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Abstract: Due to the global burden of dengue disease, a vaccine is urgently needed. One of the
key points in vaccine development is the development of a robust and reliable animal model of
dengue virus infection. Characteristics including the ability to sustain viral replication, demonstration
of clinical signs, and immune response that resemble those of human dengue virus infection are
vital in animal models. Preclinical studies in vaccine development usually include parameters
such as safety evaluation, induction of viremia and antigenemia, immunogenicity, and vaccine
effectiveness. Although mice have been used as a model, non-human primates have an advantage
over mice because of their relative similarity to humans in their genetic composition and immune
responses. This review compares the viremia kinetics and antibody responses of cynomolgus
macaques (Macaca fasicularis), common marmosets (Callithrix jacchus), and tamarins (Saguinus midas
and Saguinus labitus) and summarize the perspectives and the usefulness along with challenges in
dengue vaccine development.
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1. Introduction

Dengue is a major threat to global public health. Infection with any one of the four serotypes of
dengue virus (DENV), DENV1-4, causes a wide variety of clinical illness, ranging from self-limited
febrile illness, dengue with and without warning signs, to severe dengue and dengue-related death.
According to the 2009 World Health Organization (WHO) guidelines, dengue without warning signs
is defined as high-grade fever with nausea, vomiting, rash, and leucopenia [1]. The criteria for
dengue with warning signs are abdominal pain, persistent vomiting, fluid accumulation, mucosal
bleeding, lethargy, liver enlargement, and a raised hematocrit with a decreased platelet count [1].
Additionally, the hallmark of severe dengue is the presence of vascular leakage [2]. There are three
phases of dengue illness: (1) a febrile phase, which lasts for 3 to 7 days; (2) a critical phase; and (3) a
recovery phase [3]. While most patients recover after the febrile phase, a small proportion progress to
severe dengue [3].

DENV belongs to the genus Flavivirus of the family Flaviviridae. Genus Flaviviridae encompasses
antigenically closely related viruses that cause disease in humans, including the Japanese encephalitis
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virus (JEV), yellow fever virus (YFV), West Nile virus (WNV), and Zika virus (ZIKV). DENV is
usually endemic in tropical and subtropical countries, including the South Pacific, East Mediterranean,
Americas, and Southeast Asia. In recent years, autochthonous DENV outbreaks have been reported in
temperate countries, including Japan, Croatia, and France [4–6]. DENV has infected 4 billion people
worldwide with 390 million new cases of DENV infection reported annually [7–10]. The incidence of
DENV infection has increased by up to 30-fold in the past 60 years [11].

As the global burden of DENV is continuously increasing, a dengue vaccine that is able to provide
protection against all serotypes of DENV is required. A safe and efficacious dengue vaccine is important
in the dengue control program. However, the development of a dengue vaccine has been hampered due
to the lack of a reliable animal model. Vaccine trials include safety evaluation, induction of viremia and
antigenemia, immunogenicity, and efficacy. Thus, an animal model that faithfully mirrors the immune
response pattern of those of human DENV infection is able to sustain viral replication and exhibits
age-related clinical signs would be the ideal model for vaccine trials because candidate vaccines are
evaluated by defining the viremia kinetics and the antibody responses [12,13]. Mice have been used in
vaccine trials, but low levels of DENV replication potential have led to inconclusive outcomes regarding
the potency and immune response [14–16]. Non-human primates (NHPs) are preferred because of the
high similarities in genetic and immune responses to those of humans. However, some NHP studies
have induced low levels of viremia following virus inoculation and the trial subjects did not exhibit
overt clinical signs [17–19]. In recent years, the common marmoset has shown promise as a potential
animal model for DENV infection and candidate vaccine evaluation [13,20,21]. Here, we reviewed
the viremia kinetics and antibody responses of cynomolgus macaques (Macaca fasicularis), common
marmosets (Callithrix jacchus), and tamarins (Saguinus midas and Saguinus labitus) and assessed the
utility of each NHP as a potential animal model in dengue vaccine trails.

2. Animal Models for Dengue Virus Infection

Animal models have been used in the research of DENV tropism, dengue pathogenesis, immune
responses, therapeutics, and vaccine development and evaluation. An ideal animal model for DENV
vaccine evaluation should demonstrate a high sensitivity to DENV and exhibit clinical signs and
immune responses similar to those of human DENV infection. These characteristics are important for
mimicking human DENV infection and for leading to a better understanding on the pathogenesis of
DENV disease. The benefits and limitations of each of the animal models are summarized in Table 1.
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Table 1. Summary of the benefits and limitations of animal models of dengue infection.

Type of Animal Model Benefits of Use This Model Limitations References

Immunocompetent mice
(C57BL/6 mice, BALB/c mice)

• Provide insight on the mechanistic contribution of
host immune response to immunopathogenesis

• Limited data on infection by natural route of
infection (i.e., mosquito bite)

• Less sensitive to challenge with clinical
DENV strains

• Low/ undetectable systemic infective viremia
• Lack of clinical manifestations

[22–25]

Interferon alpha/beta/gamma receptor
knock-out mice)
(AG129 mice)

• Help to understand the disease pathogenesis due
to the ability to demonstrate disease pathology
and viral replication following DENV injection

• Provide insight on the efficacy of the vaccine due
to the ability to demonstrate protective effects and
induction of neutralizing antibody in DENV
vaccine candidate study

• Immune system response may not faithfully reflect
those of natural hosts

• Limited utility in studies on interaction between
humoral and cell-mediated immune response
in vivo.

• Lack of clinical manifestations
• Severe disease development is age-dependent,

thus the animal’s limited lifespan is a limitation

[26–30]

IFN -/- mice
(IFNAR-/- mice)

• Allows the investigation of T-cell responses
relevant to DENV vaccine design and better
modeling the T-cell response during
DENV infection

• Limited capability in mounting full immune
response due to the lack of IFN-αβ and γ receptor

• Lack of clinical manifestations
[31–33]

Humanized mice
(hu-NSG mice, NOD/SCID mice,
NOD-scidIL2Rγnull mice,
RAG2-/-γ

c
-/-mice, BLT-NOD/SCID mice)

• Allows the investigation of antibody response and
cytokines following DENV infection

• Ideal to study disease pathogenesis due to the
presence of clinical manifestation and viremia

• The viremic period is not consistent with human
DENV infection

• Requires highly technical process including the
cells used for engraftment and consistently high
levels of engraftment

[34–41]
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Table 1. Cont.

Type of Animal Model Benefits of Use This Model Limitations References

Non-human primates
(rhesus macaque, bonnet monkey, olive
baboons, African green monkey)

• Natural hosts in sylvatic DENV cycle
• Allows the investigation of immune response

because it has been shown to be similar to human
DENV infection

• Provides insights on correlation between
protection and disease pathogenesis

• Demonstrates measurable viremia
• Useful to measure protection conferred by

vaccination or passively acquired antibody

• High cost of maintenance
• Lack of clinical manifestations [42–50]

Dengue human infection model (DHIM)

• Most biologically relevant model
• Provides relevant insights into immune response

to dengue virus
• Cost-effective avenue for testing drug efficacy

before large scale clinical trials

• Limited accessibility, ethical issues and
regulatory restrictions

• No licensed specific therapy for dengue virus,
potential risk for severe disease development

• Long-term risk of severe dengue development in
participants after study (natural infection)

• End-point is potentially unethical or difficult
to measure

• Variances in immunology and genetic background

[51–57]
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Mice that have been used as models of DENV infection include immunocompetent mice, human
tissue engrafted-severe combined immunodeficiency (SCID) mice, interferon α, β, γ deficient AG129,
RAG-hu, and the NOD/SCID/ IL-2Rγ/human CD34 transplant mice [2,31,32,39,44,58,59]. Although the
mouse model is the primary model used in therapeutics and vaccine efficacy studies, limited replication
of DENV have compromised the outcome of these studies [14–16]. Initial studies adopted intracranial
inoculation and this method induced neurological diseases and paralysis, clinical signs which are
atypical signs of dengue fever and classical signs of dengue hemorrhagic fever [23,60,61]. As such,
the end point of vaccine efficacy studies in immunocompetent mice are a reduced magnitude and
the duration of viremia and neuropathological signs. The immunocompetent mouse model may
be less sensitive to challenge by clinical DENV strains. Humanized mice enable studies on disease
pathogenesis and several potential dengue biomarkers such as chemokines MCP-1, Th-2 and cytokines,
Il-4, IL-10, and TNF-alpha have been observed in humanized mice following DENV inoculation [38,62].
However, low levels of antibody and the lack of other possible human targets cells, such as endothelial
and hepatocytes, limits the utility of the model for vaccine evaluation study [38]. AG129 mice have,
however, enabled an improved experimental model of dengue fever and dengue hemorrhagic fever
study to be developed. The AG129 mouse develops severe dengue clinical signs, including vascular
leakage, a hallmark of severe DENV infection [26,27]. Antibody response in AG129 mice also reflects
those of the wild-type mice, although the T-cell response in the absence of interferon receptors needs to
be considered in the interpretation of the results. While the use of immune-incompetent mice is a useful
model, the ability to develop severe disease is also age-dependent. As vaccine evaluation requires
observation of efficacy over a long time period, vaccine efficacy needs to be carefully interpreted with
age-related clinical signs in mind.

The similarities in genetic, physiological, and immune responses between NHP and humans favor
the use of the NHP as an animal model for DENV infection [42–44,49,63]. The presence of dengue
antibodies in sera from wild NHP indicates their involvement in the sylvatic cycle [42,43]. The Old
World monkey and New World monkey are the two group of NHP that have been used as DENV
animal models. Rhesus macaque (Macaca mulatta) is the first NHP that was used in the studies of
dengue etiology by the inoculation of defibrinated blood from dengue patient via intravenous and
subcutaneous routes [64]. Rhesus macaque were widely used as an animal model for DENV, but they
rarely developed the clinical manifestations observed in human dengue patients. Subcutaneous virus
inoculation resulted in low levels of viremia in rhesus macaque, thus limiting the usage of this model in
dengue vaccine studies [44,45]. In addition, NHP models, including pigtail macaque, rhesus macaque,
and owl monkey have exhibited limited levels of viremia following inoculation with clinically isolated
DENV strains [18,65]. Experiments using Aotus monkeys, squirrel monkeys, cotton-top tamarins, white
face monkeys, black spider monkeys, Saimiri monkeys, marmosets (Marikina geoffroyi), howler monkeys,
and red spider monkeys have demonstrated the susceptibility of New World monkeys to DENV,
but none of these NHPs have exhibited overt clinical manifestations [42,47,48]. In recent years, rhesus
macaques have been reported to show hemorrhagic signs following intravenous DENV inoculation [45].
DENV infection has been characterized with elevated levels of pro-inflammatory cytokines including
IFN-γ, IL-6 IL-8 and TNFα. In addition, several potential dengue biomarkers, such as creatine
phosphokinase (CK), TNF-alpha, IFM gamma, IL-8 and IL10, have been observed in NHPs following
DENV inoculation [19,45,50,66]. Marmosets exhibited elevated levels of TGF-α and IFN-γ during
the early phase of DENV infection and demonstrated altered serum biochemical, thrombocytopenia
and leukopenia [13,20,21,50]. Marmosets with secondary DENV infection demonstrated infectious
virus-immune complex and higher viremia titers, as detected by using Fc gamma receptor expressing
cells. Further biomarker network analysis in the model revealed that IL-2/IL-6 were involved in the
pathological axis and suggest that the later phase of infection involves IFN-γ, IL-4 and IL-5. The results
indicate that elevated proinflamatory cytokines in NHP models may reflect some aspects of DENV
pathogenesis in patients, although further manipulation is expected to improve the animal models.
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Clark et al. have comprehensively reviewed the utility of NHP as animal model of DENV from the
perspective of pathology and immunopathology [44].

Due to the lack of reliable animal models to demonstrate the complexity of the immunologic
process following DENV infection, dengue human infection models (DHIM) have been proposed
for use in DENV vaccine efficacy trials [22,51,52,54,67]. The use of DHIM would enable vaccine
development to be accelerated because they could provide insight into the correlates of protection
and the pathogenesis of dengue [53,56,67,68]. The use of DHIM has also been hypothesized to be
cost-effective as DHIM may provide an approach to select vaccine candidates based on their ability to
reduce illness before embarking on large-scale clinical trials [55,56,67]. In addition, the use of DHIM
would be useful for the studies on cellular immunity, the functional role of cytokines, and disease
progression mechanism [53,67]. However, there are several safety issues regarding the use of DHIM,
including the risk of severe dengue development in vaccinated subjects due to poor vaccine protection,
differences in responses to DENV by different ethnic groups, and difficulty in obtaining human tissue
biopsy samples for further pathological studies [22,68,69]. In addition, unlike human challenge models
for influenza and malaria that have licensed specific therapy, there is no currently available licensed
specific therapy for DENV [22,69]. Therefore, animal models remain important for preclinical testing
of dengue vaccines.

3. Non-Human Primates

NHPs are divided into two groups: parvorder Platyrrhini (broad and flat-nosed) and parvorder
Catarrhini (downward-nosed) [70]. The name of the New World monkey is derived from the fact that
all Platyrrhinis live in South America and the name of the Old World monkeys refers to all African
and Asian NHP [70]. The New World and Old World monkeys are estimated to have split between
33 to 77 million years ago [71]. All the Old World monkeys belong to the Cercopithecidae family, and the
family is divided into two subfamilies of Colobines and Cercopithecines [70–72]. New World monkeys
consist of five families: Atelidae, Aotidae, Callithrichidae, Cebidae, and Pitheciidae [73]. While Old World
monkeys and New World monkeys are commonly used in infectious disease and biomedical research
due to their close genetic proximity to humans, prosimians and great apes (chimpanzees) have been
used less frequently. As the physiological similarities between humans and NHPs are greater than
those of other animal models, NHPs are key to addressing research questions that cannot be addressed
using other animal models.

Cynomolgus macaques (Macaca fascicularis), also known as long-tailed or crab-eating macaques,
belong to subfamilies of Cercopithecinae and are the NHPs that are commonly used as DENV infection
models in vaccine trials [70]. Cynomolgus macaques are native to the Southeast Asian mainland
(Bangladesh, Myanmar, Thailand, Laos, Vietnam, Cambodia, and the Malaysian Peninsula), Sundaland
(the islands of Borneo, Sumatra and Java, and the adjacent islands), and the Philippines [70,74].
Cynomolgus macaques reach sexual maturity at the age of 4 years in females and 6 years in males,
and have a life-span ranging from 25 to 30 years [75,76]. As cynomolgus macaques and rhesus
macaques are commonly used in biomedical research, a comparatively wide range of research tools are
available for these NHPs.

The common marmoset (Callithrix jacchus) belongs to the Callitrichidae family. Marmosets are small
in size, weighing about 350 to 400 grams, and are native to northeastern Brazil [77,78]. Marmosets reach
sexual maturity between the age of 18 and 24 months and have a life expectancy of of 8 years [78,79].
Their compressed life-span, ability to breed well in captivity, small size, ease of handling, and lower
cost of maintenance are attractive features of using marmosets in scientific research, and these traits
allowed the introduction of variability into experimental procedures [21,77,80]. Marmosets have been
used in the research of drug toxicology, aging, reproduction biology, behavioral research, neuroscience,
autoimmune diseases, and infectious diseases [21,81–84].

Tamarins belong to the Saguinus genus of the Callitrichidae family. They weigh from 250 to
550 grams and are widely distributed across Central and South America, north and south of the
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Amazon, west of the Madeira River [85]. Tamarins (Saguinus mystax) have been used as experimental
animals in GB virus B (GBV-B) studies, which have served as surrogates for hepatitis C virus studies [86].
The cotton-top tamarin (Saguinus oedipus) has been widely used as an experimental model in the
research of inflammatory bowel disease, cancer of the lymphatic system, and colorectal cancer [87–91].

4. Viremia Kinetics in Non-Human Primates

Viremia is a critical parameter in assessing vaccine efficacy and predicting disease severity.
In human DENV infection, high levels of viremia are usually associated with more severe disease [92–95].
In assessing vaccine efficacy, the candidate vaccine should induce an immune profile, which assures
the ability to prevent or significantly reduce viremia levels [96]. Thus, it is critical for the animal to
consistently develop viremia following virus inoculation. Viremia levels and kinetics in cynomolgus
macaques, marmosets, and tamarins following inoculation of clinically isolated DENV1 02-17 (GenBank
accession no. AB111075), DENV2 DHF0663 (GenBank accession no. AB189122), and DENV3 DSS1403
(GenBank accession no. AB189125) are shown in Table 2. DENV1 02-17 was isolated from an imported
dengue fever case from Indonesia. DENV2 DHF0663 was isolated from a dengue hemorrhagic fever
patient from Indonesia. DENV3 DSS1403 was isolated from an imported dengue fever case from
Indonesia during the 2001 DSS epidemic. Cynomolgus macaques (CM1 to CM8) were inoculated
intradermally with 4.5 × 106 pfu/mL of DENV and blood samples were collected on days 0, 3, 5, 7,
and 14 post-inoculation [97]. DENV genome levels were determined by Taqman real-time reverse
transcriptase PCR [98]. DENV genome levels in primary infection marmosets (M1 to M8) and
secondary infection marmosets (M9 to M13) were previously reported [13,21], while DENV genome
levels in tamarins T3, T4, and T5 were previously reported [99]. Additionally, in marmoset models,
pathological findings, including hematuria and petechiae, have been observed. Further manipulations
of the model is expected to address the pathological outputs to reflect that of severe dengue in
human. Cynomolgus macaques, marmosets, and tamarins consistently develop viremia following
DENV inoculation. Viremia is first detected 1–3 days post-inoculation. Marmosets and tamarins
consistently develop higher levels of viremia of longer duration following DENV inoculation than
those of cynomolgus macaques. Cynomolgus macaques experience short-lived and low levels of
viremia (average detection period: 2.6 ± 1.1 days, average peak viremia levels: 3.7 ± 2.3 log10 genome
copies/mL), while marmosets and tamarins experience a longer duration of viremia (marmosets:
6.3 ± 1.9 days; tamarins: 6.4 ± 0.8 days) and higher average peak viremia levels (marmosets:
6.3 ± 1.0 log10 genome copies/mL; tamarins: 6.6 ± 0.9 log10 genome copies/mL). In primary DENV
infection, cynomolgus macaques develop moderate levels of viremia, while marmosets develop high
levels of viremia [13,19,21,100]. Similarly, in secondary DENV infection, cynomolgus macaques develop
short-lived and low levels of viremia (average detection period: 3.0 ± 0.0 days, average peak viremia:
4.6 ± 1.9 log10 genome copies/mL), while marmosets develop higher levels of viremia and of longer
duration (average detection period: 7.4 ± 2.9 days, average peak viremia: 6.8 ± 0.6 log10 genome
copies/mL). Compared to another NHPs, marmosets also present with clinical signs such as fever,
leucopenia, thrombocytopenia, hematuria, decreased white cell count, and are able to demonstrate
some aspects of severe dengue [20,45,100–102]. These results suggested that marmosets are potentially
useful as an animal model for studies of candidate DENV vaccines.



Pathogens 2020, 9, 247 8 of 17

Table 2. Comparison of dengue viral RNA levels (log10 genome copies/mL) in plasma of cynomolgus
macaques, common marmosets, and tamarins during primary and secondary dengue virus infection.

Type of
Infection

Animal ID Inoculated Virus
Dengue Viral RNA Copy Numbers (log10 Genome copies/mL)

Days after Inoculation

0 1 2 3 4 5 7 10 14

Primary

(A) Cynomolgus macaques
Group 1

CM1 DENV1 01-27 NT NT NT 2.8 NT - - - -
CM2 NT NT NT - NT - - - -

Group 2
CM3 DENV2 DHF0663 NT NT NT 6.5 NT - - - -
CM4 NT NT NT 3.1 NT - - - -
CM5 NT NT NT 4.1 NT - - - -
CM6 NT NT NT 7.2 NT - - - -

Group 3
CM7 DENV3 DSS1403 NT NT NT 2.5 NT - - - -
CM8 NT NT NT 3.6 NT - - - -

(B) Marmosets 1

Group 4
M1 DENV1 02-17 - NT NT 5.6 NT 5.7 - - -
M2 - NT 7.0 NT NT 6.5 7.7 6.0 -

Group 5
M3 DENV2 DHF0663 - NT NT 7.2 NT 5.0 - NT -
M4 - NT NT 7.5 NT 6.8 5.4 NT -
M5 - NT 4.5 NT 6.0 NT 4.0 NT -
M6 - NT 5.0 NT 6.3 NT 4.2 NT -

Group 6
M7 DENV3 DSS1403 - NT NT - NT 4.7 - - -
M8 - NT 4.9 NT 5.6 NT - NT -

(C) Tamarins 1

Group 7
T1 DENV2 DHF0663 - 6.4 NT 6.1 NT 4.2 - NT NT
T2 - 7.3 NT 7.5 NT 6.3 4.2 NT NT

Group 8
T3 DENV2 DHF0663 - 5.3 NT 6.2 NT NT 4.5 - -
T4 - 4.7 NT 4.6 NT NT 5.4 - -
T5 - 5.3 NT 6.3 NT NT 6.2 - -
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Table 2. Cont.

Type of
Infection

Animal ID Inoculated Virus
Dengue Viral RNA Copy Numbers (log10 Genome copies/mL)

Days after Inoculation

0 1 2 3 4 5 7 10 14

Secondary

(D) Cynomolgus macaques
Group 9

CM1 DENV2 DHF0663 NT NT NT 6.2 NT - - - -
CM2 NT NT NT 6.2 NT - - - -

Group 10
CM3 DENV3 DSS1403 NT NT NT 3.0 NT - - - -
CM4 NT NT NT 2.8 NT - - - -

(E) Marmoset 2

Group 11
M9 DENV2 DHF0663 - - NT 6.7 NT NT 4.5 NT -

M10 - - NT 6.2 NT NT - NT -
M11 - - NT 6.4 NT NT 3.9 NT -

Group 12
M12 DENV3 DSS1403 - - 7.0 NT NT 6.5 5.2 4.7 -
M13 - - 7.5 NT NT 7.7 6.0 4.2 -

(-) indicates below detection levels; NT indicates not tested or samples were not collected. 1 DENV genome levels
in marmosets M1 to M8 and tamarins T3, T4, and T5 were previously reported [12,13]. 2 DENV genome levels in
marmosets M9 to M13 were previously reported [20,21]. Cynomologous macaques (CM) were infected as previously
reported [97,98].

In human DENV infection, viremia starts 6 to 18 hours prior to the onset of illness, and average
levels of peak viremia are 8.0 ± 1.0 log10 to 9.0 ± 1.0 log10 genome copies numbers/mL in cases
of severe dengue [92,103,104]. Aedes aegypti mosquitos are thought to transfer amounts of DENV
ranging from 103 to 105 pfu to humans for successful transmission [52,105]. Rhesus macaques
develop viremia levels reaching 6.0 ± 1.0 log10 genome copies/mL when inoculated with a high dose of
DENV [45]. In contrast, viremia levels reach up to 5.0± 1.0 log10 genome copies/mL in marmosets when
inoculated subcutaneously with low dose of DENV (103 pfu) in primary infection and viremia levels
of 7.0 ± 1.0 log10 genome copies/mL have been detected in secondary heterologous infection [13,21].
In tamarins inoculated with 107 pfu of DENV, viremia levels have reached 6.0 ± 1.0 log10 to
7.0 ± 1.0 log10 genome copies/mL [99]. In an evaluation study of one candidate vaccine, cynomolgus
macaques developed low to undetectable levels of viremia following administration of the candidate
vaccine [100,106]. In contrast, non-immunized marmosets develop high levels of viremia following a
challenge with wild isolates, but low or undetectable levels of following administration of a candidate
vaccine and a challenge with wild isolates [12]. The results of these studies indicate that marmosets
could serve as an NHP model that demonstrates the protective capacity of candidate dengue vaccines.

5. Antibody Responses in Non-Human Primates

The presence of DENV-specific IgM and IgG antibody is used to diagnose DENV infection and to
differentiate between primary and secondary infection. In human DENV infection, IgM antibodies are
detected earlier than IgG antibodies in primary infection, while in secondary infection, IgG antibodies
are detected earlier than IgM antibodies. The presence of DENV-specific IgM and IgG antibodies in
cynomolgus macaques, marmosets, and tamarins is shown in Figure 1. Levels of DENV-specific IgM
and IgG antibodies were determined by Dengue Fever IgM Capture ELISA (Focus) and Dengue IgG
Indirect ELISA (PanBio), respectively [13,21,97,99,107]. Cynomolgus macaques exhibit DENV-specific
IgM antibodies by day 10 after primary inoculation (mean: 6.4 ± 1.8 days), whereas marmosets
demonstrate an increase in antibodies by day 7 (mean: 4.1 ± 1.5 days), and tamarins demonstrate an
increase by day 14 (mean: 11.8 ± 4.5 days) (Figure 1A and 1B). By day 10, all macaques and marmosets
exhibited DENV IgG antibodies. In secondary DENV infection, cynomolgus macaques exhibit a delayed
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DENV IgM antibody response: antibodies are detected from day 10 after inoculation, and marmosets
first exhibit IgM antibodies from Day 7 after inoculation. Increases in IgM antibody levels during
secondary infection occur comparatively later than in primary infection, in both cynomolgus macaques
and marmosets (Figure 1C). In secondary infection, IgG antibody levels are high in both macaques (P/N
ratioday0: 6.6) and marmosets (P/N ratioday0: 8.2) prior to DENV inoculation. IgG levels rise rapidly in
both macaques and marmosets from day 3 after DENV inoculation (Figure 1D). Thus, in secondary
infection in macaques and marmosets, as in human DENV infection, IgG levels rise rapidly, while
IgM levels are significantly lower than those measured in primary infection during the early stage of
secondary infection. These results indicate that antibody kinetics in these NHP models reflect those of
human antibody responses during primary and secondary DENV infections.
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Figure 1. Levels of dengue virus specific IgM and IgG antibody in cynomolgus macaques, common
marmosets, and tamarins: (A) Levels of DENV-specific IgM antibody during primary infection;
(B) Levels of DENV-specific IgG antibody during primary infection; (C) Levels of DENV-specific IgM
antibody during secondary infection; (D) levels of DENV-specific IgG antibody during secondary
infection. Levels of antibody in cynomolgus macaques (#), common marmosets (•), and tamarins (×)
were determined from day 0 to 14 after primary and secondary DENV infection. The P/N ratio indicates
the positive: negative ratio. The P/N ratio was calculated by using the formula: absorbance of the test
sample/absorbance of the negative control. The P/N ratioday0 is defined as the level of DENV-specific
IgM or IgG antibody on the day of virus inoculation. DENV, dengue virus; Ig G, immunoglobulin G; Ig
M, immunoglobulin M.

The determination of neutralizing antibody levels is important to define the immune responses
induced after vaccination in vaccine evaluation studies [108]. Neutralizing antibodies play a central
role in protection against DENV infection. In addition, neutralizing antibody titers serve as an
indicator of the vaccine efficacy and are a proxy measure of protection. Although high levels of
neutralizing antibody correlate with protection from DENV disease, cross-reactive antibodies convey
protection against heterologous DENV serotypes and are involved in infection-enhancement activities.
Disease enhancement occurs when the antibody binds to DENV below the neutralization threshold.
Thus, universal antibody titer cut-offs that correlate with the neutralizing antibody titers that are
needed for protective immunity are needed to improve the prediction of vaccine efficacy [108].
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In human DENV infection, neutralizing antibodies induced during DENV infection provide
life-long protection against the homologous serotype but protection against heterologous serotype
is short-lived, and cross-protection wanes over time. While cynomolgus macaques develop
neutralizing antibodies against homologous serotypes within 4 weeks after primary infection,
marmosets develop neutralizing antibodies against homologous serotypes by day 14 following
virus inoculation in primary infection [19,21,106,109]. In human DENV infection, neutralizing
antibodies against the homologous serotype remain detectable for 60 years after DENV infection [110].
Marmosets demonstrate cross-reactive neutralizing antibody against heterologous serotype following
secondary heterotypic infection [13]. In addition, rapid increased in neutralizing antibody titers in
marmosets following secondary heterologous infection mimics the antibody response pattern in human
DENV infection [12,13,109].

6. Conclusions and Future Directions

The global burden of dengue continues to increase annually and the lack of a widely available
dengue vaccine contributes to this trend. Unlike influenza, enteric bacteria, and malaria, there
is currently no licensed specific therapy for dengue; thus, human challenge models cannot be
used, and animal models remain an important component in dengue vaccine evaluation studies.
However, the development of dengue vaccines has been hampered by the lack of a reliable animal
model for dengue vaccine efficacy studies. Although there are several animal models for dengue,
there remains a need for a robust animal model that faithfully reflects the immune response patterns
and clinical signs that is comparable to that of human DENV infection, including the age-associated
clinical signs, and sustains viral replication. While mouse models are widely used to study the disease
pathogenesis, these models are less sensitive to clinical DENV strains, and so the dengue antibody
response may not accurately reflect that of human DENV infection. The NHP model is a potential useful
animal model for disease pathogenesis because NHPs are hypothesized to be hosts of DENV in sylvatic
cycles and the close genetic proximity between NHP and human. Cynomolgus macaques experienced
short-lived and low levels of viremia and exhibited an antibody response pattern similar to those of
human DENV infection but the high cost of maintenance and the lack of clinical manifestations limit
the use of cynomolgus macaques as an animal model for dengue. In contrast, marmosets consistently
develop high levels of viremia, and have exhibited antibody response patterns and clinical signs similar
to those of human DENV infection, and the cost of maintenance of marmosets are generally lower
than that of other NHPs. Thus, the marmoset model is a potentially useful animal model in DENV
challenge studies and vaccine development. Studies on cellular immunity, cytokine profile and the
protective levels of neutralizing antibodies against clinically isolated DENV using marmoset as an
animal model will further determine the suitability of marmoset as an animal model for DENV.
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