Skip to main content
. 2020 May 5;8(5):e16225. doi: 10.2196/16225

Table 1.

Configuration of the deep convolutional network.

Layer type, feature map Filters Kernel Stride Padding Learning rate
Input

224×224×3 a 0.0 (freeze)
Convolutional

112×112×64 64 7×7×3 2 3 0.0 (freeze)
Batch normalization

112×112×64 0.0 (freeze)
Max pooling

56×56×64 1 3×3 2 1 0.0 (freeze)
Layer 1

Basic block 1-1


56×56×64 64 3×3×64 1 1 0.0 (freeze)
56×56×64 64 3×3×64 1 1 0.0 (freeze)
Basic block 1-2

56×56×64 64 3×3×64 1 1 0.0 (freeze)
56×56×64 64 3×3×64 1 1 0.0 (freeze)
Layer 2

Basic block 2-1


28×28×128 128 3×3×64 2 1 1e-10
28×28×128 128 3×3×128 1 1 1e-10
28×28×128 128 1×1×64 2 0 1e-10
Basic block 2-2

28×28×128 128 3×3×128 1 1 1e-10
28×28×128 128 3×3×128 1 1 1e-10
Layer 3

Basic block 3-1


14×14×256 256 3×3×128 2 1 1e-8
14×14×256 256 3×3×256 1 1 1e-8
14×14×256 256 1×1×128 2 0 1e-8
Basic block 3-2

14×14×256 256 3×3×256 1 1 1e-8
14×14×256 256 3×3×256 1 1 1e-8
Layer 4

Basic block 4-1


7×7×512 512 3×3×256 2 1 1e-6
7×7×512 512 3×3×512 1 1 1e-6
7×7×512 512 1×1×64 2 0 1e-6
Basic block 4-2

7×7×512 512 3×3×512 1 1 1e-6
7×7×512 512 3×3×512 1 1 1e-6
Average pooling

1×1×512 1 7×7 7 0
Fully connected layer

1×7 1e-5
Softmax

1×7

aNot applicable.