Table 3.
Performance on the training set of the three machine learning techniques using a 5-fold cross-validation method.
Technique | Sensitivity, mean (95% CI) | PPVa, mean (95% CI) | NPVb, mean (95% CI) | Specificity, mean (95% CI) | F score, mean (95% CI) |
GLMNetc | 80.2 (77.7-82.7) | 73.2 (70.9-75.6) | 90.9 (89.6-92.2) | 87.1 (85.6-88.7) | 76.5 (75.6-77.5) |
MAXENTd | 68.8 (66.8-70.7) | 66.0 (62.5-69.5) | 86.1 (85.2-86.9) | 84.5 (82.7-86.3) | 67.4 (64.7-70.0) |
Boosting | 86.6 (82.1-91.1) | 95.8 (93.2-98.5) | 94.4 (92.4-96.3) | 98.3 (97.0-99.6) | 90.9 (89.7-92.1) |
aPPV: positive predicative value.
bNPV: negative predicative value.
cGLMNet: elastic-net regularized generalized linear model.
dMAXENT: maximum entropy.