
tic nanoparticles that carry anticancer agents to tumors. The second optimization problem maximizes tumoral 
nanoparticle accumulation. The obtained designs may be suitable for enhancing tumor detection in non-invasive 
imaging38 or florescence-guided surgery39. In addition, the maximizers of tumoral accumulation could be used as 
second-line treatment to control tumor size after initial regression should the drugs become a toxicological risk, 
as discussed in27, and potentially as neoadjuvant treatment before resection.

We further investigated the possibility of increasing tumor regression by optimizing drug diffusivity along 
with nanoparticle size and avidity. How long nanoparticles circulate in blood vessels and at which location of the 
vasculature they adhere depends on multiple factors, such as hemodynamic forces, drift of nanoparticles from 
blood streamlines toward the endothelial layer, and nanoparticle-endothelial contact area5. These factors could 
be manipulated by changing nanoparticle physiochemical properties, primarily size and surface ligand density. 
This provides a potential pathway to optimize nanoparticle distribution in blood vessels, i.e., achieving high 
percentage of tumoral accumulation with adequate spatial uniformity within tumor vasculature. Subsequently, 
after drug is released from the vasculature-bound nanoparticles and internalizes into tissue, it has to overcome 
typically complex stromal conditions and cellular barriers to internalize in tumor cells. Here, drug properties such 
as diffusivity become predominant factors, as in pharmacokinetic/pharmacodynamic models40. Therefore, in 
nanoparticle-mediated drug delivery, drug molecules are subject to two sequential modes of transport: the nan-
oparticle transport stage, and tissue diffusion stage. Although these two stages are strongly dependent since drug 
profiles within tissue depend on nanoparticle location in blood vessels (source of drug release), to our knowledge, 
these two problems have been traditionally tackled separately, with one type of models focusing on nanoparticle 
design and the other on drug kinetics.

The proposed method enables simultaneous optimization of nanoparticle design and drug properties, with the 
results indicating that optimal selection of nanoparticles is drug dependent. In particular, we solved a 3-variable 

Figure 3.  Solution of the multiobjective optimization problem. (A) Trial points selected by MADS to generate 
the Pareto front. (B) Display of the tumor at treatment initiation and after treatment using the optimal designs 
identified (quantified in Table 2), respectively showing a decrease of 74%, 70%, 63%, 26% and 21% in tumor 
diameter ratio (TD). The corresponding nanoparticle accumulation in the treated tumors (TNP) is 41%, 48%, 
50%, 54% and 55%, respectively. Colors are as in Fig. 1.

Optimizer d* (nm) TD (%) TNP (%)

1 229 26 41

2 451 30 48

3 532 34 50

4 900 74 54

5 1000 79 55

Table 2.  Optimal nanoparticle sizes obtained by solving the multiobjective optimization problem in Eq. (4) 
showing the resulting values of TD and TNP. TD: ratio of tumor diameter after treatment to diameter at start of 
treatment; TNP: percent of injected nanoparticles that accumulate in tumor tissue.
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single objective program for finding nanoparticle size, ligand avidity, and drug diffusivity that minimizes tumor 
size. The optimal values of nanoparticle avidity and drug diffusivity were low, yet the nanoparticle size was mod-
erate. The results showed that a nanoparticle with d* = 229 nm, α* = 10e10m−2, and D* = 10e−6 mm2/s decreases 
the simulated tumor diameter to 25% of its value before treatment. This represents a 2-fold increase in tumor 
regression when compared to the previous value when the drug diffusivity was not considered in the nanoparticle 
design. In comparison with the previous design, the new optimal size a slightly lower (229 versus 334 nm), while 
the nanoparticle avidity and drug diffusivity are at their lower bound. This suggests that better treatment efficacy 
may be reached with (i) relatively small nanoparticles (extended circulation time) that are large enough to carry 
adequate drugs, (ii) low nanoparticle avidity that seems to be most relevant with the obtained nanoparticle size in 
achieving optimal distribution in tumor blood vessels, and (iii) slow diffusing drug molecules that mostly reach 
cells close to blood vessels.

Although larger particles have stronger accumulation propensity, they tend to bind fairly quickly after they 
enter the tumor vasculature, in agreement with41–43, which reported that larger nanoparticles have faster margin-
ation toward blood vessels and stronger binding affinity. This situation may be desirable when tumors are small 
and poorly vascularized, as the particles would act as sources of drug surrounding the lesions. As tumors increase 
in size, nanoparticles need to stay in circulation longer in order to reach the tumor core. In this case, smaller nan-
oparticles may be advantageous. Previous work26 provides evidence that large particles have high accumulation 
rates but heterogeneous spatial distributions, since they tend to attach in the tumor peripheral tissue. In contrast, 
small nanoparticles have low binding affinities, but may distribute more uniformly within tumor tissue.

In addition, the obtained optimal value of D is low, providing a theoretical benefit by setting up targets for the 
selection or design of drugs. It is worth noting that this value of D could be influenced by tumor vascular density, 
as less vascularized tumors may require larger drug diffusivity to allow for deeper tissue penetration. Another 
parameter that may affect the optimal drug diffusion coefficient is the cellular uptake rate. Drugs with a strong 
binding affinity need to diffuse farther in the tissue to overcome cellular barriers and reach non-vascularized 
regions. In this case, the optimal value of the drug diffusion coefficient is expected to be larger. While controlling 
drug properties may be technically more difficult than the synthesis of particular nanoparticles, it may be possible 
to achieve desired drug diffusivities by considering the structure-activity relationship during the drug discovery 
process44. The optimization problem formulation in Eq. (3) provides a platform for integrating nanoparticle and 
drug properties during drug development. For instance, the results suggest that if drug diffusivity is low, normal-
izing tumor vessels before the administration of nanoparticles with cytotoxic agents may enhance cell death45. 
Future extension of this study may include augmenting more design variables such as nanoparticle shape, drug 
potency, and drug half-life, and studying how optimal values of these design variables vary using a heterogeneous 
cohort of tumors.

The tradeoff between tumoral nanoparticle accumulation and tumor regression was quantified. Nanoparticle 
diameter was treated as a design variable while fixing nanoparticle avidity and drug diffusivity to optimal values 
obtained earlier, leading to substantial decrease in the computational cost. Solving the bi-objective optimization 
problem, five plausible nanoparticle designs were identified at the Pareto front; in particular, nanoparticles with 
diameters [229, 451, 532, 691, 900, 1000] nm. Each of these sizes is associated with different values of TD and 
TNP. Since the solution belongs to the Pareto front, enhancement in one objective function causes minimal com-
promise to the other. The maximal accumulation of nanoparticles is 55% and can be reached with d* = 1000 nm, 
at which the tumor diameter decreases to 79% of its initial value. On the other end of the Pareto front is the min-
imizer of tumor diameter, which is a nanoparticle diameter of 229 nm causing the tumor to decrease to 25% of its 
initial value, and when used, 41% of nanoparticles adhere to the tumor.

Examining the limits of the Pareto front, we conclude that the decrease in tumor diameter is more sensitive 
to nanoparticle size than to nanoparticle accumulation. Using 229 nm nanoparticles instead of 1000 nm, a 3-fold 
increase in tumor regression was gained while nanoparticle accumulation was reduced by only 14%. A more 
detailed insight can be obtained by evaluating the shape of the Pareto front, which is of a concave nature. The 
smaller the nanoparticle, the more sensitive TD is to nanoparticle diameter, i.e., in this region, the enhance-
ment in TD is considerably larger than the decrease in TNP. In contrast, a small compromise in TD causes large 
increases in TNP when the nanoparticles are large. Therefore, when tumor size decrease is the main criterion 
in the nanoparticle design, the minimizer of TD is d* = 229 nm when the tumor diameter is 760 μm. However, 
when drugs with low lethal doses are used, high tumor targeting is required. In this case, the results suggest the 
use of large nanoparticles (d* = 1000 nm). These extreme scenarios often exist when the objective of the study 
is well defined. In this case, the optimal nanoparticle diameters can be determined at a significantly lower com-
putational cost using single objective optimization problems. On the other hand, when a balance between treat-
ment toxicity and efficacy is required, the use of a nanoparticle size that lies at a non-steep region of the Pareto 
front may be appropriate. In this study, this region is close to the utopia point. For instance, the use of 451 nm 
nanoparticles yielded 70% tumor regression and 32% tumoral nanoparticle accumulation, representing a 2-fold 
enhancement in both objective functions as compared to the results previously obtained in27, for which drug 
diffusivity was not optimized.

The methodology presented herein offers the possibility to generate a library of nanoparticle specifications for 
personalized treatment, with each nanoparticle potentially serving a different purpose. Nanoparticles that have 
stronger weight on minimizing tumor volume could be suitable for first cycle treatment. Since these nanoparti-
cles may exert higher toxicity, there is the option of using larger nanoparticles that maintain the treatment with 
lower toxicity. A library of nanoparticles obtained via the multiobjective optimization problem could help to 
adapt the therapy based on the tumor response to the earlier treatment cycles. Further, a multicriteria treatment 
design could provide a useful approach to the broad field of mathematical oncology. Studies have been performed 
to find protocols considering other factors that include in addition to tumor burden and tumor targeting, drug 
resistance46, total drug dose (toxicity)47, and immune response48. Using multiobjective optimization, two or more 
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criteria could be incorporated in treatment planning or drug discovery, enabling the tackling of prognostic and 
toxicologic challenges.

The framework presented here is multiparametric, and the optimization results have different sensi-
tivities to parameter values based on the parameter type and mechanisms involved. The optimal design of 
vasculature-adhering nanoparticles is expected to be affected mostly by tumor vasculature parameters such as the 
rate of production of new blood vessels, vessel size, and flow properties. These parameters directly contribute to 
the margination and binding of the particles. Other parameters that do not pertain to the vasculature are expected 
to have low or no effect on the optimal values of nanoparticle size and avidity. On the other hand, the optimal 
value of the drug diffusion coefficient is expected to be sensitive to the tissue parameters such as ECM density 
and mitosis rate. It is worth noting that the presence of sensitive parameters does not weaken the optimization 
results; in contrast, it enforces the use of the optimization framework to obtain optimal designs quickly based 
on individual tumor characteristics. In general, model parameters can be lumped into a clinically or biologically 
measurable variable such as the initial tumor size, proliferation rate, and hypoxia profiles, forming a set of poten-
tial biomarkers that can be used to stratify tumors and design optimal personalized therapies. In this study, we 
have demonstrated the use of the initial tumor size as a covariate for nanoparticle diameter selection. Future work 
may evaluate the predictive power of each tumor parameter using statistical analyses that include quantifying 
the predictor importance estimates49 and ranking the parameters using methods such as k-nearest neighbor or 
minimum redundancy maximum relevance (MRMR) algorithms.

New methods that apply machine learning to develop personalized treatment using population-wide data are 
classically based on protocols that may be successful but not necessarily optimal50. The methodology presented 
here could be used to develop a database of optimal treatment protocols, incorporating other clinical information 
– besides tumor size – with possible optimization of treatment parameters such as drug potency, ligand-receptor 
binding affinity, and drug kinetics. Longer term, a system could be generated to identify ideal treatment param-
eters. In addition, the design of optimal nanoparticles could be adapted as the tumor progresses. The results 
would be subject to preclinical validation, and an optimal database could be progressively updated when a new 
tumor is treated by an optimal therapy, providing a more promising predictor matrix for machine learning-based 
treatment planning.

Conclusion
A preclinical computational study based on numerical optimization is presented to establish a methodology to 
determine optimal nanotherapy parameters. Building upon our previous work26,27, this study investigates the 
effect of initial tumor size on the optimal selection of nanoparticles, and the effect of drug diffusion on nanopar-
ticle design optimization, and quantifies the tradeoff between nanotherapy therapeutic and toxicological metrics. 
The results offer the potential to improve efficacy of nanoparticle-mediated anticancer drug delivery, and reveal 
nanoparticle sizes with the potential to efficiently treat a range of tumor sizes. A possible extension of this work 
includes generating a library of nanoparticles optimized for different tumor model parameters, correlating the 
biological parameters to key clinicopathological variables, and developing machine-learning models to identify 
optimal nanoparticle designs customized to patient tumor-specific parameters. In addition, the nanoparticle drug 
delivery considers a 2D tumor, neglects the immune response to therapy, and focuses on spherical nanoparticles. 
Extending the computational model would allow further optimization studies related, for example, to combining 
immune checkpoint inhibitors with cytotoxic drugs, optimizing nanoparticle physiochemical properties, and 
coupling with patient tumor-specific omics data.

Materials and Methods
The computational model of nanoparticle and drug transport in tumor tissue described in25 is used here as a 
“blackbox” system. The model evaluates tumor regression and tumoral nanoparticle accumulation as a func-
tion of nanoparticle parameters, which include nanoparticle size and binding affinity. The model is used by an 
optimization algorithm to systematically evaluate different combinations of input variables to determine which 
ones optimize the outputs of interest. In general, the interaction between the two models is as following: starting 
from an initial guess of the nanoparticle design, the computational model evaluates the objective (goal) function 
and the (restricting) constraints. This quantitative information is used by rigorous algorithms to select new trial 
points from the design space with the goal of outperforming the current (incumbent) iteration. This process is 
repeated until an algorithmic termination criterion is met. The termination criterion could be to attain a small 
change in the objective function or in the values of the design variables. The optimization framework is depicted 
schematically in Fig. 4.

Computational model.  The main equations of the computational “blackbox” model are shown in Fig. 4. 
The initial condition of the computational model in25 is a 2 × 2 mm vascularized through which blood enters 
from the bottom and left sides. An avascular cancerous lesion of initial diameter 100 um is placed at the center 
of the domain. Oxygen and nutrients are simulated to be delivered from the nearby blood vessels. A set of PDEs 
are used to model proliferation of the viable region and formation of hypoxia and necrosis. A grid-based discrete 
model of angiogenesis12 is used to determine the formation of the new blood vessels that sprout from existing 
vessels in response to hypoxia in tumor tissue51,52. In the case of small micrometastases, it has been shown that the 
surrounding vasculature begins to rework itself in response to the hypoxia within these metastases53. Accordingly, 
in the model, the development of blood vessels is driven by a hypoxic landscape that produces tumor angiogenic 
factors and promotes the development of neovasculature sourcing from existing vessels. If the new vessels pene-
trate into the tumor, they enable the lesion to grow larger by becoming vascularized.
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Nanoparticles are injected downstream through the vasculature once the tumor reaches a diameter (760 μm) 
sufficient for evaluation of therapeutic effects7. The nanoparticles adhere to the tumor vessel walls through 
ligand-receptor pairs. The success of binding is challenged by blood dissociative forces. The percent accumulation 

Figure 4.  Hybrid framework for optimizing nanoparticle mediated drug delivery. The framework couples 
a computational “blackbox” model of vascularized tumor growth and nanoparticle treatment7,25 with an 
optimization model based on the mesh adaptive direct search (MADS) algorithm26,27. The computational 
model25 uses a nanoparticle design (x) selected by MADS and evaluates the objective function f(x) and the 
constraints g(x). These values are used by MADS to recommend a new trial point for the computational model. 
This process iterates until the objective function is optimized, so that the result of the hybrid framework 
generates optimal nanoparticle designs x*. In the computational model, multiple sub-models interact and 
exchange parameters, including: (a) angiogenic factors; (b) oxygen and nutrients; (c) location of capillary 
junctions; (d) wall shear stress, flow stimulus, and intravascular pressure; and (e) vessel radii, vessel surface 
areas, and flow rate. The tumor is displayed in the computational model at inception, after vascularization, 
before treatment and after treatment. Colors are as in Fig. 1.
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and the spatial distribution of nanoparticles depends on the nanoparticle physiochemical properties, mainly size 
and binding affinity7. Once a nanoparticle adheres to the vessel wall, the drug is released to the tissue at a rate that 
is proportional to the nanoparticle size25. The drug transport is modeled by a reaction-diffusion equation, causing 
tumor regression (see Fig. 4). As a representative cell-cycle dependent drug is simulated, the rate of cell death in 
the proliferation rate equation is assumed proportional to the drug potency, represented by the parameter λeffect. 
This parameter is linked to the half maximal inhibitory concentration (IC50) by determining which value causes 
an avascular simulated tumor to shrink by half its pre-treatment size within a certain timeframe (as was done in14). 
Thus, drugs of lower potency have higher IC50. Following our previous work in25, this study considers a drug with 
potency similar to that of Paclitaxel. Our previous simulation of the model in27 indicated that a simulation of 1 day 
is adequate to evaluate the performance of different nanoparticle designs. Therefore, the simulation is stopped 1 
day after injection and record the tumor size and percent of nanoparticle accumulation in the tumor tissue.

Optimization model.  We develop an optimization model that systematically simulates the computational 
model. Here, the computational model inputs are classified into variables (x) to be optimized and parameters (p) 
to be held at fixed values through the optimization process. A key variable considered in this study is the nano-
particle diameter. The binding affinity of nanoparticles and the diffusivity of the cytotoxic drug are additionally 
considered. The set of parameters include other model characteristics such as drug potency, blood vessel proper-
ties, and tumor proliferation rate. The main parameters are listed in Table 3.

The model produces multiple outputs that relate to nanoparticle design performance in terms of antitumor 
activity and targeted regions. Two objective functions are defined: the ratio of tumor diameter at the end of the 
treatment normalized by the diameter at the start of treatment (TD), and the percentage of injected nanoparticles 
that adhere to tumor vessels (TNP). The objective of the optimization model is to minimize TD and maximize 
TNP. In addition, we are interested in computing the tradeoff between TD and TNP, as these are competing 
objective functions27. A multiobjective optimization formulation is used to generate a set of optimal nanoparticle 
designs that define the Pareto front, i.e., the set of points for which one objective cannot be improved without 
deteriorating the other.

All optimization problems are solved using the Mesh Adaptive Direct Search (MADS) algorithm54. MADS is a 
derivative-free optimization algorithm that does not require gradient evaluation. This class of algorithms is suit-
able when using computational models as “blackboxes” for which the gradients are either unavailable or require 
unjustifiable amount of effort and time to be approximated. Moreover, the model is computationally expensive 
due to strong coupling between the submodels; each “blackbox” evaluation requires 1.5 of hours of CPU time 
on an Intel(R) Core(TM) i7–3770 CPU @ 3.4 GHz processor. To address this complexity, a surrogate-assisted 
optimization approach is used to learn from previous trials while iterating towards the optimal solution. In this 
approach, a surrogate of the model is created and continuously updated to facilitate the search step of MADS [23]. 
The surrogate approximation is combined with evaluations of the “blackbox” model at the poll step of MADS, 
providing a fast and rigorous convergence to the optimal nanoparticle design. MADS is implemented in the 
NOMAD C++ software package55. The MATLAB interface is used to communicate with NOMAD and automat-
ically exercise the “blackbox” tumor model.

Since the analysis model is a “blackbox,” we cannot know whether the underlying optimization problem func-
tions are convex. It is thus impossible to prove formally that the obtained optimal solutions are global. However, 
we previously examined the behavior of the objective functions with respect to the nanoparticle diameter, and 
both of them exhibited an empirical convex profile (see Fig. 2(a,b) in27). Since the other variables were boundary 
optimizers, the uniqueness of the optimal solution within the defined design space is supported with extremely 
high likelihood.
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All data analyzed during this study are included in this published article.
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