Skip to main content
. 2020 Apr 6;7(10):1902913. doi: 10.1002/advs.201902913

Table 4.

A comparison of magnetic hyperthermia metal nanomaterials for antimicrobial applications

Material Shape Size Concentration Magnetic field strength Micro‐organisms Antimicrobial efficacy a) Log reduction Treatment parameters Refs.
Bacteria
Fe2O3– Fe3O4 Sphere ≈9 nm 50 mg mL−1 12 kA m−1 S. aureus >99% 7

1.05 MHz,

2 min

[ 258 ]
Fe3O4 Sphere Not specified 60 mg mL−1 3 kA m−1 P. aeruginosa >99% ≈4.3

492 kHz,

8 min

[ 259 ]
Fe3O4 Sphere 100 nm NR

18 kA m−1

31 kA m−1

40 kA m−1

S. aureus

No significant difference from control

>99%

>99%

0

≈2

≈3

2.1 MHz,

3 min

[ 260 ]

Fe3O4

Fe3O4–ZnO

Porous nanocomposite spheres 200–800 nm

2 mg mL−1

2 mg mL−1

425 Oe

(≈34 kA m−1)

E. coli

94.3%

>99%

1.24

2.58

250 KHz,

1 h

[ 261 ]
GM3–Fe3O4 Sphere multianchored with glycoconjugate GM3 23.7 ± 1.55 nm 650 µg mL−1 31 kA m−1 E. coli K99 95% NR

207 KHz,

2 h

[ 255 ]
PAMAM–Fe3O4 Sphere 40 nm 5 mg mL−1 Not specified E. coli >99% NR

250 kHz,

10 min

[ 262 ]
Fungi
Fe3O4 Sphere 8.9 nm 2.5 mg mL−1 10 kA m−1 C. albicans

≈80% 40 min

≈90% 60 min

NR

531.1 kHz,

40 and 60 min

[ 263 ]
a)

Antimicrobial efficacy may be due to combinatorial effects with other antimicrobial mechanisms in some cases. NR: Not reported.