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BACKGROUND & AIMS: Although severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infects gastrointestinal
tissues, little is known about the roles of gut commensal mi-
crobes in susceptibility to and severity of infection. We inves-
tigated changes in fecal microbiomes of patients with SARS-
CoV-2 infection during hospitalization and associations with
severity and fecal shedding of virus. METHODS: We performed
shotgun metagenomic sequencing analyses of fecal samples
from 15 patients with Coronavirus Disease 2019 (COVID-19) in
Hong Kong, from February 5 through March 17, 2020. Fecal
samples were collected 2 or 3 times per week from time of
hospitalization until discharge; disease was categorized as mild
(no radiographic evidence of pneumonia), moderate (pneu-
monia was present), severe (respiratory rate �30/min, or
oxygen saturation �93% when breathing ambient air), or
critical (respiratory failure requiring mechanical ventilation,
shock, or organ failure requiring intensive care). We compared
microbiome data with those from 6 subjects with community-
acquired pneumonia and 15 healthy individuals (controls).
We assessed gut microbiome profiles in association with dis-
ease severity and changes in fecal shedding of SARS-CoV-2.
RESULTS: Patients with COVID-19 had significant alterations in
fecal microbiomes compared with controls, characterized by
enrichment of opportunistic pathogens and depletion of bene-
ficial commensals, at time of hospitalization and at all time-
points during hospitalization. Depleted symbionts and gut
dysbiosis persisted even after clearance of SARS-CoV-2
(determined from throat swabs) and resolution of respiratory
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WHAT YOU NEED TO KNOW

BACKGROUD AND CONTEXT

SARS-CoV-2 infects gastrointestinal tissues. The authors
investigated changes in fecal microbiomes of patients
with SARS-CoV-2 infection during hospitalization and
associations with severity and fecal shedding of virus.

NEW FINDINGS

Fecal microbiomes from patients with COVID-19 had
depletion of symbionts and enrichment of opportunistic
pathogens, which persisted after clearance of SARS-
CoV-2. Baseline microbiome composition associated
with COVID-19 severity. Multiple species from the
Bacteroidetes phylum correlated inversely with fecal
shedding of SARS-CoV-2.

LIMITATIONS

This was a pilot exploratory study of 15 patients with
COVID-19; further studies are needed of alterations in
intestinal microbiomes of these patients over time.

IMPACT

These findings indicate the prolonged effect of SARS-
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symptoms. The baseline abundance of Coprobacillus, Clos-
tridium ramosum, and Clostridium hathewayi correlated with
COVID-19 severity; there was an inverse correlation between
abundance of Faecalibacterium prausnitzii (an anti-
inflammatory bacterium) and disease severity. Over the
course of hospitalization, Bacteroides dorei, Bacteroides the-
taiotaomicron, Bacteroides massiliensis, and Bacteroides ovatus,
which downregulate expression of angiotensin-converting
enzyme 2 (ACE2) in murine gut, correlated inversely with
SARS-CoV-2 load in fecal samples from patients. CONCLU-
SIONS: In a pilot study of 15 patients with COVID-19, we found
persistent alterations in the fecal microbiome during the time
of hospitalization, compared with controls. Fecal microbiota
alterations were associated with fecal levels of SARS-CoV-2 and
COVID-19 severity. Strategies to alter the intestinal microbiota
might reduce disease severity.

Keywords: Coronavirus; Bacteria; Gut Microbiome; Fecal
Nucleic Acid.

oronavirus Disease 2019 (COVID-19) is a respiratory
CoV-2 infection on the gut microbiomes of patients with
COVID-19. Strategies to alter the gut microbiome might
be developed to manage gastrointestinal effects of the
virus in these patients.

*Authors share co-first authorship.

Abbreviations used in this paper: ACE2, angiotensin-converting enzyme 2;
COVID-19, coronavirus disease 2019; GI, gastrointestinal; RT-PCR,
reverse-transcriptase polymerase chain reaction; SARS-CoV-2, severe
acute respiratory syndrome coronavirus 2.
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Cillness caused by a novel coronavirus (severe acute
respiratory syndrome coronavirus 2 [SARS-CoV-2]) and
more than 3.3 million people worldwide have been infected
as of May 1, 2020. Although most cases of COVID-19 are
mild, disease can be severe, resulting in hospitalization,
respiratory failure, or death.1 Early reports from Wuhan
showed that 2% to 10% of patients with COVID-19 had
gastrointestinal (GI) symptoms, including diarrhea, but a
recent meta-analysis reported that up to 20% had GI
symptoms.2–5 Studies have detected SARS-CoV-2 virus in
anal swabs and stool samples in almost 50% of patients
with COVID-19, suggesting that the digestive tract might be
an extrapulmonary site for virus replication and activity.6,7

Moreover, fecal calprotectin was found to be elevated in
patients with COVID-19 with diarrhea,8 an indicator of in-
flammatory responses in the gut. SARS-CoV-2 uses the
angiotensin-converting enzyme 2 (ACE2) receptor to enter
the host, and this receptor is highly expressed in both the
respiratory and GI tracts.9–11 ACE2 is important in con-
trolling intestinal inflammation and gut microbial ecology.12

With trillions of diverse bacteria dwelling in our gut, the gut
microbiome has a myriad of effects on gene regulation of
immune response and metabolism. The commensal micro-
biota ecosystem in the gut is dynamic and can be regulated
by invading viruses to facilitate a stimulatory or suppressive
response.13 Studies have shown that respiratory viral in-
fections may be associated with altered gut microbiome,
which predispose patients to secondary bacterial in-
fections.14,15 Recent meta-transcriptome sequencing of
bronchoalveolar lavage fluid showed that the microbiota in
SARS-CoV-2–infected patients was dominated by pathogens
or oral and upper respiratory commensal bacteria.16 In
addition, comorbidities commonly associated with severe
COVID-19 are known to be associated with alterations in
bacteria taxa from the phyla Bacteroidetes and
Firmicutes,17–20 which were reported to regulate ACE2
expression in rodents.21 There is an urgent need to under-
stand host microbial perturbations that underlie SARS-CoV-
2 infection, which may affect response to infection and ef-
ficacy of various future immune interventions, such as
vaccines.22

In this pilot study, we hypothesize that the intestinal
microbiota is altered in SARS-CoV-2 infection and is asso-
ciated with susceptibility to severe disease. We prospec-
tively included 15 hospitalized patients with COVID-19
admitted between February 16, 2020, and March 2, 2020, in
Hong Kong, China, followed from hospital admission until
discharge. Through the application of deep shotgun meta-
genomics, we investigated longitudinal changes of the gut
microbiome in COVID-19.
Methods
Study Subject and Design

This prospective study involved 15 patients with COVID-19
hospitalized with laboratory-confirmed SARS-CoV-2 infection, 6
patients hospitalized with community-acquired pneumonia
(pneumonia controls), and 15 healthy individuals
(healthy controls) (Table 1, Supplementary Table 1, Figure 1).
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Table 1.Subject Characteristics

Variables COVID-19 cases Pneumonia controls Healthy controls

Number 15 6 15
Male 7 (47) 4 (67) 9 (60)
Median age, y (IQR) 55 (44, 67.5) 50 (44, 65) 48 (45, 48)
Comorbidities, n (%) 6 (40) 6 (100) 0 (0)
Recent exposure history, n (%)

Travel to cities of Hubei province 1 (7) 0 (0) 0 (0)
Contact with person with COVID-19 5 (33) 0 (0) 0 (0)
Have family cluster outbreak 4 (27) 0 (0) 0 (0)

Symptoms at admission, n (%)
Fever 9 (60) 4 (67)

Gastrointestinal symptoms
Diarrhea 1 (7) 2(33)

Respiratory symptoms
Cough 11 (73) 4 (67)
Sputum 5 (33) 3 (50)
Rhinorrhea 3 (20) 1 (17)
Shortness of breath 4 (27) 3 (50)

Blood result
Lymphocyte counts (x 109/L, normal range 1.1–2.9) 0.9 (0.7, 1.1) 1.1 (0.9, 1.2)

Antibiotic therapy at presentation, n (%) 7 (47) 6 (100)
Amoxycillin Clavulanate 4 (27) 3 (50)
Cephalosporin 5 (33) 6 (100)
Tetracycline 4 (27) 0 (0)

Antiviral therapy, n (%) 13 (87) 0 (0)
Lopinavir-Ritonavir 13 (87) 0 (0)
Ribavirin 7 (47) 0 (0)
Interferon beta-1b 1 (7) 0 (0)

Death, n (%) 0 (0) 0 (0)

NOTE. Values are expressed in number (percentage) and median (interquartile range).
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SARS-CoV-2 infection was confirmed by 2 consecutive reverse-
transcriptase polymerase chain reaction (RT-PCR) tests tar-
geting different regions of the RdRp gene performed by the
local hospital and Public Health Laboratory Service. Pneumonia
controls were patients admitted with community-acquired
pneumonia tested negative for SARS-CoV-2 PCR on 2 respira-
tory samples. Patients with COVID-19 and pneumonia controls
were admitted to the Prince of Wales Hospital or the United
Christian Hospital, Hong Kong. Healthy controls were in-
dividuals with no past medical history or history of antibiotic
intake in the past 3 months recruited via advertisement from
the general population and tested negative for SARS-CoV-2. All
subjects were recruited between February 5 and March 17,
2020. Severity of COVID-19 infection was categorized as (1)
mild, if there was no radiographic evidence of pneumonia; (2)
moderate, if pneumonia was present along with fever and
respiratory tract symptoms; (3) severe, if respiratory rate �30/
min, oxygen saturation �93% when breathing ambient air, or
PaO2 / FiO2 �300 mm Hg (1 mm Hg ¼ 0.133 kPa); or (4)
critical, if there was respiratory failure requiring mechanical
ventilation, shock, or organ failure requiring intensive care.23

This study was approved by the Joint Chinese University of
Hong Kong–New Territories East Cluster Clinical Research
Ethics Committees (2020.076). All patients provided informed
consent to participate in this study. Data including de-
mographics, laboratory results, imaging results, and medical
therapy were extracted from the electronic medical records in
the Hong Kong Hospital Authority clinical management system.
Fecal samples from patients with COVID-19 were collected
serially 2 to 3 times per week until discharge. This study was
conducted in accordance with the Declaration of Helsinki.
Detection of Fecal SARS-CoV-2 Viral Load
SARS-CoV-2 viral loads in stool were measured using real-

time RT-PCR assay. Viral RNA from stool samples was extrac-
ted using QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Ger-
many); 0.1g of stool was suspended in 1 mL of viral transport
medium (in 1:10 dilution) and centrifuged for 20 minutes at
4000g. A 140-mL aliquot of the filtrate was used as starting
material following the manufacturer’s protocol. SARS-CoV-2
RNA was quantified using real-time RT-PCR. The primer-
probe set N1 (2019-nCoV_N1-F: 5ʹ-GAC CCC AAA ATC AGC
GAA AT-3ʹ, 2019-nCoV_N1-R: 5ʹ-TCT GGT TAC TGC CAG TTG
AAT CTG-3ʹ, and 2019-nCoV_N1-P: 5ʹ-FAM-ACC CCG CAT TAC
GTT TGG ACC-BHQ1-3ʹ) designed by US Centers for Disease
Control and Prevention were purchased from Integrated DNA
Technologies (Coralville, IA). The 1-step real-time RT-PCR re-
action contained 10 mL of the extracted preparation, 4 mL
TaqMan Fast Virus 1-Step Master Mix (Applied Biosystems,
Foster City, CA) in a final reaction volume of 20 mL. The primer
and probe concentration were 0.5 mM and 0.125 mM, respec-
tively. The cycling conditions, 25�C for 2 minutes, 50�C for 15
minutes, 95�C for 2 minutes, followed by 45 cycles of 95�C for



Figure 1. Schematic diagram of stool sample collection, SARS-CoV-2 PCR test results and hospitalization duration in patients
with COVID-19 (n ¼ 15). “CoV” denotes patient with COVID-19. Stool specimens were serially collected for shotgun meta-
genomics sequencing and quantitative RT-PCR test for SARS-CoV-2 virus; “D0” denotes baseline date when the first stool
was collected after hospitalization; the following timepoints starting with “D” represent days since baseline stool collection.
“þve throat swab”: the first positive result for SARS-CoV-2 virus in nasopharyngeal/throat/pooled swabs; “-ve throat swab”:
the first negative result for SARS-CoV-2 virus in 2 consecutive negative nasopharyngeal/throat/pooled swab tests, on which
patient was then discharged.
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15 seconds, and 55�C for 30 seconds, were performed with the
StepOnePlus Real-Time PCR System (Applied Biosystems). The
cycle threshold values of real-time RT-PCR were converted into
viral RNA copies based on a standard curve prepared from 10-
fold serial dilutions of known copies of plasmid containing the
full N gene (2019-nCoV_N_Positive Control; Integrated DNA
Technologies). Samples were considered as negative if the cycle
threshold values exceeded 39.9 cycles. The detection limit of
real-time RT-PCR was 347 copies/mL.

Microbial Profiling of Fecal Samples With
Metagenomic Sequencing

An approximately 0.1 g fecal sample was prewashed with 1
mL double-distilled H2O and pelleted by centrifugation at
13,000g for 1 minute. The fecal DNA was subsequently
extracted from the pellet using Maxwell RSC PureFood GMO
and Authentication Kit (Promega, Madison, WI) following the
manufacturer’s instructions. Briefly, the fecal pellet was added
to 1 mL of CTAB buffer and vortexed for 30 seconds, then the
sample was heated at 95�C for 5 minutes. After that, the sam-
ples were vortexed thoroughly with beads at maximum speed
for 15 minutes. Then, 40 mL of proteinase K and 20 mL of RNase
A was added to the sample and the mixture was incubated at
70�C for 10 minutes. The supernatant was then obtained by
centrifuging at 13,000g for 5 minutes and was added into the
Maxwell RSC machine for DNA extraction. Extracted DNA was
subject to DNA libraries construction, completed through the
processes of end repairing, adding A to tails, purification and
PCR amplification, using Nextera DNA Flex Library Preparation
kit (Illumina, San Diego, CA). Libraries were subsequently
sequenced on our in-house sequencer Illumina NextSeq 550
(150 base pairs paired-end) at the Center for Microbiota
Research, The Chinese University of Hong Kong. Raw sequence
reads were filtered and quality-trimmed using Trimmomatic
v0.3624 as follows: (1) trimming low-quality base (quality score
<20); (2) removing reads shorter than 50 base pairs; (3)
removing sequencing adapters. Contaminating human reads
were filtering using Kneaddata (Reference database: GRCh38
p12) with default parameters. Profiling of bacterial commu-
nities was performed using MetaPhlAn2 (V2.9) by mapping
reads to clade-specific markers.25
Statistical Analysis
Relative abundance data from MetaPhlAn2 were imported

into R v3.5.1. Nonmetric multidimensional scaling analyses
were performed on all baseline fecal microbiomes between
groups, and serial fecal microbiomes in each COVID-19 case
during the disease course, based on Bray-Curtis dissimilarities
using vegan package (v2.5–3). Differential bacterial taxa be-
tween patients with COVID-19 (with or without antibiotics
treatment at inclusion), patients with community-acquired
pneumonia, and healthy controls were identified using



Table 2.Gut Microbiome Features in Patients With COVID-19

Gut microbiome
feature Taxon Group Coefficient P value Q value

COVID-19 (antibiotics naïve: abxL)
Specifically
enriched in
COVID-19(abx�)

p_Actinobacteriajc_Actinobacteriajo_Actinomycetalesjf_Actinomycetaceaejg_Actinomycesjs_Actinomyces_
viscosus

CO ID-19 (Abx�) 0.243 8.2E-08 6.4E-05

p_Firmicutesjc_Clostridiajo_Clostridialesjf_Clostridiaceaejg_Clostridiumjs_Clostridium_hathewayi CO ID-19 (Abx�) 1.130 4.8E-06 2.5E-03
p_Bacteroidetesjc_Bacteroidiajo_Bacteroidalesjf_Bacteroidaceaejg_Bacteroidesjs_Bacteroides_nordii CO ID-19 (Abx�) 0.164 2.3E-05 8.5E-03

Underrepresented
in both
COVID-19 and
pneumonia

p_Firmicutesjc_Clostridiajo_Clostridialesjf_Eubacteriaceaejg_Eubacteriumjs_Eubacterium_ventriosum CO ID-19 (Abx�) -0.280 1.2E-04 2.5E-02

COVID-19 (antibiotics exposed: abxD)
Underrepresented
in COVID-
19(abxþ)

p_Firmicutesjc_Clostridiajo_Clostridialesjf_Lachnospiraceaejg_Doreajs_Dorea_formicigenerans CO ID-19 (Abxþ) -0.812 2.6E-05 0.00853
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Lachnospiraceaejg_Blautia CO ID-19 (Abxþ) -0.441 6.1E-05 0.01491
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Ruminococcaceaejg_Faecalibacterium CO ID-19 (Abxþ) -0.537 3.2E-05 0.00924
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Ruminococcaceaejg_Faecalibacteriumjs_Faecalibacterium_prausnitzii CO ID-19 (Abxþ) -0.537 3.2E-05 0.00924
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Eubacteriaceae CO ID-19 (Abxþ) -0.289 4.6E-05 0.01236
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Eubacteriaceaejg_Eubacterium CO ID-19 (Abxþ) -0.289 4.6E-05 0.01236
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Eubacteriaceaejg_Eubacteriumjs_Eubacterium_rectale CO ID-19 (Abxþ) -0.903 1.7E-04 0.03316
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Ruminococcaceae CO ID-19 (Abxþ) -0.300 2.0E-04 0.03709
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Lachnospiraceaejg_Roseburia CO ID-19 (Abxþ) -0.598 2.3E-04 0.04018
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Lachnospiraceaejg_Coprococcus CO ID-19 (Abxþ) -0.447 1.6E-04 0.03239
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Lachnospiraceaejg_Blautiajs_Ruminococcus_obeum CO ID-19 (Abxþ) -0.623 4.3E-06 0.00243
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Lachnospiraceaejg_Lachnospiraceae_nonamejs_Lachnospiraceae_

bacterium_5_1_63FAA
CO ID-19 (Abxþ) -0.341 2.5E-05 0.00853

Underrepresented
in both
COVID-19 and
pneumonia

p_Firmicutesjc_Clostridiajo_Clostridialesjf_Eubacteriaceaejg_Eubacteriumjs_Eubacterium_ventriosum CO ID-19 (Abxþ) -0.307 8.6E-06 0.00376

Pneumonia patients
Underrepresented
in pneumonia

p_Firmicutesjc_Bacillijo_Lactobacillalesjf_Enterococcaceaejg_Enterococcusjs_Enterococcus_faecium neumonia 0.228 5.0E-05 0.01261
p_Firmicutesjc_Erysipelotrichiajo_Erysipelotrichalesjf_Erysipelotrichaceaejg_Erysipelotrichaceae_nonamejs_

Clostridium_ramosum
neumonia 0.195 3.1E-06 0.00190

p_Firmicutesjc_Erysipelotrichiajo_Erysipelotrichalesjf_Erysipelotrichaceaejg_Coprobacillus neumonia 0.402 5.2E-06 0.00257
p_Firmicutesjc_Clostridiajo_Clostridialesjf_Lachnospiraceaejg_Lachnospiraceae_nonamejs_Lachnospiraceae_

bacterium_5_1_63FAA
neumonia -0.348 7.6E-05 0.01752

Underrepresented
in both
COVID-19 and
pneumonia

p_Firmicutesjc_Clostridiajo_Clostridialesjf_Eubacteriaceaejg_Eubacteriumjs_Eubacterium_ventriosum neumonia -0.256 3.5E-04 0.03539
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Figure 2.Gut microbiome alterations in patients with COVID-19 and longitudinal changes over the disease course. (A) The
effect size of subject metadata in gut microbiome composition, as determined by PERMANOVA test. **P < .01; *P < .05. (B)
Microbiome community alterations in COVID-19, viewed by NMDS (nonmetric multidimensional scaling) plot based upon Bray-
Curtis dissimilarities. The microbiomes were compared among healthy controls (n ¼ 15), COVID-19 (abx�, n ¼ 7), COVID-19
(abxþ, n ¼ 8), and pneumonia controls (n ¼ 6). (C) Dissimilarity of the gut microbiome of patients with COVID-19 to that of
healthy controls during the disease course. The microbiome dissimilarity was calculated as Bray-Curtis dissimilarity. The gray
area denotes the range of Bray-Curtis dissimilarities among gut microbiomes of healthy controls, and the solid black line
indicates the median dissimilarity among healthy individuals. “CoV” denotes patient with COVID-19. “D0” denotes baseline
date when the first stool was collected after hospitalization; the following timepoints starting with “D” represent days since
baseline stool collection.
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Multivariate Association with Linear Models (MaAsLin).26

Spearman correlation analyses were conducted to associate
baseline microbiome profiles of 7 antibiotics-naïve patients at
baseline with COVID-19 severity, and to associate longitudinal
fecal SARS-CoV-2 loads with timepoint-matched bacterial pro-
files across all 15 patients with COVID-19, while adjusting for
confounding factors.

Data Availability
Metagenomics Sequencing dataset was deposited to the

National Center for Biotechnology Information Sequence Read
Archive under BioProject accession number PRJNA624223.
Results
Fecal Microbiome Alterations in COVID-19

Among the 15 patients with COVID-19, 7 were antibiotics-
naïve (COVID-19[abx�]) and 8 received empirical antibiotics
(COVID-19[abxþ]) at baseline (defined as date of thefirst stool
collection after hospitalization). The median ages of patients
with COVID-19, pneumonia controls, and healthy controls
were 55, 50, and 48 years, respectively; 40% and 100% of
patients with COVID-19 and pneumonia controls, respectively,
had underlying comorbidities (Table 1, Supplementary
Table 1). All patients with COVID-19 presented with respira-
tory symptoms but only 1 had diarrhea at presentation. None
of the patients developed GI symptoms during hospitalization.
Median duration of hospitalization was 21± 2.4 days (mean±
SE) in COVID-19 and pneumonia cases.
To understand alterations of the gut microbiome that
underlie SARS-CoV-2 infection, we compared baseline fecal
microbiome of patients with COVID-19 with healthy con-
trols and pneumonia controls adjusting for age, gender,
antibiotic use, and comorbidities. Antibiotic-naïve patients
with COVID-19 were enriched in opportunistic pathogens
known to cause bacteremia,27,28 including Clostridium
hathewayi, Actinomyces viscosus, and Bacteroides nordii
compared with controls (Table 2). COVID-19(abxþ) patients
demonstrated a further depletion of multiple bacterial
species, which are symbionts beneficial to host immunity
including Faecalibacterium prausnitzii, Lachnospiraceae
bacterium 5_1_63FAA, Eubacterium rectale, Ruminococcus
obeum, and Dorea formicigenerans compared with COVID-
19(abx�) patients (Table 2). Regardless of antibiotic use,
underrepresented bacterial species in patients with COVID-
19 were consistently absent or present at very low abun-
dance during the disease course, even when SARS-CoV-2
virus was cleared from the nasopharyngeal swab and
stool, and respiratory symptoms had resolved
(Supplementary Figures 1–6).

Among all host factors, COVID-19 infection showed the
largest effect size in affecting the gut microbiome (PER-
MANOVA test, R2 ¼ 0.066, P ¼ .002, Figure 2A), followed by
hyperlipidemia, pneumonia, and antibiotics, whereas age
and gender showed no significant effects on gut microbiome
alterations (Figure 2A). At the whole microbiome commu-
nity level, healthy subjects’ fecal microbiome clustered
together, whereas that of COVID-19(abx�) patients



Table 3.Correlation of Gut Bacteria With COVID-19 Severity

Correlation Bacteria taxa

Correlation
coefficient

Rho P value

Positive
correlation with
COVID-19 severity

p__Firmicutesjc__Erysipelotrichiajo__Erysipelotrichalesjf__Erysipelotrichaceaejg__Coprobacillus 0.92 .003
p__Firmicutesjc__Erysipelotrichiajo__Erysipelotrichalesjf__Erysipelotrichaceaejg__Erysipelotrichaceae_nonamejs__C stridium_ramosum 0.92 .003
p__Firmicutesjc__Clostridiajo__Clostridialesjf__Clostridiaceaejg__Clostridiumjs__Clostridium_hathewayi 0.90 .005
p__Firmicutesjc__Erysipelotrichia 0.90 .006
p__Firmicutesjc__Erysipelotrichiajo__Erysipelotrichales 0.90 .006
p__Firmicutesjc__Erysipelotrichiajo__Erysipelotrichalesjf__Erysipelotrichaceae 0.90 .006
p__Firmicutesjc__Erysipelotrichiajo__Erysipelotrichalesjf__Erysipelotrichaceaejg__Erysipelotrichaceae_noname 0.90 .006
p__Actinobacteriajc__Actinobacteriajo__Actinomycetalesjf__Actinomycetaceaejg__Actinomycesjs__Actinomyces_od ntolyticus 0.87 .011
p__Firmicutesjc__Erysipelotrichiajo__Erysipelotrichalesjf__Erysipelotrichaceaejg__Erysipelotrichaceae_nonamejs__E sipelotrichaceae_

bacterium_6_1_45
0.87 .011

p__Proteobacteriajc__Gammaproteobacteriajo__Enterobacterialesjf__Enterobacteriaceaejg__Enterobacter 0.87 .011
p__Proteobacteriajc__Gammaproteobacteriajo__Enterobacterialesjf__Enterobacteriaceaejg__Enterobacterjs__Entero acter_cloacae 0.87 .011
p__Bacteroidetesjc__Bacteroidiajo__Bacteroidalesjf__Porphyromonadaceaejg__Parabacteroidesjs__Parabacteroide unclassified 0.81 .029
p__Bacteroidetesjc__Bacteroidiajo__Bacteroidalesjf__Rikenellaceaejg__Alistipesjs__Alistipes_indistinctus 0.81 .029

Negative
correlation with
COVID-19 severity

p__Actinobacteriajc__Actinobacteriajo__Bifidobacterialesjf__Bifidobacteriaceaejg__Bifidobacteriumjs__Bifidobacteriu _pseudocatenulatum �0.81 .026
p__Firmicutesjc__Clostridiajo__Clostridialesjf__Lachnospiraceaejg__Dorea �0.81 .026
p__Firmicutesjc__Clostridiajo__Clostridialesjf__Lachnospiraceaejg__Doreajs__Dorea_longicatena �0.81 .026
p__Bacteroidetesjc__Bacteroidiajo__Bacteroidalesjf__Bacteroidaceaejg__Bacteroidesjs__Bacteroides_ovatus �0.84 .019
p__Firmicutesjc__Clostridiajo__Clostridialesjf__Lachnospiraceaejg__Anaerostipesjs__Anaerostipes_hadrus �0.87 .011
p__Firmicutesjc__Clostridiajo__Clostridialesjf__Lachnospiraceaejg__Lachnospiraceae_nonamejs__Lachnospiraceae_ acterium_5_1_63FAA �0.87 .011
p__Firmicutesjc__Clostridiajo__Clostridialesjf__Lachnospiraceaejg__Roseburia �0.87 .011
p__Firmicutesjc__Clostridiajo__Clostridialesjf__Ruminococcaceaejg__Faecalibacterium �0.87 .011
p__Firmicutesjc__Clostridiajo__Clostridialesjf__Ruminococcaceaejg__Faecalibacteriumjs__Faecalibacterium_prausn ii �0.87 .011
p__Bacteroidetesjc__Bacteroidiajo__Bacteroidalesjf__Rikenellaceaejg__Alistipesjs__Alistipes_onderdonkii �0.90 .005
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Figure 3. Correlation between gut bacteria and fecal SARS-CoV-2 shedding in patients with COVID-19 over the disease
course. (A) Longitudinal changes in fecal viral loads of patients with COVID-19. (B) Bacteria significantly associated with fecal
viral load during disease course, as determined by Spearman correlation test.
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clustered separately (PERMANOVA test, P ¼ .001) and were
more heterogeneous (Figure 2B). Antibiotic treatment in
patients with COVID-19 was associated with a more het-
erogeneous microbiome configuration and accompanied by
further shift of the gut microbiome away from a healthy
microbiome (Figure 2B).

We next explored whether recovery from SAR-CoV-2
infection was associated with restoration of gut micro-
biome to a community level similar to that of healthy in-
dividuals. Overall, the gut microbiome of all patients with
COVID-19 remained stable but were markedly disparate
from that of healthy controls, both during the disease course
and after clearance of SARS-CoV-2 (Figure 2C). Although the
microbiome of 5 patients with COVID-19 (CoV1, 4, 7, 11, 15)
showed closer proximity to healthy microbiomes over time,
patients CoV3, 5, 8, 10, and 12 became more disparate from
healthy microbiomes over time (Supplementary Figure 7).
At the last follow-up, the gut microbiome of these 10 pa-
tients remained substantially different from that of healthy
controls, despite clearance of SARS-CoV-2 infection as
defined by negative SARS-CoV-2 tests on nasopharyngeal
swab or deep throat saliva (Figure 2C, Supplementary
Figure7). Of note, patient CoV4 was discharged on day 5
but his gut microbiome on day 22 was persistently different
from that of healthy individuals.

Baseline Gut Microbiome and Disease Severity of
COVID-19

To understand whether baseline gut microbiome affects
the severity of COVID-19, we assessed association between
baseline fecal microbiome and COVID-19 severity (mild,
moderate, severe, or critical) in 7 antibiotic-naïve COVID-19
cases. A total of 23 bacterial taxa were found to be signifi-
cantly associated with COVID-19 disease severity, most of
which (15 of 23) were from the Firmicutes phylum
(Table 3). Among them, 8 and 7 Firmicutes members,
respectively, showed positive and negative correlation with
disease severity. These data are in line with a report
showing that different Firmicutes bacteria have diverse
roles in upregulating or downregulating ACE2 expression in
the murine gut.21 Our finding of the association of gut Fir-
micutes bacteria with COVID-19 severity highlights the po-
tential importance of bacterial membership in modulating
human response to SARS-CoV-2 infection.

Three bacterial members from the Firmicutes phylum,
the genus Coprobacillus, the species Clostridium ramosum
and C. hathewayi, were the top bacteria positively associated
with COVID-19 disease severity (Spearman correlation co-
efficient Rho >0.9, P < .01, Table 3). Both C. ramosum and
C. hathewayi have been associated with human infection and
bacteremia.27,29 Importantly, Coprobacillus bacterium has
been shown to strongly upregulate colonic expression of
ACE2 in the murine gut.21 In contrast, 2 beneficial species,
Alistipes onderdonkii and Faecalibacterium prausnitzii, were
top bacterial species to show a negative correlation with
COVID-19 severity (Table 3). Alistipes species are indole
positive, involved in the serotonin precursor tryptophan
metabolism and in maintaining gut immune homeosta-
sis,30,31 whereas F. prausnitzii has anti-inflammatory prop-
erties.32 Although we cannot assign a causative or
preventive role of these bacteria in disease pathogenesis or
severity, our data underscore a potential role for bacteria in
determining response to SARS-CoV-2 infection and intensity
of the infection in the host.

Fecal SARS-CoV-2 Virus Load and Gut Bacterial
Abundance

Eleven of the 15 patients had SARS-CoV-2 nucleic acid
detected in feces at hospitalization (median 3.86 � 103

copies per mL inoculum, as determined by RT-PCR) and 5 of
them cleared the SARS-CoV-2 virus over time (Figure 3A).
We investigated whether gut bacteria were associated with
fecal SARS-CoV-2 load over the course of hospitalization. A
total of 14 bacterial species were identified to be



Figure 4. Schematic summary of the gut microbiome alterations in COVID-19. In healthy individuals, Eubacterium, Faecali-
bacterium prausnitzii, Roseburia, and Lachnospiraceae taxa are prevalent in their gut microbiome. However, the gut micro-
biome of patients with COVID-19 is characterized by enrichment of opportunistic pathogens and depletion of commensals in
the gut. Such gut dysbiosis persists during the COVID-19 disease course, even after clearance/recovery of SARS-CoV-2
infection. Baseline fecal abundance of the bacteria Coprobacillus, Clostridium ramosum, and Clostridium hathewayi
showed significant correlation with COVID-19 severity, whereas an anti-inflammatory bacterium Faecalibacterium prausnitzii
showed an inverse correlation. Four Bacteroidetes members, including Bacteroides dorei, Bacteroides thetaiotaomicron,
Bacteroides massiliensis, and Bacteroides ovatus, known to downregulate ACE2 expression in the murine gut, showed sig-
nificant inverse correlation with fecal SARS-CoV-2 viral load in patients with COVID-19.
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across all fecal samples (Figure 3B). Among them, 6 spe-
cies were from the Bacteroidetes phylum. Four Bacteroides
species, including Bacteroides dorei, Bacteroides thetaiotao-
micron, Bacteroides massiliensis, and Bacteroides ovatus,
showed significant inverse correlation with fecal SARS-CoV-
2 load (all Spearman correlation coefficient Rho <�0.2, P <
.05, Figure 3B). Interestingly, all these 4 species were
associated with downregulation of ACE2 expression in the
murine colon.21 Taken together, these data suggest that
Bacteroides species may have a potential protective role in
combating SARS-CoV-2 infection by hampering host entry
through ACE2. In contrast, Erysipelotrichaceae bacterium
2_2_44A, a Firmicutes species, showed the strongest positive
correlation with fecal SARS-CoV-2 load (Spearman correla-
tion coefficient Rho ¼ 0.89, P ¼ .006, Figure 3B). Erysipe-
lotrichaceae has been implicated in inflammation-related
disorders of the GI tract.33 Considering the strong associa-
tion of baseline abundance of Erysipelotrichaceae with
COVID-19 severity (Spearman correlation Rho ¼ 0.89, P ¼
.006, Table 3), gut Erysipelotrichaceae may play a role in
augmenting SARS-CoV-2 infection in the host gut.
Discussion
We showed for the first time that the gut microbiome

was disturbed in patients with COVID-19. The alterations,
observed even in patients with COVID-19 naïve to antibiotic
therapy, were characterized by enrichment of opportunistic
pathogens and depletion of beneficial commensals
(Figure 4). Loss of salutary species in COVID-19 persisted in
most patients despite clearance of SARS-CoV-2 virus, sug-
gesting that exposure to SARS-CoV-2 infection and/or hos-
pitalization may be associated with a more long-lasting
detrimental effect to the gut microbiome.

Studies have shown that respiratory viral infections can
alter the gut microbiome, such as pulmonary infections by
influenza and respiratory syncytial virus.15,34–36 Viral in-
fections predispose patients to secondary bacterial in-
fections, which often have a more severe clinical course.14,37

We found that a number of pathogens and opportunistic
pathogens were enriched in the gut microbiome of patients
with COVID-19, including C. hathewayi, B. nordii, A. viscosus,
and a higher baseline abundance of C. hathewayi correlated
with more severe COVID-19. Most of these bacteria are
bacteremia-associated bacteria, indicating susceptibility for
severe disease course due to potential secondary bacterial
infection. We also identified an opportunistic pathogen of
the oral cavity and upper respiratory tract, A. viscosus, in the
gut of patients with COVID-19.38 Its presence suggests the
passage or transmission of extra-intestinal microbes into the
gut.

Recently, a study provided direct evidence that SARS-
CoV-2 can bind to human ACE2 as host entry point.9 ACE2
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is highly expressed in the intestine especially in colonocytes
of healthy subjects and in patients with inflammatory bowel
disease,10 and can regulate amino acid transport, microbial
ecology, and inflammation in the gut.12 Interestingly, Bac-
teroidetes species have been shown to downregulate ACE2
expression in the murine colon, whereas Firmicutes species
showed variable effects in modulating ACE2 expression.21

We found that baseline abundance of Bacteroidetes spe-
cies, A. onderdonkii and B. ovatus, negatively correlated with
COVID-19 severity, and 4 species from the genus Bacter-
oides of the phylum Bacteroidetes (B. dorei,
B. thetaiotaomicron, B. massiliensis, and B. ovatus) showed
inverse correlation with fecal viral load of SARS-CoV-2
(Figure 4). Among them, B. dorei has been reported to
suppress colonic ACE2 expression21 and to calibrate host
immune response.39,40 The highest SARS-CoV-2 mortality
and morbidity have been reported in older patients and in
those with underlying chronic diseases that are associated
with inflammation, such as hypertension, obesity, diabetes
mellitus, and coronary artery disease.41–43 Interestingly,
these subjects were also reported to have a lower abun-
dance of Bacteroides species than healthy individuals.17–20

These findings altogether suggest that an individual’s gut
microbiome configuration may affect the subject’s suscep-
tibility and response to SARS-CoV-2 infection.

Cytokine profile associated with hyperinflammation
state in severe COVID-19 has been characterized by
increased interferon-g inducible protein and other cyto-
kines. Given limited proven treatment for COVID-19, un-
derstanding host cytokine pathways and microbiota
interactions with cytokine responses in SARS-CoV-2 infec-
tion is essential in developing new treatment approaches.44

One major limitation of this exploratory study is the
modest sample size. Although assigning a causative rela-
tionship between COVID-19 and gut dysbiosis requires
larger validation studies, this pilot study presents the first
data to examine the influence of SARS-CoV2 infection on gut
microbiome composition and dynamics. We attempted to
adjust for factors, such as age, gender, therapy, and
comorbidities, which may explain the observed variance in
the data. As we included only hospitalized patients with
moderate/severe disease, such findings may not be gener-
alizable to all COVID-19 cases, including those with mild or
asymptomatic COVID-19. Stool collected after hospitaliza-
tion for microbiome analysis does not represent the bona
fide baseline microbiome at COVID-19 onset, nor the base-
line microbiome before disease onset. Further studies
should prospectively include asymptomatic subjects, and if
infected with SARS-CoV-2, followed up at disease onset,
during disease course, and long term after discovery to
delineate the role of microbiome changes in SARS-CoV-2
infection and postinfection recovery.

The use of empirical antibiotics (which was common in
the initial outbreak of SARS-CoV-2 when secondary bacterial
infection was a concern) led to further loss of salutary
symbionts and exacerbation of gut dysbiosis in patients with
COVID-19, and our data support avoidance of unnecessary
antibiotics use in the treatment of viral pneumonitis, as
antibiotics can eliminate beneficial bacteria and weaken the
gut barrier.45 In addition, antibiotics-driven gut microbiome
perturbation can alter immunity to vaccines in humans.46

Improving efficacy of future immune interventions such as
vaccines, through modulating the gut microbiome, in
combating COVID-19 should be considered. One approach
for promoting a healthy microbiome may include measures
to enhance intestinal butyrate production through the pro-
motion of microbial interactions by dietary changes, and
reduction of proinflammatory states.

In conclusion, our study provides evidence of prolonged
gut microbiome dysbiosis in COVID-19 and its association
with fecal SARS-CoV-2 virus shedding and disease severity.
These data highlight a new concept that novel and targeted
approach of modulation of the gut microbiota may represent
a therapeutic avenue for COVID-19 and its comorbidities.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2020.05.048.
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Supplementary Figure 1. Longitudinal changes of fecal abundance of Eubacterium ventriosum in patients with COVID-19
over the disease course. Bacterial species abundance is expressed as fractional abundance (%). “D0” denotes baseline date
when the first stool was collected after hospitalization; the following timepoints starting with “D” represent days since baseline
stool collection.
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Supplementary Figure 2. Longitudinal changes of fecal abundance of Dorea formicigenerans in patients with COVID-19 over
the disease course. Bacterial species abundance is expressed as fractional abundance (%). “D0” denotes baseline date when
the first stool was collected after hospitalization; the following timepoints starting with “D” represent days since baseline stool
collection.
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Supplementary Figure 3. Longitudinal changes of fecal abundance of Faecalibacterium prausnitzii in patients with COVID-19
over the disease course. Bacterial species abundance is expressed as fractional abundance (%). “D0” denotes baseline date
when the first stool was collected after hospitalization; the following timepoints starting with “D” represent days since baseline
stool collection.
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Supplementary Figure 4. Longitudinal changes of fecal abundance of Eubacterium rectale in patients with COVID-19 over the
disease course. Bacterial species abundance is expressed as fractional abundance (%). “D0” denotes baseline date when the
first stool was collected after hospitalization; the following timepoints starting with “D” represent days since baseline stool
collection.
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Supplementary Figure 5. Longitudinal changes of fecal abundance of Ruminococcus obeum in patients with COVID-19 over
the disease course. Bacterial species abundance is expressed as fractional abundance (%). “D0” denotes baseline date when
the first stool was collected after hospitalization; the following timepoints starting with “D” represent days since baseline stool
collection.
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Supplementary Figure 6. Longitudinal changes of fecal abundance of Lachnospiraceae bacterium_5_1_63FAA in patients
with COVID-19 over the disease course. Bacterial species abundance is expressed as fractional abundance (%). “D0” denotes
baseline date when the first stool was collected after hospitalization; the following timepoints starting with “D” represent days
since baseline stool collection.
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Supplementary Figure 7. Longitudinal changes of the fecal microbiome in patients with COVID-19, at the community level,
during the disease course. “CoV” denotes patient with COVID-19. “D0” denotes baseline date when the first stool was
collected after hospitalization; the following timepoints starting with “D” represent days since baseline stool collection.
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Supplementary Table 1.Detailed Clinical Characteristics of Patients With COVID-19 and Patients With Pneumonia

Case Sex Age Comorbidities
Recent exposure

history

Symptoms at admission
Admitted
to ICU Chest radiograph findings

COVID-19
severityFever and respiratory GI

CoV1 F 65 Hypertension, Chronic hepatitis B
carrier

No Fever, cough, sputum Nil Yes Bilateral LZ haziness Critical

CoV2 F 55 None Contact with person with
COVID-19

Fever, runny nose Nil No Bilateral LZ haziness Moderate

CoV3 M 42 None Travel to Hubei province Fever, cough Nil Yes RLZ haziness,
RLL collapse

Critical

CoV4 M 70 Hyperlipidemia, duodenal ulcer No Cough, shortness of breath Nil No Bilateral lung haziness Severe
CoV5 M 58 None No Fever, cough Diarrhea No Slight RLZ haziness Moderate
CoV6 M 71 None No Fever, cough, shortness of

breath
Nil No Bilateral lung infiltration Severe

CoV7 M 48 Diabetes mellitus, hypertension,
hyperlipidemia

No Fever, cough Nil No LLZ haziness Moderate

CoV8 F 38 None No Fever, cough, sputum,
runny nose

Nil No Bilateral LZ infiltrates Moderate

CoV9 M 33 None Contact with person with
COVID-19

Fever, cough Nil No Bilateral LZ haziness Moderate

CoV10 F 70 Obesity, hypertension No Cough Nil No Bilateral LZ haziness Moderate
CoV11 M 62 Diabetes, hyperlipidemia, left

subclavian artery occlusion
No Fever, cough, sputum,

shortness of breath
Nil No Bilateral lung infiltrates Severe

CoV12 F 71 Hypertension, renal impairment,
hyperlipidemia

Contact with person with
COVID-19

Cough Nil No Bilateral lung infiltrates Moderate

CoV13 F 47 None Contact with person with
COVID-19

Cough Nil No Bilateral lung infiltrates Moderate

CoV14 F 22 None Contact with person with
COVID-19

Fever, runny nose Nil No Bilateral lung infiltrates Moderate

CoV15 F 46 None Contact with person with
COVID-19

Cough, shortness of breath Nil No Clear Mild

P1 F 69 Hypertension, diabetes mellitus,
Tricuspid regurgitation

No Fever Nil No LMZ pneumonia N/A

P2 M 43 Nonalcoholic Fatty liver disease No Cough Nil No Right sided infiltrates N/A
P3 F 92 Diabetes, Hypertension,

pulmonary fibrosis,
Paroxysmal atrial fibrillation,
Acute coronary syndrome

No Cough, sputum, shortness
of breath

Nil No Bilateral lung infiltrate N/A

P4 M 47 Diabetes mellitus No Fever, sputum Nil No Left effusion, LMZ infiltrates N/A
P5 M 36 Ischemic priapism No Fever, cough, sputum,

shortness of breath
Diarrhea No N/A N/A

P6 M 52 Epilepsy, Hepatitis No Fever, cough, runny nose,
shortness of breath

Diarrhea No N/A N/A

LLZ, left lower zone; LMZ, left middle zone; N/A, not applicable.
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