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Mutations in retinoid isomerase (RPE65) or lecithin-retinol acyltransferase (LRAT ) disrupt 11-cis-retinal
synthesis and cause Leber congenital amaurosis (LCA). Despite the success of recent RPE65 gene
therapy, follow-up studies show that patients continue to experience photoreceptor degeneration and
lose vision benefit over time. In Lrat�/� mouse model, mislocalized medium (M)-wavelength opsin was
degraded, whereas mislocalized short (S)-wavelength opsin accumulated before the onset of cone
degeneration. The mechanism for the foveal M/long-wavelength cone photoreceptor degeneration in
LCA is unknown. By crossing Lrat�/� mice with a proteasome reporter mouse strain, this study showed
that M-opsineenriched dorsal cones in Lrat�/� mice exhibit proteasome stress because of the degra-
dation of large amounts of M-opsin. Deletion of M-opsin relieves the proteasome stress and completely
prevents M cone degeneration in Lrat�/�Opn1sw�/� mice (a pure M cone LCA model, Opn1sw encoding
S-opsin) for at least 12 months. These results suggest that M-opsin degradationeassociated protea-
some stress plays a major role in M cone degeneration in Lrat�/� model. This finding may represent a
general mechanism for M cone degeneration in multiple forms of cone degeneration because of M-opsin
mislocalization and degradation. These results have important implications for the current gene therapy
strategy for LCA that emphasizes the need for combinatorial therapies to both improve vision and
slow photoreceptor degeneration. (Am J Pathol 2020, 190: 1059e1067; https://doi.org/10.1016/
j.ajpath.2020.01.005)
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Retinoid isomerase (RPE65) and lecithin-retinol acyl-
transferase (LRAT) are two key enzymes involved in the
generation/recycling of 11-cis-retinal in the retinal pigment
epithelium (RPE). Mutations in either gene lead to Leber
congenital amaurosis (LCA), a severe inherited retinal
degenerative disease characterized by severe loss of vision
in childhood with early degeneration of foveal cones fol-
lowed by rods.1,2 Two mouse models, Rpe65�/� (LCA2)
and Lrat�/� (LCA14) mice, which have shown similar
phenotypes, and an Rpe65�/� dog model have been widely
used for mechanistic and therapeutic studies.3e11 These
studies paved the way for the first successfully treated
inherited retinopathy using gene therapy.12e14 However,
follow-up studies found that photoreceptor degeneration
continued even after the gene therapy intervention in
LCA2,11,15e17 suggesting a need to understand the
stigative Pathology. Published by Elsevier Inc
mechanism of photoreceptor degeneration to design
improved treatment strategies.

In both LCA patients and animal models, both rod and
cone functions are severely compromised because of a
combination of 11-cis-retinal deficiency and photore-
ceptor degeneration. Early loss of foveal cones was re-
ported in RPE65-deficient patients.1,2 Despite extensive
studies, the mechanisms underlying cone degeneration in
. All rights reserved.
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Figure 1 Cones in lecithin-retinol acyltransferase
deficient (Lrat�/�) mice exhibit proteasome insufficiency.
The retinal sections from P18 Lrat�/� UbG76V-GFP and
UbG76V-GFP control mice were labeled with an antiegreen
fluorescent protein (GFP) antibody (green). Cones were
labeled with rhodamineepeanut agglutinin (red). Nuclei
were stained with DAPI. Scale bars Z 10 mm. CIS, cone
inner segment; COS, cone outer segment; ONL, outer nu-
clear layer; OPL, outer plexiform layer.
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LCA are still poorly understood. In mouse models, both
medium-wavelength sensitive opsin (M-opsin) and short-
wavelength sensitive opsin (S-opsin) fail to traffic from
the cone inner segment to the outer segment and cone
photoreceptors in the central/ventral retina degenerate
rapidly (<4 weeks).5e7,18 Dorsal cones degenerate slowly
(>6 months). It has been shown previously that S-opsin
was aggregation prone in cell culture and accumulated in
cones, leading to proapoptotic endoplasmic reticulum
(ER) stress and rapid S-opsin enriched central/ventral
cone (S-cone) degeneration in Lrat�/� mice.8 Deletion of
S-opsin reduced ER stress and completely prevented the
rapid S-cone degeneration in Lrat�/�S-opsin�/� mice for
at least 12 months.19 However, the mechanism for M-
opsin enriched dorsal cone (M cone) degeneration is un-
clear. Understanding the mechanism for M/L (medium/
long-wavelength) cone degeneration is important because
the human fovea is dominated by both cone types, which
are responsible for high-resolution daylight vision and
color perception.20

Previous work has shown that mistargeted M-opsin was
largely degraded, whereas S-opsin was resistant to degra-
dation in Lrat�/� mice.8 M-opsin was shown to be degraded
by the proteasome but not lysosome pathway in Rpe65�/�

mice.21 Degradation of large amounts of mistargeted M-
opsin in cones will likely overload proteasome and cause
proteasome stress. Interference with the proteasome inhibits
both cytosolic protein degradation and ER-associated
degradation, which can lead to cell death. Indeed, the
degradation of rod transduction proteins was shown to cause
proteasome overload, ER stress, and rod degeneration.22e24
1060
Moreover, decreased proteasomal activity causes rod
degeneration,25 whereas increased proteasomal activity de-
lays rod degeneration.26 However, the role of proteasome
stress in cone degeneration has not been studied. Because of
mixed expression of M-opsin and S-opsin in mouse cones
and the rapid degeneration caused by S-opsin in Lrat�/�

mice, the Lrat�/�Opn1sw�/� mice were used as a pure M
cone LCA model to study the role of M-opsin and protea-
some stress in cone degeneration. This study showed that
deletion of M-opsin relieves the proteasome stress and
prevents M cone degeneration in Lrat�/�Opn1sw�/� mice
for at least 12 months.
Materials and Methods

Mice

M-opsin�/� mice were generated by clustered regularly
interspaced short palindromic repeats and CRISPR-associated
protein 9 (CRISPR-Cas9) following a published protocol.27

Single-guide RNA (50-ATTATCACATTGCTCCCAGG-30)
was designed to target the second exonofmouseM-opsin gene
Opn1mw. Cas9 plasmid and single-guide RNA were coin-
jected into C57Bl/6J mouse embryos at the University of Utah
Transgenic/Gene Targeting Core Facility (Salt Lake City,
UT).Mouse tail samples fromOpn1mw�/� foundermicewere
prepared and used as PCR template with forward -primer
(50-CATAGAGCAAGGAAAAGTGAGGTC-30) and reverse
primer (50-CCCAGAACGAAGTAGCCATAGAT-30). The
PCR product was gel purified and sequenced to select the
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Mechanism of M Cone Degeneration in LCA
foundermice. The pups of theOpn1mw�/� foundermicewere
confirmed by DNA sequencing. Lrat�/�, Opn1sw�/�, and
Lrat�/�Opn1sw�/� mice were generated previously.4,19,28

Opn1sw�/�Opn1mw�/� mice were produced by crossing the
Opn1sw�/� and Opn1mw�/� strains. Lrat�/� Opn1sw�/�

Opn1mw�/� mice were produced by crossing the Lrat�/�

S-opsin�/� and M-opsin�/� strains. Lrat�/�Opn1sw
�/�UbG76V-GFP and Lrat�/�Opn1sw�/�Opn1mw�/�UbG76V-
GFP mice were produced by crossing the Lrat�/�Opn1sw�/�

and Lrat�/�Opn1sw�/�Opn1mw�/� strains, respectively, with
the reporter UbG76V-GFP mice. Mice were reared under cyclic
light (12 hours light/12 hours dark). Animal experiments were
approved by the Institutional Animal Care and Use Committees
at the University of Utah (Salt Lake City, UT) and Baylor
CollegeofMedicine (Houston,TX)andwere in accordancewith
the Statement of the Association of Research for Vision and
Ophthalmology for the Use of Animals in Ophthalmic and
Vision Research.
Immunohistochemistry

The immunolabeling experiments were performed as previ-
ously described.8,19 Briefly, age-matched mouse eyes were
immersion fixed for 2 hours using freshly prepared 4% para-
formaldehyde in 0.1 mol/L phosphate buffer, pH 7.4, and
cryoprotected. Cryosections were cut sagittally (dorsal to
ventral) through the optic nerve head and stained for different
antibodies. Primary antibodies were applied to each group of
two to four sections in a humidified chamber overnight at 4�C,
and were visualized with Alexa 488e, Alexa 647e, or
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Cy3-conjugated secondary antibodies. The sections were
viewed using a Zeiss LSM 510 or LSM 800 confocal micro-
scope (Carl Zeiss Microscopy, Thornwood, NY). Primary
antibodies against S-opsin, M-opsin, cone arrestin, G-pro-
teinecoupled receptor kinase 1 (GRK1), and cone transducin
a subunit (Gat2) were described previously.

8,19 Cone numbers
from dorsal, central, and ventral retina were counted from four
sections on the basis of arrestin staining. Data were expressed
as the mean number of cones/field of view � SEM.

Western Blot Analysis

Retinal lysates from 1-montheold wild-type (WT) and
mutant mice were used for Western blot analysis. Protein
concentrations were measured by bicinchoninic acid assay.
A total of 5 mg retinal lysates was separated onto 10% SDS-
PAGE, transferred to a polyvinylidene difluoride membrane,
and probed with primary antibodies against M-opsin,
S-opsin, and glyceraldehyde-3-phosphate dehydrogenase, as
described previously.8,19 The signals were visualized by the
ChemiDoc imaging system (Bio-Rad, Hercules, CA).

ERG Data

Mice were dark adapted overnight before being anesthetized
by i.p. injection of a combination of ketamine (65 to 100
mg/kg) and xylazine (10 to 20 mg/kg). Pupils were dilated
with 1% tropicamide. A corneal contact electrode was
placed on the objective lens. Ground and reference elec-
trodes were placed in the tail and head, respectively. Elec-
troretinograms (ERGs) were recorded with the Phoenix
in

h

in

1mw-/-

Figure 2 Generation and characterization of M-opsin
gene deficient (Opn1mw�/�) mice. A: A schematic illus-
tration on the location of the single-guide RNA targeting
sequence in the mouse Opn1mw gene. B: Western blot
analysis of M-opsin and S-opsin from 1-montheold wild-
type (WT) and Opn1mw�/� retinas. Glyceraldehyde-3-
phosphate dehydrogenase (Gapdh) was used as a loading
control. C: DNA sequencing traces of WT and Opn1mw�/�

mice. There was a 1-bp insertion (arrow) at the targeting
site, which caused a frameshift and truncation
(Supplemental Figure S1). D: Immunolabeling of M-opsin
and S-opsin in the retinal sections of 1-montheold WT and
Opn1mw�/� mice. M-opsin and S-opsin were imaged from
the dorsal and ventral retina, respectively. Nuclei were
stained with DAPI (blue). Scale bars Z 10 mm. CIS, cone
inner segment; COS, cone outer segment; ONL, outer nu-
clear layer; OPL, outer plexiform layer.
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Figure 3 Photopic and scotopic electroretinography
responses from 1-montheold M-opsin gene deficient
(Opn1mw�/�) and wild-type (WT) mice. The amplitudes of
photopic b-wave responses to 504-nm (A) and 360-nm
(B) stimuli at different light intensities (�0.3, 0.3, 0.9,
1.5, and 2.1 log cd second/m2). The scotopic a-wave
amplitudes (C) and scotopic b-wave amplitudes (D) at
different light intensities (�1.2, �0.9, �0.3, 0.3, 0.9,
1.5, and 2.1 log cd second/m2) to 504 nm light. Data are
expressed as means � SEM. n Z 4 (AeD).

Xu et al
Ganzfeld ERG (Phoenix Research Labs, Pleasanton, CA).
Flash stimuli intensities used were �0.3, 0.3, 0.9, 1.5, and
2.1 log cd second/m2 for photopic ERG, and �1.2, �0.9,
�0.3, 0.3, 0.9, 1.5, and 2.1 log cd second/m2 for scotopic
ERG. Five recordings were made with each intensity. Light-
adapted responses were examined after bleaching at 2.1 log
cd second/m2 with 504 nm light for 10 to 15 minutes. Four
mice were used for recording in all conditions.

Statistical Analysis

All group results are expressed as means � SEM. Each
experiment was performed at least three times for reproduc-
ibility. Comparisons between groups were made using the
two-tailed t-test or one-way analysis of variance and Tukey
post hoc tests formultiple groups. The Levene test was used to
access homogeneity of variance. Values of N were described
in figure legends. Statistical analysis was performed with
OriginPro 2016 version b9.3.2.303 (OriginLab Corporation,
Northampton, MA). No statistical methods were used to
predetermine the sample size, but our sample sizes are
consistent with those generally usedwithin thefield. Themice
were not randomized. P < 0.05 was considered significant.

Results

Dorsal Cones in Lrat�/� Mice Exhibit Proteasome Stress

Previous studies have shown that M-opsin was degraded in
Lrat�/� mice8,19 and that M-opsin degradation was mediated
1062
by the proteasome but not lysosome pathway.21 This study
hypothesized that the degradation of large amounts of mis-
localized M-opsin can overload the ubiquitin-proteasome
system and cause proteasome stress. To examine proteaso-
mal insufficiency in Lrat�/� cones, the Lrat�/� mouse strain
was crossed with a proteasome reporter mouse strainUbG76V-
GFP to generate Lrat�/�UbG76V-GFPmice. Accumulation of
UbG76Vegreen fluorescent protein (GFP), a cytoplasmic
substrate carrying a degradation signal, indicates proteasomal
insufficiency.29 The accumulation of UbG76V-GFP was
detected by immunohistochemistry with an anti-GFP anti-
body.30 Cones from all regions of P18 Lrat�/�UbG76V-GFP
displayed robust reporter signal throughout cones [ie, from
outer segment to synaptic terminal in green (cones were
labeledwith rhodamineepeanut agglutinin in red)] (Figure 1).
No cone-specific GFP signal was detected in controlUbG76V-
GFP. Proteasomal insufficiency in central/ventral cones was
likely caused by aggregated S-opsinemediated proteasome
inhibition.31e34 Proteasome insufficiency in dorsal cones was
likely caused by M-opsin degradationeinduced proteasome
overload.

Genetic Deletion of M-Opsin from Lrat�/�Opn1sw�/�

Mice Prevents M Cone Degeneration

To overcome the difficulties associated with the mixed
expression of M-opsin and S-opsin in mouse cones and the
rapid degeneration caused by S-opsin in Lrat�/� mice, the
Lrat�/�Opn1sw�/� mice were generated as a pure M cone
LCA model to study the role of M-opsin in cone
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 M-opsin deletion prevents dorsal M
cone degeneration in Lrat�/�Opn1sw�/�Opn1mw�/�

mice. A: Retinal sections from 6-montheold and
12-montheold wild-type (WT), Lrat�/�Opn1sw�/�,
Lrat�/�Opn1sw�/�Opn1mw�/� [triple knockout
(KO)], and Opn1sw�/�Opn1mw�/�mice were labeled
with anti-mouse cone arrestin antibody (in green).
White arrowheads indicate unhealthy dorsal cones
from 6-montheold Lrat�/�Opn1sw�/� mice with
swollen outer and inner segments; white arrows,
cones from 12-montheold Lrat�/�Opn1sw�/� mice
that had lost outer segments; red arrows, cones from
12-montheold Lrat�/�Opn1sw�/� mice with
broken/fragmented structure. Representative retinal
images from the dorsal regions of the indicated ge-
notype are shown. Nuclei were stained with DAPI. B:
Quantitative results of relative cone numbers at the
ventral, central, and dorsal retina from the indicated
genotype. Data were normalized to WT dorsal region.
C: M-opsin deletion reduces proteasomal stress in
dorsal M cones in Lrat�/�Opn1sw�/� mice. The
reporter UbG76V-green fluorescent protein (GFP)
signal from the dorsal retinas of P18 Lrat�/�

Opn1sw�/�UbG76V-GFP mice, Lrat�/�Opn1sw�/�

Opn1mw�/�UbG76V-GFP, and UbG76V-GFP control mice
were labeled with an anti-GFP antibody (in green).
Cones were labeled with rhodamine-PNA (in red).
Arrows indicate dorsal cones from Lrat�/�

Opn1sw�/�UbG76V-GFP mice that displayed GFP
signal. Data are expressed asmeans� SEM (B). nZ 4
to 7 for 6-month samples (B); n Z 4 to 6 for each
genotype for 12-month samples (B). **P < 0.01,
***P < 0.001 versus all other three genotypes at
both 6 and 12 months (one-way analysis of variance
with Tukey post hoc analysis). Scale bars: 20 mm (A);
10 mm (C). CIS, cone inner segment; COS, cone outer
segment; ONL, outer nuclear layer; OPL, outer plexi-
form layer.

Mechanism of M Cone Degeneration in LCA
degeneration. First, Opn1mw�/� mice were generated by
CRISPR-Cas9. Opn1mw was disrupted by one nucleotide
insertion in the second exon, which causes a frameshift and
truncation at the second exon (Figure 2, A and C, and
Supplemental Figure S1). Since the gene Opn1mw is on the
X chromosome, both male Opn1mwY/e and female
Opn1mwe/e mice are referred to as Opn1mwe/e mice for
convenience hereafter. Both male and female Opn1mw�/�

mice have normal body size and fertility. Immunohisto-
chemistry and Western blot analysis confirmed the absence
of M-opsin in the retina of Opn1mw�/� mice (Figure 2, B
and D). The expression level of S-opsin was increased in
Opn1mw�/� mice (Figure 2B), which mirrors the result of
M-opsin up-regulation in S-opsin�/� mice due to
The American Journal of Pathology - ajp.amjpathol.org
transcriptional compensation.28 In photopic ERG re-
cordings, Opn1mw�/� mice lost light sensitivity at 504 nm
light and only responded to 360 nm light, which provides
functional validation on M-opsin deletion (Figure 3, A and
B). The enhanced photopic responses at 360 nm at high
intensities compared with WT is consistent with the
increased S-opsin expression (Figure 3B). Scotopic ERG
reflects rod input at low intensities (<�0.85 log cd second/
m2)35 and mixed rod and cone input at high intensities.
Compared with WT mice, Opn1mw�/� mice showed
decreased scotopic a- and b-wave responses at high light
intensities to 504 nm light because of the absence of
M-opsinemediated cone responses (Figure 3, C and D). The
Opn1mw�/� mice were bred with Lrat�/�Opn1sw�/� mice
1063
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Figure 5 Immunolocalization of cone
membrane-associated proteins G-proteinecoupled
receptor kinase 1 (GRK1) and cone transducin a

subunit (Gat2) in wild-type (WT), Lrat�/�

Opn1sw�/�, Lrat�/�Opn1sw�/�Opn1mw�/� [triple
knockout (KO)], and Opn1sw�/�Opn1mw�/� mice.
One-montheold mouse retinal sections were
stained with antibodies against GRK1 (in yellow)
and Gat2 (green). White arrows GRK1 signal in WT
cones; red arrows, Gat2 signal in WT cones. Nuclei
were stainedwith DAPI (blue). Scale barsZ 10mm.
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to generate Lrat�/�Opn1sw�/�Opn1mw�/� mice. Dorsal
cones of Lrat�/�Opn1sw�/� mice are morphologically un-
healthy at 6 months, with swollen outer and inner segments
(Figure 4A). This became much worse at 12 months. Most
remaining cones have lost their outer segments (Figure 4A)
with broken or fragmented structure (Figure 4A). Compared
with WT, Lrat�/�Opn1sw�/� mice have lost 26% (P < 0.01)
and 49% (P < 0.001) cones at 6 and 12 months, respectively
(Figure 4B). In contrast, 97% and 94% dorsal cones survived
in Lrat�/�Opn1sw�/�Opn1mw�/� mice at 6 and 12 months,
respectively, which is not significantly different from
control WT and Opn1sw�/�Opn1mw�/� mice, suggesting
that M-opsin plays a major role in dorsal cone degeneration
in Lrat�/� mice. Both Lrat�/�Opn1sw�/�

Opn1mw�/� and Opn1sw�/�Opn1mw�/� cones are shorter
than WT cones because of the lack of normal outer segments
resulting from cone opsin deletions. In fact, only cone inner
segments can be clearly detected by double labeling of cone
arrestin (in green) and peanut agglutinin (in red)
(Supplemental Figure S2). This is in contrast to the presence
of both outer segments (Supplemental Figure S2, indicating
strong colocalization signal between cone arrestin and peanut
agglutinin, note peanut agglutinin labels cone matrix sheath)
and inner segments (Supplemental Figure S2) in WT cones.
Previouswork has shown that cones can survivewith little cone
opsins (ie, ventral cones inOpn1sw�/� and Lrat�/�Opn1sw�/�

mice)19,28,36,37; this study provides conclusive evidence that
cones can survive with no cone opsins (ie, 6- and 12-month
Opn1sw�/�Opn1mw�/� cones), which is different from rods
that degenerate rapidly without rhodopsin.38 It was shown
previously that deletion of S-opsin prevents ventral and central
cone degeneration in Lrat�/�Opn1sw�/� mice up to 12
months.19 This result is confirmed in Figure 4B.
1064
Genetic Deletion of M-Opsin from Lrat�/�Opn1sw�/�

Mice Reduces Proteasome Stress in M Cones

The Lrat�/�Opn1sw�/�Opn1mw�/� mice and Lrat�/�

Opn1sw�/� mice were bred with UbG76V-GFP to generate
Lrat�/�Opn1sw�/�Opn1mw�/�UbG76V-GFP mice and
Lrat�/�Opn1sw�/�UbG76V-GFP mice to assess the role
of proteasome stress in M-cone degeneration. In P18
Lrat�/�Opn1sw�/�UbG76V-GFP mice, dorsal cones dis-
played strong GFP signal, indicating proteasome
inefficiency (Figure 4C). In contrast, dorsal cones from P18
Lrat�/�Opn1sw�/�Opn1mw�/�UbG76V-GFP mice exhibited
markedly decreased GFP signal, suggesting M-opsin degra-
dation plays a major role for proteasome stress in M cones.
Interestingly, GFP signal in the ventral and central cones in
Lrat�/�Opn1sw�/�Opn1mw�/�UbG76V-GFP mice was also
decreased comparedwith those of Lrat�/�Opn1sw�/�UbG76V-
GFPmice (Supplemental Figure S3).One explanation is that in
the absence of S-opsin, M-opsin is increased because of
transcriptional compensation and causes proteasome stress
in central and ventral cones.28 The residual GFP signal in
Lrat�/�Opn1sw�/�Opn1mw�/�UbG76V-GFP mice compared
withWTmice is likely caused by proteasome stress associated
with the degradation of other cone phototransduction proteins
(see below).

Mistargeting of Membrane-Associated Proteins in
Lrat�/�Opn1sw�/�Opn1mw�/� Cones

Several membrane-associated proteins (eg, M/S opsins,
GRK1, and Gat2) involved in cone phototransduction fail to
traffic to the outer segment of Lrat�/� or Rpe65�/� cones
properly.7 The mistrafficked proteins are degraded through
ajp.amjpathol.org - The American Journal of Pathology
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Gene mutations (LCA1-GC1, LCA2-RPE65, LCA4-AIPL1, LCA12-
Rd3, LCA14-LRAT, CNGA3, etc.)

Disruption of cone opsin homeostasis
M/L-opsin misfolding, 
mistrafficking, and degradation

Proteasome 
overload and stress

M/L-cone 
degeneration

M-opsin deletion

Promote folding and trafficking
Enhance proteasome activity

Figure 6 A schematic on the role of M-opsin
in multiple forms of cone degeneration. Mis-
localized M/L-opsins are degraded, which causes
proteasome stress and dorsal M cone degenera-
tion. Deletion of M-opsin prevents dorsal M cone
degeneration. One strategy to protect M/L cones
from degeneration is to promote the folding and
targeting of M/L-opsins and to enhance protea-
some activity.
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a post-translational mechanism,7 except that S-opsin ag-
gregates and resists proteasome degradation.8 The sub-
cellular localization of GRK1 and Gat2 in the retinas of
Lrat�/�Opn1sw�/�Opn1mw�/�, Opn1sw�/�Opn1mw�/�,
Lrat�/�Opn1sw�/�, and WT mice was examined. GRK1
was expressed in both rods and cones (Figure 5) in WT.
In sharp contrast, no GRK1 signal was detected in cones
in Lrat�/�Opn1sw�/�Opn1mw�/�, Opn1sw�/�Opn1mw�/�,
and Lrat�/�Opn1sw�/� mice (Figure 5). Gat2 was
markedly reduced in Lrat�/�Opn1sw�/� mice (Figure 5),
as shown previously,8 and was undetectable in
Lrat�/�Opn1sw�/�Opn1mw�/� and Opn1sw�/�Opn1mw�/�

mice (Figure 5) compared with the robust signal in WT
cones (Figure 5). The prevention of dorsal M cone
degeneration in Lrat�/�Opn1sw�/�Opn1mw�/� mice and
the continued degradation of many cone outer segment
proteins in this mouse strain suggest that the degradation of
many cone membrane-associated proteins other than M-
opsin does not play a significant role in cone viability,
likely because of their substantially smaller quantities than
M-opsin (see more in Discussion).
Discussion

The major finding of this study is that deletion of M-opsin
relieved proteasome stress and prevented the dorsal M cone
degeneration in Lrat�/�Opn1sw�/� mice for at least 1 year.
In the absence of 11-cis-retinal, daily degradation of large
amounts of M-opsin could overload the proteasome and
cause chronic proteasomal insufficiency, which may lead to
the accumulation of misfolded proteins in the ER by
inhibiting ER-associated degradation and triggering chronic
ER stress in M cones. On the other hand, chronic protea-
somal insufficiency may also affect normal cellular func-
tion.39,40 Indeed, proteasome overload or impairment has
been implicated in several types of rod degeneration asso-
ciated with protein misfolding or mistargeting.23,41e43 To
the knowledge of the authors, this is the first study to
examine the role of proteasome stress in cone degeneration.
The American Journal of Pathology - ajp.amjpathol.org
Because several mouse models of cone dystrophy with cone
opsin mislocalization exhibited M-opsin degradation and
slower dorsal cone degeneration [eg, cone cyclic nucleotide-
gated channel A subunit (Cnga3) knockout,44 guanylate
cyclase 1 (Gucy2e) knockout (LCA1),45,46 rd3 (LCA12),47

Aipl1 knockout (LCA4),48 and kinesin 3A (Kif3a)
knockout in cones],49 M-opsin degradation associated pro-
teasome stress may represent a general mechanism for
dorsal cone degeneration in these models (Figure 6).

In addition to M-opsin, outer segment proteins, such as
Gat2 and GRK1, are also degraded in Lrat�/�Opn1sw�/�

cones. Previous studies have shown that guanylate cyclase 1
and cone phosphodiesterase 6a0 were degraded in Lrat�/�

cones.7 The degradation of these proteins should also cause
proteasome stress. Why did deletion of M-opsin alone from
Lrat�/�Opn1sw�/� mice substantially reduce proteasome
stress (Figure 4C) and completely prevent dorsal M cone
degeneration? The reason is likely because of the huge
difference in protein quantity between cone opsins and other
outer segment proteins. For example, the molecular ratio
between rhodopsin/G-protein is 10:1, rhodopsin/phospho-
diesterase is 50:1, and rhodopsin/GRK1 is 500:1 in
mammalian rods.50 A similar ratio can be expected between
cone opsins and various outer segment proteins. The
dominance of cone opsins over other proteins explains why
it plays a determined role in proteasome stress and cone
degeneration in LCA.

The most promising treatment for LRAT or RPE65 LCA
is to use gene augmentation therapy with a normal copy of
LRAT (or RPE65) to restore the visual cycle. In 2017,
voretigene neparvovec (Luxturna) was approved by the
Food and Drug Administration for the treatment of RPE65-
LCA (LCA2), making it the first directly administered gene
therapy approved in the United States that targets a genetic
disease caused by mutations in a specific gene. However,
there were reports that photoreceptors continued to degen-
erate and vision benefit faded within 3 years despite initial
vision gain after successful adeno-associated virus (AAV)-
RPE65 therapy.11,15,16 In addition, there was no improve-
ment in foveal cone function despite AAV vectors having
1065
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been delivered to the fovea in most participants.16,51 These
studies highlight the importance of understanding the
mechanism of foveal cone degeneration and designing
adjunct therapy to slow photoreceptor degeneration in LCA
patients in future clinical gene therapy trials. The prominent
role of cone opsins in cone degeneration suggests that, in
addition to restoring the 11-cis-retinal supply, research
needs to focus on the folding, trafficking, and degradation
properties of cone opsins to design an effective prevention
and treatment strategy. This work demonstrated the impor-
tance of M-opsin degradation associated proteasome stress
in L/M cone (the dominant cone type in the fovea). This
study proposes to design drugs to help the folding and tar-
geting of M/L-opsins and to enhance proteasome activity to
slow down cone degeneration as an adjunct treatment for
gene therapy to achieve the best therapeutic efficacy for
LCA (Figure 6).
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