
Original Paper

Privacy-Preserving Deep Learning for the Detection of Protected
Health Information in Real-World Data: Comparative Evaluation

Sven Festag1,2; Cord Spreckelsen1,2

1Department of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
2Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany

Corresponding Author:
Cord Spreckelsen
Institute of Medical Statistics, Computer and Data Sciences
Jena University Hospital
Bachstraße 18
Jena,
Germany
Phone: 49 3641 9 398360
Fax: 49 3641 9 396952
Email: Cord.Spreckelsen@med.uni-jena.de

Abstract

Background: Collaborative privacy-preserving training methods allow for the integration of locally stored private data sets
into machine learning approaches while ensuring confidentiality and nondisclosure.

Objective: In this work we assess the performance of a state-of-the-art neural network approach for the detection of protected
health information in texts trained in a collaborative privacy-preserving way.

Methods: The training adopts distributed selective stochastic gradient descent (ie, it works by exchanging local learning results
achieved on private data sets). Five networks were trained on separated real-world clinical data sets by using the privacy-protecting
protocol. In total, the data sets contain 1304 real longitudinal patient records for 296 patients.

Results: These networks reached a mean F1 value of 0.955. The gold standard centralized training that is based on the union
of all sets and does not take data security into consideration reaches a final value of 0.962.

Conclusions: Using real-world clinical data, our study shows that detection of protected health information can be secured by
collaborative privacy-preserving training. In general, the approach shows the feasibility of deep learning on distributed and
confidential clinical data while ensuring data protection.

(JMIR Form Res 2020;4(5):e14064) doi: 10.2196/14064

KEYWORDS

privacy-preserving protocols; neural networks; health informatics; distributed machine learning

Introduction

Background
Data protection is a major issue in health care, but clinical
research and medical care also rely on high accessibility of
patient data. The problem is aggravated in the context of
data-driven medicine, where the amount of data needed exceeds
the capacity of manual data curation and manual deidentification
that would be necessary to protect patient privacy. In the United
States, the Health Insurance Portability and Accountability Act
of 1996 obliges data curators to remove protected health
information (PHI) from medical records before they are shared
with researchers. The same holds true for many other countries

(see, for instance, §6 GDSG NW [Germany], SI 1438/2002 reg.
7 [England and Wales]). Computer-based data deidentification
primarily needs to solve the task of detecting personal
information like names, phone numbers, locations, etc.
Deidentification systems must meet two opposed interests. To
ensure privacy, they must work with high sensitivity (ie, avoid
overlooking personal data). Additionally, these systems need
to maintain high specificity (ie, avoid removing data
unnecessarily). Otherwise, deidentified texts would contain
little valuable information compared with the original inputs.

Many approaches to finding protected personal information in
health records are based on supervised machine learning [1-3].
Such systems have proven to be very efficient for the

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 1https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:Cord.Spreckelsen@med.uni-jena.de
http://dx.doi.org/10.2196/14064
http://www.w3.org/Style/XSL
http://www.renderx.com/

deidentification task. One presented by Dernoncourt et al [3]
even outperformed other state-of-the-art approaches in 2016.
The general shortcoming of such approaches in this context is
that they depend heavily on labeled training data. These training
data usually consist of original health records containing
personal information. Thus, these data cannot be shared among
researchers for distributed training due to the above-mentioned
problem. Consequently, there are many small training data sets
at medical research institutes which can only be used locally.
An additional challenge arises from the fact that even trained
neural networks (NNs) can be abused to recover PHI that has
been used for training [4,5]. Hence, a trained network for
deidentification cannot be shared with other researchers or the
public without causing a threat to patient privacy.

Related Work
Several systems for the deidentification of PHI have been
presented in the last 20 years. Meystre et al [6] state that most
of the systems introduced before 2010 are rule-based or rely on
pattern matching. The underlying patterns and rules are typically
hand-crafted. Thus, domain experts are needed for the costly
generation of such systems resulting in limited generalizability
[6]. More recent approaches are mainly based on machine
learning or, more precisely, conditional random fields and
support vector machines [7]. For these systems, only features
of the input data must be specified by hand. Several such tools,
however, use additional rules for identifying certain classes of
PHI or postprocessing [1,2,8]. The method proposed by
Dernoncourt et al [3] is one of the first that solely makes use of
NNs and thus is independent of manual feature selection. Liu
et al [9] compare several rule-based and NN-based approaches
to the deidentification task. Moreover, they introduce an
ensemble method that combines these systems.

Collaborative privacy-preserving machine learning has already
been studied by several authors. Many systems introduced in
this field homomorphically encrypt local data and share the
ciphered information for centralized training [10-12]. Thus,
these systems need an authority trusted by all parties to start
encrypted communication. Another issue of cryptographic
centralized training is the cost for encryption and decryption
which can become untenable for high-dimensional data in
practical applications [10]. By using a decentralized training
which obviates the need for sharing individually identifiable
health information, these problems vanish. Chang et al [13]
experimented with several nonparallel distributed training
heuristics. In their proposed framework, local workers conceal
their training data but share full sets of learned network
parameters. According to Shokri and Shmatikov [4], this transfer
of local parameters might still lead to indirect leakage of
personal information. Moreover, Fredrikson et al [5] investigated
model inversion attacks that infer sensitive information included
in the training data from a given trained model. The authors
distinguish between black- versus white-box attacks: black-box
attacks exploit prediction/classification queries via functional
access to a model without knowing its internal details, while
white-box attacks additionally use details of the model (eg,
network topology and weight matrices). Fredrikson et al [5]
demonstrated the feasibility of model inversion attacks
especially in the case of white-box approaches using real-world

data and publicly available trained classifiers. Their experiments
included NNs used for facial recognition. A model inversion
attack was able to reconstruct faces of the training set after
entering the corresponding names, which can well be considered
a relevant violation of privacy.

Hence, we decided to use the collaborative and parallel training
method introduced by Shokri and Shmatikov [4]. It reduces the
risk of indirect leakage and allows the cooperation of institutes
with different computational capacities. For this training scheme,
no encryption or any other data protection is needed except the
local data and computations must be secured. Like most other
collaborative privacy-preserving learning approaches, it only
protects from honest-but-curious adversaries. That means
malicious participants can hamper the learning or even render
it unusable, but they cannot gain information not meant for
them. A similar training approach was used by Liu et al [14].
In contrast to our study, they trained feedforward NNs and
investigated the effect of using mobile devices to conduct the
local training.

Aim of the Study
Our study is aimed at showing the feasibility of a collaborative
privacy-preserving learning approach for deep NNs trained to
detect personal information in real-world clinical data. We
adopted the network topology of the mentioned deidentification
approach described by Dernoncourt et al [3]. To overcome the
problem of small data sets and privacy issues, we used
collaborative privacy-preserving learning suggested by Shokri
and Shmatikov [4]. This technique allows the integration of
many local data sets into the training while minimizing the risk
of leaking protected information. It restricts the training to the
local site of each data provider (ie, own data stay with each
provider) and only relies on the sharing of small fractions of
the local improvements.

We evaluated the performance of the deidentification network
trained in a collaborative and privacy-preserving manner. For
this purpose, we used an existing set of longitudinal clinical
narratives published in the course of the Informatics for
Integrating Biology and the Bedside (i2b2) 2014 deidentification
challenge hosted by the National Center for Biomedical
Computing [7,15] (deidentified clinical records used in this
research were provided by the i2b2 National Center for
Biomedical Computing funded by U54LM008748 and were
originally prepared for the Shared Tasks for Challenges in
Natural Language Processing for Clinical Data organized by
Dr. Özlem Uzuner, i2b2, and the State University of New York).

Methods

Recurrent Neural Network for Deidentification

General Topology and Training Goal
The recurrent neural network (RNN) presented by Dernoncourt
et al [3] is constructed to work on fragments of medical notes.
The computed output is a sequence of labels with each label
corresponding to one term (also called a token) of the input text.
In our adapted version, a label can either be non-PHI or one of
28 PHI classes or subclasses adopted from the definitions of

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 2https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

the i2b2 deidentification challenge (Table 1). If there is at least
one subclass, the general class is not used as a label.

The network topology shows two different layers. The first layer
consists of long short-term memory (LSTM) RNNs and is called

the character-enhanced token embedding layer. The actual label
assignment is conducted in the label prediction layer seen in
Figure 1.

Table 1. Possible protected health information classes of terms.

SubclassesClass

Patient, clinician, usernameName

—Profession

Hospital, organization, street, city, state, country, zip, otherLocation

—Age

—Date

Phone, fax, email, URL, Internet Protocol addressaContact

Social security numbera, medical record number, health plan number, account numbera, license numbera, vehicle identificationa,
device identification, biometric identification, identification number

Identification

aClasses that are not present in the published data set [7].

Figure 1. Network topology of the recurrent neural network used for deidentification [3].

Preprocessing
During preprocessing, the input text is subdivided into terms ti

which are then transformed into their vector representations xi

∈ 300. For the transformation we use the Word2Vec approach
which can map words into a low-dimensional vector space while
keeping some semantic and syntactic information [16]. This
transformation from word to vector is depicted by the red-dashed
arrows (Figure 1). As a result of the preprocessing, the input
text T = (t1, ... , tn) is available as a sequence of Word2Vec
vectors X = (x1, ... , xn).

In the second preprocessing step, every term ti is further divided
into its individual characters (ti_1, ... , ti_len(ti)). Again, every

character is translated into a vector yi_j ∈ {0,1}128 of low
dimensionality. The translation is represented by blue-dotted
arrows (Figure 1). In contrast to the word embedding, characters
are encoded by a simple one-hot method (ie, by vectors with
exactly one nonzero component). The dimension being nonzero

is obtained by taking the Unicode representation of the
corresponding character if it is smaller than 127. For all other
characters, the last dimension is set to 1. In this way, all ASCII
punctuations and symbols as well as the basic Latin alphabet
can be encoded. All letters are mapped to corresponding one-hot
vectors without taking any syntactic information into account.

To sum up, at the end of the preprocessing there are vectors xi

(word embeddings) representing every input term and vectors
yi_j (character embeddings) each representing one occurrence
of a character.

Character-Enhanced Token Embedding Layer
For every word, the first layer contains an independent instance
of a bidirectional LSTM. Hence, the number of RNNs changes
for every input text.

LSTMs integrate new parts of an input sequence into their
computation in every step. Furthermore, they keep some
information of the already processed prefix of the sequence.

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 3https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

This makes them capable of learning long-term dependencies
between vectors whose positions in the input are far apart [17].
Mathematically, a general unidirectional LSTM can be described
as follows.

Let Wi, Wc, Wo be three weight matrices and bi, bc, bo be three
bias vectors. These parameters are learned during the training.
If the input sequence equals (z1, ... , zm), the LSTM conducts

m steps. In the tth iteration, the hidden state ht and the memory
state ct are computed using zt, ht-1, and ct-1 as inputs and the
following formulas:

it = σ(Wi · concat(zt, ht-1) + bi + 1)

ct = it ⊙ ct-1 + (1 – it) ⊙ tanh(Wc · concat(zt, ht-1) + bc)

ot = σ(Wo ⋅ concat(zt, ht-1) + bo)

ht = ot ⊙ tanh(ct)

where ⊙ denotes the element-wise multiplication, σ the
element-wise logistic sigmoid function, and tanh the
element-wise hyperbolic tangent function. For the first iteration
the hidden state h0 and the cell state c0 must be initialized
arbitrarily. Sometimes the full sequence of hidden states (h1, ...
, hm) is considered the output of the LSTM and sometimes just
the last hidden state hm is seen as the output.

A bidirectional LSTM consists of two independent unidirectional
LSTMs. The first one works on the original input sequence (z1,
... , zm), whereas the second one computes the output for the
reversed sequence (zm, … , z1).

By combining the two output sequences (h1
for, ... , hmfor) and

(h1
back, ... , hmback) one gets the overall output (concat(h1

for, ...

, h1
back),..., concat(hmfor, ... , hmback)) or concat(hm

for, ... ,

hm
back), respectively.

The token embedding layer contains one bidirectional LSTM
per term ti of the input text. Every such LSTM works on the
corresponding sequence of character embeddings
(yi_1,...,yi_len(ti)). At this stage no information are exchanged
between LSTMs working on different tokens. However, they
all share the same weight matrices and bias vectors. The output

of the ith RNN can be written as i =concat(hi_len(t_i)
for,

hi_len(t_i)
back).

This vector is used as an additional word embedding to
overcome shortcomings of Word2Vec [3]. The presented
computation always leads to a reproducible vector representation
of a token, whereas Word2Vec cannot handle vocabulary that
was not used during training. Moreover, this strategy keeps
more semantic information than pure Word2Vec combined with
a preceding lemmatization step. However, in comparison to the
Word2Vec embedding, those LSTMs compute vectors that do
not contain any information of interword dependencies.

To keep the advantages of both strategies, the two word
embeddings of every token are combined in one vector ei =

concat(xi, i). In summary, it can be stated that for the input
sequence (t1, ... , tn) the character-enhanced token embedding
layer computes the output (e1, ... , en).

Label Prediction Layer
The subsequent layer evaluates the dependencies between
different words of the input text. Again, a bidirectional LSTM
is used for the task. In contrast to the previous layer, only one
LSTM is used independent of the number of tokens. This RNN
uses the output sequence (e1, ... , en) of the previous layer as its
input. The output consists of the full sequence (d1, ... , dn) where

di = concat(h1
for, ... , h1

back).

Every di is further processed by a two-layer, fully connected
feedforward network. The parameters are the same for every
input di and are trained jointly for every sequence (d1, ... , dn).
The network works as follows:

li = tanh(W1 · d1 + b1) hidden layer

ai = softmax(W2 · li + b2) output layer

Thus, the results ai ∈ [0,1]29 can be interpreted as conditional
posterior probabilities of the possible labels given the input
token ti. By choosing label(ti) = argmaxj∈{1,...,29}ai_j, every word
is uniquely assigned one of the 28 PHI classes (Table 1) or the
non-PHI label. The loss is defined pursuant to the cross-entropy
and minimized during training.

Collaborative Training

Aim
The aim of collaborative learning is the integration of many
(private) training sets into the learning process. Note that this
goal is different from the one of distributed training that solely
aims at faster training through the use of several computation
nodes. The following sections summarize three alternative
collaborative approaches: the nonprotective standard method,
a round robin technique, and the privacy-preserving distributed
selective stochastic gradient descent (DSSGD).

Nonprotective Training
The nonconfidential training (Figure 2) relies on central data
processing. The dashed arrows denote the disclosure of the local
training data, which leads to a large central data set. Usually
only one entity controls the training by distributing tasks and
data to workers of a large computing cluster [18]. The jagged
arrow marks the distributed training supervised by the central
server. The server has full control over all data and over the
training procedure. Hence, this method is not suitable for
protecting local data but enables fast training with full
information integration.

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 4https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 2. Nonprotected training with shared data.

Semiprotective Round Robin Training
An initial step toward privacy protecting training is to keep
local training data secret and just share the NN that is trained
by applying a round robin algorithm (Figure 3). In a first step,
worker A trains the network using only its local data (jagged
arrow [1]). After it is finished, the trained network is handed to
the second worker (solid arrow [2]) who improves the network
further by training with its local data (jagged arrow [3]). The

other workers contribute analogously until the first training
epoch is finished. Afterward the next round can be conducted
in the same way. This training is similar to the cyclical weight
transfer presented by Chang et al [13].

Although this protocol allows the workers to initially keep the
local data secret, it does not prevent leakage of personal
information through the passing on of the trained network. The
parameters might still reveal parts of confidential information
that have been used for training.

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 5https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3. Semiprotective round robin training with local data.

Distributed Selective Stochastic Gradient Descent
DSSGD enables an exclusively local training and additionally
allows every participant to decide how much information about
local parameters is shared (Figure 4). The following description
of DSSGD solely corresponds to the version used for our
experiments. We would like to point out that there are several
other options suggested by Shokri and Shmatikov [4].

The basic idea of gradient descent in general is to find a (local)
minimum of the loss function by adapting the weights along
their negative gradients. In the fully stochastic version, every
gradient is computed over only one sample at a time. Hereafter,
the phrase stochastic gradient descent refers to this kind of
gradient computation.

Let p be the flattened vector representing all parameters of the
network (ie, Wi, Wc, Wo, bi, bc, bo of both LSTM types and W1,
W2, b1, b2 of the feedforward layers). The cross-entropy error
of the weights with respect to one training text T is defined as

E(p) = –∑i=1,…,n (class(ti)⋅ln(ai))

where class(ti) ∈{0,1}29 is the one-hot representation of the
correct class of token ti.

After the error has been computed in the forward pass, the
gradient of E(p) can be determined in the backward pass using
backpropagation. The individual parameters are then updated
in the following way:

pj = pj – η ⋅ ∂E/∂pj (p)

where η denotes a fixed learning rate.

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 6https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 4. Distributed selective stochastic gradient descent with local data.

The peculiarity of DSSGD is that the learning is conducted in
a collaborative fashion but without a central manager (Figure
4). Every participating worker computes error gradients by using
only its local data (jagged arrows). A certain number of local
partial derivatives is shared with the other workers (dotted
arrows) via the central server after every epoch. This fraction
of shared derivatives θ can be set by local data curators. In order
to prevent unwanted divulgation of private information, the
absolute values of shared scalars can be clipped to an
individually defined minimum/maximum γ. Moreover, some
lower bound τ can be chosen to omit sharing updates with
information that is too small. All those additional settings are
unknown to other workers.

The central server is solely used to upload and download subsets
of local derivatives asynchronously. It does not manage the
local workers like a central manager and does not have access
to the local training data.

In the following text, the local training as well as the parameter
exchange is described in more detail. In the beginning, different
parties agree upon a topology of the network and a learning
rate. On this basis, the global weights pglo are initialized at the
server. Beside the single set of weights, the server maintains a
statistic for every weight indicating how often it has been
updated by workers.

Figure 5 summarizes the work conducted by one single worker
where D denotes the local training set. In the beginning, a
worker builds a local copy of the network collectively agreed
upon. Additionally, the local learning rate is set to the globally
fixed value. A single epoch of the local training begins with the
download of a subset of the global weights. The size of this set
is specified by the local hyperparameter θd. The θd ⋅ len(pglo)
parameters with the highest global update statistics are chosen
for the download. By adjusting θd, the worker can decide how
much other workers can influence its final result. In the
subsequent step, simple stochastic gradient descent is used to
improve local weights. After one epoch, the weight updates that
are sent to the server are chosen. For this purpose, the first step
is to check for every update whether its absolute value exceeds
the threshold τ determined in the beginning. If this is not the
case, this single update value is not communicated. Second, the
remaining updates are clamped to the interval [–γ,+γ]. The third
and last part of the selection process is based on randomness.
To meet the upload rate θu, the set of possible updates is sampled
uniformly at random. The training is ended when a minimum
or any other stopping criterion is reached. A comprehensive
assessment of the passive protection assured by the presented
method can be found in the original paper [4].

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 7https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 5. Local training procedure [4].

Experiments
To evaluate the performance of the network for deidentification
and the different training methods, we used a data set also used
by Dernoncourt et al [3] for training the noncollaborative
version. The basis of this data set is 1304 real longitudinal
patient records for 296 diabetic patients provided by Partners
Healthcare and adapted by Stubbs and Uzuner [15] for the 2014
i2b2 deidentification challenge. These notes were collected at
different hospitals and are written in natural language (English)
by caregivers to document or communicate patients’ medical
history, physical and mental state, prescriptions, and other
events. During the generation of this gold standard set, several
human annotators marked critical PHI in the notes, which was
later replaced by realistic surrogate data. Names, for example,
have been replaced by imaginary names. See Stubbs and Uzuner
[15] for a detailed description of the data set and the replacement
methods.

The full training subset contains around 598,000 tokens with
approximately 17,000 instances of PHI, while the subset used
for testing consists of approximately 387,000 tokens including
more than 11,000 instances of PHI. Records of patients
represented in the training set are not contained in the test set.
Due to the class imbalance, the F1 measure was used to quantify
performances during experiments.

For the tokenization of the data sets, we made use of the tokenize
package published as part of the Natural Language Toolkit. The
Word2Vec embedding was generated with the help of the
Gensim library and was trained on all English Wikipedia articles
available in the beginning of November 2018. All networks
were implemented with the help of the open source software
library TensorFlow. We used graphics processing unit support
based on the CUDA platform to accelerate training.

The first experiment (A) was conducted to get baseline results.
We trained one RNN as described in section Recurrent Neural
Network for deidentification using the full training data set.
This training corresponds to the nonprotective case outlined in

section Nonprotective Training. Plain stochastic gradient descent
with a learning rate of 0.9 was used for the optimization. After
every epoch, the performance was determined with respect to
the test set. The hidden states, the cell states, and the biases of
LSTMs used in the token embedding layer were of size 128.

Thus, the weight matrices were in space 128×256 and ei ∈ 556.
During training, dropout with probability 0.5 was applied to the
sequence (e1,..., en) to counteract overfitting that might have
been introduced by the large number of training epochs. The
single LSTM of the label prediction layer held parameter vectors
that were all of size 100 and hence output the sequence (d1,...,

dn) with di ∈ 200. For the final two feedforward layers, the

weights were W1 ∈ 100×200 and W1 ∈ 29×100.

Experiment B was performed according to the description in
section Semiprotective Round Robin Training. The full training
set was subdivided into 5 disjoint private sets of similar size.
All records of one patient were kept in the same subset. The
training was performed in a round robin fashion using stochastic
gradient descent with a learning rate of 0.9 at each worker. The
test set was, as in all experiments, left untouched and tested
against after every full epoch (ie, after 5 local epochs).

In a third experiment (C_0.1), the collaborative
privacy-preserving training (Distributed Selective Stochastic
Gradient Descent section) was tested. For this purpose, the
global network topology was chosen, as in the previous
experiments. We trained 5 RNNs collaboratively that
asynchronously shared some of their weight updates. The
training data were distributed as in experiment B. In contrast
to the previous experiment, the nets were tested against the
global test set after every local epoch, since there is no global
epoch in this setup.

Thus, there are 5 results for every epoch. The training
hyperparameters for all nets were θd=0.1, θu=0.5, γ=10,
τ=0.0001, while the global learning rate of DSSGD was set to

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 8https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

0.9. Afterward we conducted a similar experiment with the only
difference being that θd was set to 0.5 (experiment C_0.5).

Experiment D was run in the same way as experiment C_0.1
except for the fact that this time the 5 networks did not

communicate at all and just trained on their local sets. Again,
we made use of simple stochastic gradient descent with a
learning rate of 0.9. A summary of all experiments can be found
in Table 2.

Table 2. Summary of the experiments.

Learning strategyName

Centralized training using stochastic gradient descent (learning rate: 0.9)A

Collaborative training of 5 workers using the round robin method (learning rate: 0.9)B

Collaborative privacy preserving training of 5 workers with DSSGDa (θd = 0.1, θu = 0.5, γ = 10, τ = 0.0001; learning rate: 0.9)C_0.1

Collaborative privacy preserving training of 5 workers with DSSGD (θd = 0.5, θu = 0.5, γ = 10, τ = 0.0001; learning rate: 0.9)C_0.5

Local training without collaboration of 5 workers using stochastic gradient descentD

aDSSGD: distributed selective stochastic gradient descent.

Results

To obtain results that can be compared to the outcomes achieved
by Dernoncourt et al [3], we adopted their scoring. Thus, every
token labeled as PHI by the network was considered a true
positive result if and only if this token was actually some PHI.
The scoring, therefore, does not consider the PHI classes but
only the decision PHI versus non-PHI.

In all experiments the nets underwent 200 epochs of training.
The illustration on the left in Figure 6 depicts the development
of F1 scores achieved on the test set. The black line corresponds

to experiment A and the magenta one to experiment B. Note
that both lines are very similar and partially overlap. For the
other experiments, there are 5 results per time point. The solid
green line depicts the mean F1 values achieved in experiment
C_0.1, while the area colored in green indicates the full range
in which the values fell. Similarly, the results of experiment D
are represented. For these measurements, the color red was used.
For reasons of clarity, the results of experiment C_0.5 are
depicted in the image on the right. Again, these results are shown
in green. The remaining lines are the same as in the illustration
on the left. The final scores are given in Table 3.

Figure 6. Performances achieved on the test set during the experiments including C_0.1 (left) or C_0.5 (right).

Table 3. Scores after 200 training epochs.

F1Experiment

MaximumMeanMinimum

—0.962—A

—0.961—B

0.9560.9550.955C_0.1

0.9440.8400.694C_0.5

0.9110.9050.900D

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 9https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Discussion

Using real-world clinical data, our study shows that collaborative
privacy-preserving training enables a NN-based detection of
PHI in clinical free-text records. The approach, thus, solves the
dilemma of requiring machine learning techniques for easily
adapting a PHI detection system to heterogeneous clinical
documentation while avoiding disclosure of locally stored
patient data.

Comparisons of the results achieved by the networks trained
with plain stochastic gradient descent (A and D) underline the
intuitive assumption that larger training data sets lead to better
performances.

The similarity between the results of experiments A and B
originates from the fact that both training methods are equivalent
except for the kind of shuffling of samples during training. If
the only aim is to keep the exact local data private and not to
protect as much private information as possible, the round robin
technique (or cyclic weight transfer) is the best choice. If,
however, a real privacy-preserving collaborative learning
mechanism is need as in the presented medical domain, DSSGD
is the correct training algorithm. It offers both privacy

preservation and good performance. The results of experiments
C_0.1 and D show that a lack of sufficiently large local training
data sets can be compensated by applying collaborative
privacy-preserving training based on DSSGD. This finding is
in line with the observations made by Shokri and Shmatikov
[4] and the results obtained by Liu et al [14] who tested the
protocol with some smaller nonrecurrent neural networks. By
applying the collaborative training, all workers reach similar
outcomes rapidly. After 25 epochs, all nets perform better than
the ones trained with the corresponding noncollaborative version
(D). The local F1 values all tend to the results achieved in the
centralized version (A). During all experiments, a rather high
learning rate was used that might have led to nonoptimal
solutions. However, since it was kept constant throughout all 5
experiments, the insights gained by comparison are still valid.
Another shortcoming of our experiments is that the γ value was
set without using a calibrating data set as is suggested by Shokri
and Shmatikov [4].

During experiments C_0.1 and C_0.5, the importance of
well-chosen communication parameters θu, θd became apparent.
If the download rate is set to high, the global results interfere
too much with local training sessions. This leads to high
fluctuations and prevents the local weights from converging.

Acknowledgments
SF and CS were affiliated with the Department of Medical Informatics, Medical Faculty at RWTH Aachen University at the time
of writing and are currently affiliated with the Institute of Medical Statistics, Computer and Data Sciences at Jena University
Hospital.

Conflicts of Interest
None declared.

References

1. Aberdeen J, Bayer S, Yeniterzi R, Wellner B, Clark C, Hanauer D, et al. The MITRE Identification Scrubber Toolkit:
design, training, and assessment. Int J Med Inform 2010 Dec;79(12):849-859. [doi: 10.1016/j.ijmedinf.2010.09.007]
[Medline: 20951082]

2. Deleger L, Molnar K, Savova G, Xia F, Lingren T, Li Q, et al. Large-scale evaluation of automated clinical note
de-identification and its impact on information extraction. J Am Med Inform Assoc 2013 Jan 01;20(1):84-94 [FREE Full
text] [doi: 10.1136/amiajnl-2012-001012] [Medline: 22859645]

3. Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. J Am
Med Inform Assoc 2017 May 01;24(3):596-606. [doi: 10.1093/jamia/ocw156] [Medline: 28040687]

4. Shokri R, Shmatikov V. Privacy-preserving deep learning. In: Ray I, Li N, editors. Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. New York: ACM Press; 2015:1310-1321.

5. Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures.
In: Ray I, Li N, editors. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
New York: ACM Press; 2015:1322-1333.

6. Meystre S, Friedlin F, South B, Shen S, Samore M. Automatic de-identification of textual documents in the electronic
health record: a review of recent research. BMC Med Res Methodol 2010:70-86. [doi: 10.1186/1471-2288-10-70]

7. Stubbs A, Kotfila C, Uzuner Ö. Automated systems for the de-identification of longitudinal clinical narratives: overview
of 2014 i2b2/UTHealth shared task Track 1. J Biomed Inform 2015 Dec;58 Suppl:S11-SS9 [FREE Full text] [doi:
10.1016/j.jbi.2015.06.007] [Medline: 26225918]

8. Liu Z, Chen Y, Tang B, Wang X, Chen Q, Li H, et al. Automatic de-identification of electronic medical records using
token-level and character-level conditional random fields. J Biomed Inform 2015 Dec;58 Suppl:S47-S52 [FREE Full text]
[doi: 10.1016/j.jbi.2015.06.009] [Medline: 26122526]

9. Liu Z, Tang B, Wang X, Chen Q. De-identification of clinical notes via recurrent neural network and conditional random
field. J Biomed Inform 2017 Dec;75S:S34-S42 [FREE Full text] [doi: 10.1016/j.jbi.2017.05.023] [Medline: 28579533]

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 10https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.ijmedinf.2010.09.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20951082&dopt=Abstract
http://europepmc.org/abstract/MED/22859645
http://europepmc.org/abstract/MED/22859645
http://dx.doi.org/10.1136/amiajnl-2012-001012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22859645&dopt=Abstract
http://dx.doi.org/10.1093/jamia/ocw156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28040687&dopt=Abstract
http://dx.doi.org/10.1186/1471-2288-10-70
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(15)00117-3
http://dx.doi.org/10.1016/j.jbi.2015.06.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26225918&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(15)00119-7
http://dx.doi.org/10.1016/j.jbi.2015.06.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26122526&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(17)30122-3
http://dx.doi.org/10.1016/j.jbi.2017.05.023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28579533&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

10. Chen T, Zhong S. Privacy-preserving backpropagation neural network learning. IEEE Trans Neural Netw 2009
Oct;20(10):1554-1564. [doi: 10.1109/TNN.2009.2026902] [Medline: 19709975]

11. Bansal A, Chen T, Zhong S. Privacy preserving Back-propagation neural network learning over arbitrarily partitioned data.
Neural Comput & Applic 2010 Feb 12;20(1):143-150. [doi: 10.1007/s00521-010-0346-z]

12. Yuan JW, Yu SC. Privacy preserving back-propagation neural network learning made practical with cloud computing.
IEEE Trans. Parallel Distrib. Syst 2014 Jan;25(1):212-221. [doi: 10.1109/TPDS.2013.18]

13. Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, et al. Distributed deep learning networks among institutions
for medical imaging. J Am Med Informat Assoc 2018;25:945-954. [doi: 10.1093/jamia/ocy017]

14. Liu M, Jiang H, Chen J, Badokhon A, Wei X, Huang M. A collaborative privacy-preserving deep learning system in
distributed mobile environment. In: Arabnia H, Deligiannidis L, editors. 2016 International Conference on Computational
Science and Computational Intelligence. Washington: IEEE Computer Society, Conference Publishing Services;
2016:192-197.

15. Stubbs A, Uzuner Ö. Annotating longitudinal clinical narratives for de-identification: the 2014 i2b2/UTHealth corpus. J
Biomed Inform 2015 Dec;58 Suppl:S20-S29 [FREE Full text] [doi: 10.1016/j.jbi.2015.07.020] [Medline: 26319540]

16. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their
compositionality. In: Burges CJ, Bottou L, editors. Advances in Neural Information Processing Systems. Cambridge: MIT
Press; 2013:3111-3119.

17. Greff K, Srivastava R, Koutnik J, Steunebrink B, Schmidhuber J. LSTM: A Search Space Odyssey. IEEE 2017;28:2222-2232.
[doi: 10.1109/tnnls.2016.2582924]

18. Dean J, Corrado G, Monga R, Chen K, Devin M, Le Q, et al. Large scale distributed deep networks. In: Pereira F, Burges
CJ, editors. Proceedings of the 25th International Conference on Neural Information Processing Systems. Philadelphia:
Proceedings of the 25th International Conference on Neural Information Processing Systems; 2012:1223-1231.

Abbreviations
DSSGD: distributed selective stochastic gradient descent
i2b2: Informatics for Integrating Biology and the Bedside
LSTM: long short-term memory
NN: neural network
PHI: protected health information
RNN: recurrent neural network

Edited by CL Parra-Calderón; submitted 27.03.19; peer-reviewed by M Mizani, H Wu, M Kohlweiss; comments to author 20.06.19;
revised version received 25.08.19; accepted 16.12.19; published 05.05.20

Please cite as:
Festag S, Spreckelsen C
Privacy-Preserving Deep Learning for the Detection of Protected Health Information in Real-World Data: Comparative Evaluation
JMIR Form Res 2020;4(5):e14064
URL: https://formative.jmir.org/2020/5/e14064
doi: 10.2196/14064
PMID:

©Sven Festag, Cord Spreckelsen. Originally published in JMIR Formative Research (http://formative.jmir.org), 05.05.2020. This
is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information,
a link to the original publication on http://formative.jmir.org, as well as this copyright and license information must be included.

JMIR Form Res 2020 | vol. 4 | iss. 5 | e14064 | p. 11https://formative.jmir.org/2020/5/e14064
(page number not for citation purposes)

Festag & SpreckelsenJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/TNN.2009.2026902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19709975&dopt=Abstract
http://dx.doi.org/10.1007/s00521-010-0346-z
http://dx.doi.org/10.1109/TPDS.2013.18
http://dx.doi.org/10.1093/jamia/ocy017
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(15)00182-3
http://dx.doi.org/10.1016/j.jbi.2015.07.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26319540&dopt=Abstract
http://dx.doi.org/10.1109/tnnls.2016.2582924
https://formative.jmir.org/2020/5/e14064
http://dx.doi.org/10.2196/14064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

