Skip to main content
. 2020 May 13;10:743. doi: 10.3389/fonc.2020.00743

Table 2.

Predictive performance (AUC) of 8 models and using several variables alone.

Model AUC No. of optimal dimensions
Mean SD 95% CI
AdaBoost 0.873 0.048 0.779–0.968 7
ANN 0.868 0.049 0.772–0.964 7
DT 0.802 0.057 0.691–0.913 2
GBDT 0.899 0.044 0.813–0.985 11
LR 0.867 0.049 0.771–0.963 13
MNB 0.784 0.058 0.670–0.898 11
RFC 0.890 0.045 0.801–0.979 13
XGBoost 0.883 0.047 0.792–0.975 7
Tumor size 0.753 0.023 0.707–0.798 1
SUVmax 0.734 0.024 0.688–0.780 1
CEA 0.720 0.026 0.669–0.770 1

AUC, area under the receiver operating characteristic curve; AdaBoost, adaptive boosting; ANN, artificial neural network; DT, decision tree; GBDT, gradient boosting decision tree; LR, logistic regression; MNB, multinomial naïve Bayes; RFC, random forest classifier; XGBoost, extreme gradient boosting; SUVmax, maximal standardized uptake value; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 12-5; Cyfra211, cytokeratin 19-fragments; CA153, carbohydrate antigen 15-3.