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Abstract

Rapid developments in live-cell 3D microscopy enable imaging of cell morphology and signaling 

with unprecedented detail. However, tools to systematically measure and visualize the intricate 

relationships between intracellular signaling, cytoskeletal organization, and downstream cell 

morphological outputs do not exist. Here we introduce u-shape3D, a computer graphics and 

machine-learning pipeline to probe molecular mechanisms underlying 3D cell morphogenesis and 

to test the intriguing possibility that morphogenesis itself affects intracellular signaling. We 

demonstrate a generic morphological motif detector that automatically finds lamellipodia, 

filopodia, blebs, and other motifs. Combining motif detection with molecular localization, we 

measure the differential association of PIP2 and KrasV12 with blebs. Both signals associate with 

bleb edges, as expected for membrane-localized proteins, but only PIP2 is enhanced on blebs. This 

indicates that sub-cellular signaling processes are differentially modulated by local morphological 

motifs. Overall, our computational workflow enables the objective, 3D analysis of the coupling of 

cell shape and signaling.

Introduction

Cell morphogenesis is driven by cytoskeleton-generated forces that are regulated by 

biochemical signals.1 The cascade from signaling to cytoskeleton to shape control is well 

established for numerous morphological motifs, including lamellipodia, blebs, and filopodia 
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(Fig. 1a–c, Video 1, and Supplementary Fig. 1), which depend on well-characterized 

assemblies of actin filaments (Fig. 1d–f).2 How morphology, in turn, may govern signaling 

is less investigated. Morphology may participate in signal transduction via mechanisms such 

as preferential protein interaction with membranes of particular curvature,3 or modulation of 

the concentration and diffusion of signaling components.4,5

The integrated study of signaling and morphology at subcellular length scales has become 

possible with the recent advent of high-resolution 3D light-sheet microscopy.6–11 Using 

microenvironmental selective plane illumination microscopy (meSPIM)10 of PIP2, a 

membrane-bound phosphoinositide implicated in diverse signaling pathways12, we found an 

unexpected formation of PIP2 clusters in both branched (Fig. 1g,h) and blebbed cells (Fig. 

1i,j). Three-dimensional renderings of the local concentration of PIP2 suggest that these 

clusters tend to colocalize with filopodial tufts (Fig. 1h) and blebs (Fig. 1j). KrasV12, which 

is a constitutively active GTPase with broad oncogenic functionality,13 also appears to 

colocalize with certain morphological structures (Fig. 1k,l and Videos 2,3). These 

observations pose the question of whether rugged surface geometries generally associate 

with elevated signaling, and whether there are differences in how PIP2 and Kras associate 

with cell morphologies.

Answering such questions with statistical robustness requires the interpretation of 3D 

images. Not only is the inspection and quantification of such images exceedingly laborious, 

the difficulty of representing 3D images in meaningful 2D perspectives renders the manual 

annotation of subcellular geometries extremely difficult. Automation by computer vision is 

essential. However the tools for subcellular 3D morphometry do not exist.14 Here, we 

introduce u-shape3D, a pipeline that combines computer graphics and machine learning 

approaches to unravel the coupling between cell surface morphology and subcellular 

signaling. At its core is the segmentation of any morphological motif a user can provide 

systematic examples for. We show the robustness of a once-learned motif classifier to 

changes in microscopy and cell type. We then apply the method to analyze the differential 

association of PIP2 and KrasV12 with surface blebs. Moving forward, u-shape3D will be 

instrumental to furthering our understanding of the feedback interactions between signaling, 

the cytoskeleton, and morphological dynamics in 3D.

Results

Detecting cellular morphological motifs

In designing u-shape3D, we decided to first represent the cell surface as a triangle mesh, and 

then segment the surface into motifs using machine learning (Fig. 2a–e). An alternative 

approach would be to segment the motifs directly from the raw image data on a voxel-by-

voxel basis, and then generate a surface representation with classified motifs. This would 

simplify the application of deep learning algorithms, but would require the acquisition of 

training data in the raw image volume, where manual outlining of interesting motifs can 

become exceedingly cumbersome. In contrast, the proposed machine-learning pipeline 

depends on training data that is defined on a surface representation with pre-segmented 

patches, where a few easy-to-identify examples of the motif of interest are sufficient to 
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constrain a robust classifier. This provides a versatile and efficient approach to quantifying 

diverse cellular morphologies.

To generate the cell surface, for most cells we automatically extract the mesh as an 

isosurface of the deconvolved image (Fig. 2f–h and Supplementary Fig. 2). However some 

datasets require that surface extraction parameters be tailored to the cell type and 

fluorescence label (see User’s Guide to the software package). For example, we extract the 

surfaces of actin-labeled dendritic cells as an isosurface of an image that combines the 

deconvolved image, an image with enhanced planar features, and an image with an enhanced 

cell interior (Supplementary Fig. 3).

After cell surface extraction, we decompose the surface into convex patches. People tend to 

partition 3D surfaces into convex regions,15 suggesting that canonical protrusions are likely 

convex or composed of multiple convex regions. Convex decomposition is in general an NP-

complete problem,16 and thus is computationally intractable for large meshes, even with 

extensive computing resources. We therefore combine several techniques to segment the 

surface into approximately convex patches. First, we calculate the mean curvature17 at every 

face on the mesh, and then break the surface into small patches via a watershed-based 

segmentation of mean curvature (Fig. 2i–k).18 These small patches are computationally 

manipulated more easily than individual faces and are analogous to superpixels in image 

segmentation.

Next, we iteratively merge patches using two criteria (Fig. 2l,m and Supplementary Fig. 4). 

The line-of-sight (LOS)19 criterion merges patches if the percentage of rays that connect the 

two patches without exiting the cell is above a certain threshold. Hence, fulfilling this 

criterion requires only approximate convexity between the patches. The triangle criterion10 

merges adjacent patches whose joint closure surface area, defined as the additional surface 

area needed to close the mesh composing the patch, is small compared to the sum of their 

individual closure surface areas. This criterion embodies the short-cut rule20 that the 

preferred convex shape decomposition has the shortest cuts between segments.

Approximate convex patches are then classified by morphological motif type using a 

Support Vector Machine (SVM). For each patch, 23 geometric features are calculated 

(Supplementary Table 1). Features are automatically selected for each set of training data by 

successively removing randomly chosen features until prediction quality is hampered. 

Following SVM training (Fig. 2n), the trained motif model is used to classify each patch by 

motif type (Fig. 2o,p).

The outcomes of machine learning approaches are critically dependent on training data 

quality. To generate training data, we built an interface where users can rotate 3D surfaces, 

zoom in and out, and click on patches to identify them as motifs. Presented with the same 

four randomly chosen cells, three users chose 46±6% of the patches when asked to click on 

blebs and 25±4% of the patches when asked to click not on blebs. This discrepancy carried 

over into SVM models, where for the two training sets 45±7% and 77±6% of the patches 

were identified as blebs. Asking users to click only on patches that are certainly blebs and 

then only on patches that are certainly not blebs resulted in models that classified an 
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intermediate percentage of patches, 52±6%, as blebs. To avoid bias, we therefore train 

models with data where users only choose patches they can confidently classify.

Although many morphological motifs, including blebs and filopodia, are described by a 

single convex surface patch, some motifs, such as lamellipodia, are composites of multiple 

convex patches. To detect these motifs, we merge convex patches prior to patch 

classification using a machine-learning framework (Fig. 2q–s). Thirty-six geometric features 

are calculated for each pair of patches (Supplementary Table 2), and training data is 

generated by asking users to click on adjacent patches that should certainly or certainly not 

be merged. Following sequential feature selection, an SVM is used to merge patches (Fig. 

2t,u).

We trained models to detect blebs, filopodia, and lamellipodia (Fig. 3, Video 4, and 

Supplementary Fig. 5). Most cells in our diverse data set showed predominately one 

protrusion type. However, as a proof-of-concept, we also built a multiclass detector using a 

collection of melanoma cells that exhibited extensive blebs and small numbers of filopodia 

(Fig. 4a). To do so, we generated multiple SVM models in a one-vs-one framework in which 

separate models were used to distinguish each pair of morphological motifs.

Validation and robustness of motif detection

To validate the protrusion classification, we calculated the F1 score using patches selected by 

the trainer as certainly or certainly not a protrusion. For four randomly chosen blebby 

melanoma cells, the F1 score calculated via leave-one-out-cross-validation over cells and 

averaged across three trainers was 0.986±0.006, corresponding to 1.3±0.6% incorrectly 

classified patches. This score is high, in part, because only patches users were certain about 

were included. Calculating F1 scores for the models where users clicked on all the blebs or 

all the non-blebs yielded 0.77±0.03 and 0.76±0.04 respectively. However, as discussed 

above, these training data are biased toward selecting too few and too many blebs, 

respectively. Indeed, using these training data to validate our model, we find a 16±1% false 

positive rate (5±1% false negative rate) when users are asked to click on all the blebs and a 

30±6% false negative rate (2±1% false positive rate) when users are asked to click on all the 

non-blebs. Validating over a larger number of cells with a single user, we measured an F1 

score of 0.99 for 19 MV3 cells with blebs, 0.94 for 13 HBECs with filopodia, and 0.88 for 

13 dendritic cells with lamellipodia (Fig. 4b and Supplementary Fig. 6a,b).

We also tested other machine learning algorithms. We anticipated that the classifier 

performance would be primarily feature driven, rather than algorithm driven. Indeed, using 

random forests, linear SVMs, and radial SVMs to detect filopodia and varying the number of 

rounds of feature selection, we calculated F1 scores of between 0.934 and 0.944 for almost 

all algorithms (Supplementary Table 4). This suggests that in our workflow linear SVMs 

perform as well as a broad class of machine learning algorithms.

Conversely, a carefully chosen feature set might be able to distinguish motifs from non-

motifs using even an unsupervised algorithm that does not require training. We 

hierarchically clustered all convex surface patches on a set of seven blebby cells into two 

clusters using such an algorithm (Supplementary Fig. 7). Although one of the clusters 
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substantially overlaps with the bleb detection, the supervised algorithm clearly performs 

better.

Because of the selective power of the geometric feature set, our workflow requires relatively 

little training data. One user training on just one cell in a dataset of 19 blebby cells, yields an 

F1 score of 0.94±0.04 (mean ± standard deviation) on the remaining cells (Fig. 4c and 

Supplementary Fig. 6c). Additional training data improves the model accuracy marginally, 

suggesting that models generated by a single user on different data sets would be similar. 

Indeed, models trained by a single user on distinct sets of four MV3 cells show 95.9±0.7% 

overlap, as measured by the Sorrenson-Dice index.21 This compares to an 88±3% overlap 

between models generated by different users (Supplementary Fig. 6d). To maximize 

reproducibility, our classifiers therefore incorporate training data from multiple users via 

majority voting.

Motif models from one cell type can be extended to dissimilar cell types, enabling objective 

comparisons across biological systems. Applying a bleb model generated from 19 cells 

originating from a melanoma cell line to 24 cells originating from a human melanoma 

xenografted into mice yields an F1 score of 0.97 (Fig. 4d). Likewise, applying a filopodia 

model generated from 9 melanoma cells to 13 transformed HBEC cells yields an F1 score of 

0.90 (Fig. 4e).

The classifier can also be used to compare perturbed and non-perturbed cell populations. To 

test whether greatly different cell morphologies confound the detection of particular motifs, 

we used identical analysis parameters to measure the fraction of the cell surface that is 

blebby in wildtype U2OS cells and cells where the actin regulatory proteins cofilin-1 and 

Wave2 were knocked out with CRISPR (Fig. 4f,g). Compared to wildtype cells, CFL1 
knockout (cofilinKO) cells exhibit greater cell-to-cell heterogeneity in their bleb surface 

fraction as well as a larger mean bleb fraction. WASF2 knockout (WaveKO) cells exhibit 

even greater heterogeneity and a yet larger mean fraction.

So far, we have presented data acquired via meSPIM, a high-resolution light-sheet 

microscope with nearly isotropic resolution.10 On microscopes with anisotropic resolution, 

the motif structure varies with orientation relative to the microscope. To test if resolution 

anisotropy impedes motif detection, we analyzed blebby cells imaged via a laser scanning 

confocal microscope (Fig. 5a,b). Blebs appeared stretched in the axial (z) direction 

(Supplementary Fig. 8), however the workflow still achieved an F1 score of 0.94 

(Supplementary Fig. 9). Standard light-sheet microscopy also has reduced axial resolution 

compared to meSPIM. Analyzing microglial cells imaged in vivo within a zebrafish via a 

lower resolution commercial light-sheet microscope, we successfully detected extensions 

(Fig. 5c,d). These findings demonstrate that our pipeline can analyze data from conventional 

microscopes with anisotropic resolution.

To determine whether motif models were transferable among similar microscopes, we 

directly applied meSPIM motif models to cells imaged by other high-resolution light-sheet 

microscopes. Detecting blebs on cytosolically labeled cells imaged by axially swept light 

sheet microscopy (ASLM),9 we measured an F1 score of 0.96 for both meSPIM and ASLM 
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derived models (Fig. 5e,f). Analyzing previously published movies, we used a meSPIM 

derived model to detect lamellipodia on a T cell imaged by lattice light-sheet microscopy8 

(Fig. 5g,h), and trained a new model to detect extensions on a human breast cancer cell 

moving through the vasculature of a zebrafish embryo imaged by adaptive-optics lattice 

light-sheet microscopy22 (Fig. 5i and Video 5). Together, these test cases show the broad 

applicability of u-shape3D, allowing objective comparisons between large numbers of 

diverse datasets.

Kras and PIP2 signals associate differently with blebs

Equipped with a computational framework to analyze 3D cell morphology, we set out to 

identify relationships between morphological motifs and signaling events. We focused on 

blebs as the predominant morphological feature of melanoma cells in soft 3D 

environments10 and sought to measure how PIP2 and constitutively active KrasV12, may 

associate with this motif. Both KrasV12 (Fig. 1l) and PIP2 (Fig 1j) appear to polarize and 

associate with blebs. To test these hypotheses, we measured the localization of KrasV12 

within 2 μm of the cell surface for 13 MV3 melanoma cells (Fig. 6a,b). We computed at 

every mesh face the average fluorescence intensity in a sphere around that face, including 

only pixels within the cell and correcting for surface curvature-dependent artifacts by depth-

normalization.23 In addition to blebs, cells expressing GFP-KrasV12 exhibited retraction 

fibers and uropods, which could lead to bias. To exclude these structures from the analysis, 

we built a retraction fiber/uropod detector and subtracted those patches from the set of 

detected blebs (Supplementary Fig. 10). Next, using spherical statistics we found that the 

KrasV12 distribution on the cell surface was polarized (Fig. 6c). Likewise, blebs and KrasV12 

surface intensity were directionally correlated (Fig 6d). However, randomizing the location 

of blebs on the surface, the directional correlation of KrasV12 with blebs was not 

significantly different than random. This suggests that KrasV12 and bleb polarization are 

correlated partially through their joint coupling to global cell shape. Measuring the mean 

KrasV12 localization on and off detected blebs, we found no statistically significant 

difference (Fig. 6e). However, KrasV12 does localize to bleb edges (Fig. 6f). In contrast, 

cytosolic GFP showed no localization to bleb edges (Fig. 6f). This confirms that the 

modulation of KrasV12 across the cell surface is related to the distribution of blebs. To 

further examine the mechanism of this association we measured bleb density locally over a 

scale less than that of a single bleb by simulating the diffusion on the mesh of the motif 

classification label (Supplementary Fig. 11a,b). In this representation, high density values 

localize to the bleb center, low values to areas away from any bleb, and intermediate values 

colocalize with bleb edges. In agreement with our previous conclusion, high KrasV12 signal 

associated with intermediate local bleb densities (Supplementary Fig. 11c). Thus, these 

analyses suggest that KrasV12 may be organized to bleb edges. This may at first seem 

surprising: KrasV12 is a constitutively activated GTPase without spatially organized 

interactions with GEFs, GAPs and GDIs. Accordingly, the KrasV12 distribution is expected 

to be dominated by diffusion within the plasma membrane with an overall uniform steady 

state. Simulations of uniformly labeled surface distributions in synthetic cells demonstrate 

an intensity co-modulation with bleb edges for a variety of surface thicknesses, but not for 

cytosolically labeled cells (Supplementary Fig. 11e). This shows that the KrasV12 

localization at bleb edges is consistent with a uniform surface distribution. This discovery 
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also shows how, in 3D, cell morphological motifs alone offer a mechanism for the spatial 

organization of molecular signals at the subcellular scale.

We next analyzed MV3 cells expressing PLCΔ-PH-GFP (Fig 6h,i), a PIP2 translocation 

biosensor that reports the activation of PIP2. Like KrasV12, the surface localization of PIP2 is 

polarized (Fig 6j), and blebs and PIP2 are directionally correlated (Fig. 6k). However unlike 

KrasV12, the directional correlation of PIP2 with blebs was significantly different than that of 

PIP2 with randomized bleb distributions. Hence, PIP2 polarization is directly correlated with 

bleb polarization rather than coupled via the overall cell shape. Indeed, PIP2 localizes to 

blebs, with each cell exhibiting a higher mean PIP2-intensity on blebs than off (Fig. 6l). 

Consistent with a surface fluorescence distribution, PIP2 like KrasV12 also associates with 

bleb edges (Fig. 6m). However, whereas KrasV12 localization falls off with increasing 

distance from a bleb edge both on and off blebs, PIP2 localization falls off with increasing 

distance from a bleb edge only in regions that are not identified as blebs. Similarly, high 

PIP2 activity associates with intermediate local bleb densities (Supplementary Fig. 11d), 

whereas low PIP2 activity associates with small but not with high local bleb densities. This 

shows a specific recruitment of active PIP2 to the entire bleb surface. The mechanism 

underlying this process remains elusive.

Our workflow supports many other types of analyses relating cell morphology and 

molecular distributions. For example, underlying the extraction of morphological motifs are 

geometric properties that can be analyzed. Measuring bleb volume, we found that small and 

large blebs show similar association with KrasV12 (Fig. 6g), whereas large blebs show 

greater association with PIP2 than small blebs (Fig. 6n). Cytosolically labeled cells show no 

association of intensity with bleb volume (Supplementary Fig. 11f).

Since the study of many signaling pathways benefits from measuring not just morphology, 

but also morphodynamics, we developed a measure of boundary motion at each mesh face. 

Fig. 6o shows the PIP2 activation of an MV3 cell, and Fig. 6p shows that cell’s boundary 

motion. Measuring the motion difference over ~30 sec, which is on the order of the bleb 

lifetime,24 we found that blebs preferentially associate with regions of protrusive motion 

(Fig. 6q). We also observed that regions of high PIP2 tend to be more retractive than regions 

of low PIP2 (Fig. 6r), which is consistent with increased PIP2 localization on blebs because 

blebs form and retract cyclically. These and other evidence of relations between local 

surface geometry and PIP2 activation will be essential to uncovering the mechanism of a 

bleb-formation and bleb-size dependent organization of PIP2 signals.

Discussion

High-resolution 3D light-sheet microscopy,6–11 has enabled the direct observation of 

subcellular molecular processes. However, incorporating these observations into a 

framework for unbiased data exploration, hypothesis testing, and ultimately the development 

of new biological theories remains a challenge.

The majority of publications describing innovations in 3D microscopy end with the 

appealing rendering of a few images on a 2D screen. Even this mere visualization task 
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imposes a particular perspective and thus introduces bias.14 Moreover, compared to 1D and 

2D features, such as length and area, human observers exhibit decreased ability to assess 3D 

features, such as shape and volume.25 Thus, to turn innovation in 3D imaging into biological 

insight, computing infrastructures are required that minimize the need for human visual 

interpretation when comparing datasets.

Here, we focused on algorithms that enable the analysis of biological surfaces at the scale of 

single cells. We developed an algorithm to detect diverse morphological motifs on the cell 

surface using machine learning. As a demonstration, we trained classifiers for blebs, 

filopodia, lamellipodia, among other motifs. To detect a new type of morphological motif, 

users need only click on examples of surface regions that are and are not that motif. This 

detector is one of the first image analysis tools for cell biology that incorporates techniques 

from computer graphics. With the rapid rise of 3D microscopy, computer graphics methods 

will become an important factor in biological discovery.

In addition to a morphological motif detector, we developed an integrated suite of tools for 

investigating the coupling between morphology, morphology change, and intracellular 

signaling. Since signaling networks are usually highly nonlinear, the spatial distribution of 

signaling molecules can greatly affect downstream signaling. Cells take advantage of this 

effect to control signaling via spatial localization in myriad ways including 

compartmentalization, phase separation, and active transport. Cell morphology may also 

govern signaling. For example, we found that on blebby melanoma cells both KrasV12 and 

PIP2 polarize with blebs. PIP2 is enriched on blebs, whereas KrasV12 is not. Investigating 

further, we discovered that KrasV12 localizes to bleb edges and that its distribution is 

consistent with that of a membrane label. Together, these data suggest the possibility that 

membrane wrinkling alone or enrichment on blebs could modulate nonlinear signaling 

networks by concentrating membrane-bound proteins. These two examples also illustrate 

how u-shape3D supports i) the acquisition of maps and statistics of the spatial modulation of 

protein concentrations that would be inaccessible by visual inspection; and ii) the numerical 

treatment of complex geometric arrangements that are at the root of non-intuitive cell 

behaviors. In future, these features of u-shape3D will enable projects ranging from cell 

behavioral screens and FRET measurements linking signaling to morphology to molecularly 

specific investigations of 3D signaling in vivo.

Online Methods

Cell culture and genetic engineering

Cells were cultured at 5% CO2 and 21% O2. MV3 melanoma cells (a gift from Peter Friedl 

at MD Anderson Cancer Center) were cultured using DMEM (Gibco) supplemented with 

10% fetal bovine serum. Primary melanoma cells (a gift from Sean Morrison at UT 

Southwestern Medical Center) were cultured using the Primary Melanocyte Growth Kit 

(ATCC). Human bronchial epithelial cells (HBEC; a gift from John Minna at UT 

Southwestern Medical Center), immortalized with Cdk4 and hTERT expression and 

transformed with p53 knockdown, KrasV12, and cMyc expression,26 were cultured in 

keratinocyte serum-free medium (Gibco) supplemented with 50 mg/ml of bovine pituitary 

extract (Gibco), 5 ng/ml of EGF (Gibco), and 1% Anti-Anti (Gibco). U2OS osteosarcoma 
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cells (a gift from Dick McIntosh at the University of Colorado, Boulder) were cultured using 

high-glucose DMEM (Gibco) supplemented with pyruvate, stable glutamine, and 10% fetal 

bovine serum. Conditionally immortalized hematopoietic precursors to dendritic cells27 that 

express Lifeact-GFP28 (a gift from Michael Sixt, IST Austria) were cultured and 

differentiated as previously described.29

Unless stated otherwise, fluorescent constructs were introduced into cells using the pLVX 

lentiviral system (Clontech) and selected using antibiotic resistance to either puromycin or 

geniticin. The GFP-tractin construct contains residues 9–52 of the enzyme IPTKA30 fused to 

GFP.31 The CyOFP-tractin peptide contains the tractin peptide fused to the CyOFP protein. 

CyOFP is a cyan-excitable orange fluorescent protein with peak excitation at 505 nm and 

peak emission at 588 nm.32 The GFP-KrasV12 plasmid was constructed by cloning a 

KrasV12 fragment from the pLenti-KrasV12 construct26 into the pLVX-GFP vector. The 

biosensor for PIP2, PLCΔ-PH-GFP, encodes a PI(4,5)P2 lipid selective PH domain that can 

be used as a fluorescent translocation biosensor to monitor changes in the concentration of 

plasma membrane PI(4,5)P2 lipids.33 Some MV3 cells expressing GFP in the cytosol and 

imaged via meSPIM, appeared in a previous publication, and were analyzed here as a 

control population.10

For the CRISPR knockouts, U2OS cells were transiently transfected with pX458 including 

gene-specific guide RNAs together with a self-cleaving donor vector to deliver a blasticidin 

S resistant cassette into the genomic cut site. Cells were selected with 5 μg/ml blasticidin S 

and surviving colonies were isolated using 6 mm Pyrex cloning cylinders (Sigma-Aldrich). 

The pSpCas9(BB)-2A-GFP (pX458) was a gift from Dr. Feng Zhang (Addgene plasmid # 

48138). The self-cleaving donor vector pMA-tial1 was a kind gift from Dr. Tilmann 

Buerckstuemmer (Horizon Genomics, Vienna, Austria). Guide RNA sequences were cloned 

into pX458 by Golden Gate cloning utilizing the BbsI cut site. Guide RNA sequences 

targeting Wave2 (WASF2; exon 3) and cofilin-1 (CFL1; exon 2) were 5’- 

TGAGAGGGTCGACCGACTAC −3’, and 5’- CGTAGGGGTCGTCGACAGTC −3’, 

respectively. Gene knockout was verified by western blotting using rabbit anti-cofilin-1 (Cell 

Signaling; D3F9 XP # 5175) and rabbit anti-Wave2 (Cell Signaling; D2C8 XP #3659) 

antibodies (Supplementary Fig. 12).

Imaging

Unless stated otherwise, imaging was performed via microenvironmental selective plane 

illumination microscopy,10 a type of two-photon Bessel beam light sheet microscopy that 

confers near-isotropic resolution (300 nm lateral, 340 nm axial) and permits recording of cell 

behavior several millimeters from mechanically perturbing hard surfaces. Images were 

acquired at 37 °C in a non-descanned image capture mode with an axial step size of 160 or 

200 nm and an excitation wavelength of 900 nm. Melanoma cells were imaged in cell 

culture medium supplemented with HEPES buffer to maintain pH during imaging.

Confocal imaging was performed using a Zeiss LSM 780 with a 40x (1.4 NA) objective. 

Microglia were imaged within zebrafish using a Zeiss Lightsheet Z.1 with 20x detection (1.0 

NA) and 5x illumination (0.1 NA) objectives. The zebrafish line was P2Y12::P2Y12-GFP 
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and was 3.5 dpf. Axially swept light-sheet microscopy (ASLM) imaging was performed 

using a custom-built microscope as previously described.9

U2OS cells were allowed to spread overnight in pH-neutralized rat-tail collagen (3 mg/ml) 

prior to imaging. All other cells, except for those imaged by the Peri and Betzig laboratories, 

were imaged in collagen gels created by mixing bovine collagen I (Advanced Biomatrix) 

with concentrated PBS and water to a collagen density of 2.0 mg/ml. This collagen solution 

was then neutralized with 1 M NaOH and mixed with cells just prior to incubation at 37 °C 

to induce collagen polymerization. U2OS cells and MV3 cells imaged via confocal 

microscopy were fixed in 4% paraformaldehyde prior to imaging.

Image deconvolution

All microscopy images shown are raw, non-deconvolved images. However, as a first analysis 

step, we deconvolved each 3D image. Most images acquired via meSPIM were Wiener 

deconvolved as previously described.10 The microscope’s point spread function (PSF) was 

measured using fluorescent beads. The Wiener parameter, which is the inverse of the signal-

to-noise ratio, was usually set to 0.018. However, to better detect the dim ends of filopodia, 

it was set to 0.015. For cytosolically labeled cells, we automatically estimated the Wiener 

parameter in each frame by defining the signal as the average fluorescence intensity within 

the cell and the noise as the standard deviation of the fluorescence intensity outside the cell. 

Supplementary Fig. 2 shows the effect of varying the Wiener and other deconvolution 

parameters, and Supplementary Table 5 shows the deconvolution and surface extraction 

parameters for all datasets presented in this paper. Since Wiener deconvolution is sensitive to 

PSF quality, for images acquired via microscopy modalities other than meSPIM, we used the 

Richardson-Lucy deconvolution algorithm built-in to Matlab. The movie of the MDA-

MB-231 human breast cancer cell was deconvolved as previously described.22

Following deconvolution, an apodization filter was applied to the optical transfer function 

(OTF) of the image in the spatial frequency domain. This filter had a value of 1 at the origin 

and decayed linearly to 0 at the edge of the filter support, which is set by the user as a 

percentage of the maximum OTF value. This threshold value, here termed the apodization 

height, was usually adjusted according to the homogeneity of the fluorescence label and the 

fineness of the morphological motif being detected. Higher apodization heights smooth the 

image more and allow for more robust detection of large objects, whereas lower apodization 

heights allow for the detection of finer structures but also admit more noise.

Cell surface extraction

The deconvolved images were further processed prior to cell surface extraction. For the 

majority of data sets, an Otsu threshold was first calculated from the 3D image,34 holes were 

filled using a 3D grayscale flood-fill operation, and objects disconnected from the main cell 

were removed. We also optionally smoothed the image with a 3D Gaussian kernel and 

applied a gamma correction. Matlab’s isosurface function was then used to create a triangle 

mesh at the intensity value specified by the Otsu threshold. Finally, the triangle mesh was 

smoothed using curvature flow smoothing.35
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For some datasets, this procedure does not segment the nucleus along with the cytoplasm. In 

these cases, we therefore combined the output image of the procedure described above with 

an “inside” image that segmented the cell interior. To create the “inside” image from the 

gamma corrected image, we applied an additional gamma correction, smoothed the image 

with a 3D Gaussian kernel of standard deviation 2 pixels, Otsu thresholded the image, 

morphologically dilated the image, filled holes in each xy-slice, morphologically eroded the 

image by a radius greater than the morphological dilation, and finally smoothed the binary 

image with a 3D Gaussian kernel of width 1 pixel. Since this process shrinks the cell, if the 

parameters are chosen correctly the edges of the morphological motifs should mostly lay 

outside the “inside” image. To combine the “inside” image with the image outputted by the 

procedure above, we normalized this image by its Otsu threshold value, took the pixel-by-

pixel maximum of this image and the “inside” image, and extracted a triangle mesh as an 

isosurface at an intensity level of 1.

The ends of the long, thin lamellipodia of dendritic cells fail to segment using the techniques 

described above. To better segment lamellipodia, we combined the “inside” and normalized 

deconvolved images described above for PIP2 labeled cells with a “surface filtered” image 

that enhances planar features, such as lamellipodia (Supplementary Fig. 3). The surface 

filter, which was developed by Elliott et al.,23 uses multiscale Gaussian second order partial-

derivative kernels of the form

s x i, ω = 1
si, ω 2π ∑x′

x′ ∈ Ωk ∂2e
− x − x′ 2

2σi, ω2
∂xi2

I(x′), (1)

where I(x) is the image intensity, σi,ω is the half width of the Gaussian in dimension i at 

scale ω, Ωk is the filter kernel support, and s(x)ω is the filter response at scale ω. The total 

filter response, S(x), is merged across scales via

S x = max s x ω σω ω = 1, …, n , σω = 2ω − 1 . (2, 3)

We used filter scales 1.5, 2, and 4 pixels to segment lamellipodia of various thicknesses. To 

combine the response of the surface filter with the “inside” and normalized deconvolved 

images, we normalized the response by subtracting both the mean image intensity and twice 

the standard deviation of the image intensity prior to dividing by the standard deviation of 

the image intensity.

Although not used in this paper, our software also includes the option to segment cells by 

combining a normalized deconvolved image with a steerable filtered image. Steerable filters 

are computationally efficient edge detectors that, depending upon the parameters chosen, 

enhance linear or planar structures at specified scales.36,37

Segmentations were spot checked by thresholding the 3D image at the isosurface intensity 

value immediately prior to mesh extraction and examining the overlaid raw and thresholded 

images as 3D image stacks in ImageJ38 (Supplementary Fig. 13). For analyses where 

internal mesh cavities could alter results, meshes were also exported to ChimeraX39 for 
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further examination. Segmentations that were found to be inaccurate or had cavities were 

excluded from further analysis.

Decomposition of the cell surface into convex patches

Although the image deconvolution and cell surface extraction parameters require 

customization for different cell types, the remainder of the workflow does not, and its 

parameters were kept constant throughout the paper.

To decompose the cell surface into convex patches, we first performed a watershed 

segmentation of surface mean curvature, as previously described.10 This oversegments the 

cell surface into small patches, which are analogous to superpixels in image analysis, which 

we later merge to create convex patches. First, we calculated the mean and Gaussian 

curvature at every triangle face.17,23 Next, we constructed an adjacency graph of faces where 

each face is a node that is connected to exactly three other spatially adjacent faces. Matlab’s 

isosurface function does not always produce triangle meshes with sufficient topological 

consistency to create such a graph. Our software fixes common topological inconsistencies, 

such as triangular edges that are only connected to one face. Rarely, however, a face graph 

cannot be constructed. In these situations, very slightly changing the image deconvolution 

parameters usually solves the problem, although we did not need to do so here. Since 

curvature can be noisy, we next smoothed mean curvature in two different ways. First, we 

used a kd-tree to median filter curvature in 3D space over 2 pixels. The meSPIM is Nyquist 

sampled, and so 2 pixels, which is 320 nm, is approximately the microscope’s spatial 

resolution. Second, to reduce spurious curvature fluctuations, we diffused mean curvature on 

the mesh using a diffusion kernel40,41 according to the equation

S = AkR (4)

for 20 iterations, where R is the curvature, A is a normalized, weighted adjacency matrix of 

the faces graph, k is the number of iterations, and S is the smoothed curvature. We defined A 
as

Aij =

1, if i = j
1

dij
, if i is adjacent to j

0, otherwise

(5)

where dij is the distance between faces i and j. To normalize A, we multiplied it by a 

diagonal matrix, where each diagonal element was the inverse of the sum of that row. Next, 

we performed a watershed segmentation of the smoothed curvature over the cell surface.18 

Watershed segmentations are often performed on 2D images, where each pixel is adjacent to 

exactly four other pixels. Here, we similarly performed a watershed segmentation over the 

adjacency graph of faces, where each face is adjacent to exactly three faces.

We next merged adjacent patches using a spill depth criterion.18 Here, the spill depth 

between two adjacent patches was defined as the maximum curvature of the two patches 

minus the maximum curvature at the patch-patch interface. This is analogous to the depth of 
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water that the patch can hold before spilling into the neighboring patch. Starting with the 

smallest spill depth, we merged patches until no spill depth was below a cutoff of 0.6 times 

the Otsu threshold of mean curvature for the cell. Supplementary Fig. 4 shows the effect of 

altering the spill-depth cutoff and other patch merging parameters.

Finally, we decomposed the surface into approximately convex patches by iteratively 

applying the triangle and line-of-sight (LOS) criteria. To apply the triangle criterion,10 we 

first calculated the closure surface area for each patch and pair of adjacent patches. We 

defined the closure surface area as the minimum additional surface area needed to create a 

closed polyhedron from a surface patch. We then merged adjacent patches if they meet the 

criterion

σA + σB − σAB
σAσB

> ρ, (6)

where σA and σB are the closure surface areas of the two patches, σAB is the closure surface 

area of the merged patch, and ρ is the triangle cutoff parameter, which we here set to 0.7. 

The triangle criterion can be thought of as similar to the law of cosines and intuitively seeks 

to merge patches that meet at small angles. Starting with the largest ρ, we merged all pairs of 

patches that met the triangle criterion before applying the LOS criterion.

The LOS criterion merges adjacent patches with high mutual visibility.19,42 We defined the 

mutual visibility of patches A and B as the percentage of line segments that connect a face in 

A with a face in B that are lines of sight, where a line of sight is a line segment that falls 

entirely within the mesh. We calculated mutual visibility by randomly selecting a face on 

each patch, and using a triangle-ray intersection43 algorithm to determine whether a line 

segment connecting the two faces exited and reentered the mesh. A small patch and an 

adjacent very large patch may have a large mutual visibility because of lines of sight that 

extend across the width of the cell, even if these two patches should not be merged. When 

merging two patches, we therefore discarded line segments that were longer than twice the 

smaller patch size. Supplementary Fig. 14a shows the convergence of mutual visibility as a 

function of the number of line segments tested. We calculated mutual visibility from 20 line 

segments per pair of patches. In an exact convex decomposition, any two points within any 

patch could be connected by a line of sight. However, because of biological variation and 

image noise, requiring a mutual visibility of 1 is too strict a requirement for cell images. We 

instead merge patches if their mutual visibility is greater than 0.7. Starting with the largest 

mutual visibility between patch pairs, we merged all patch pairs meeting the LOS criterion, 

before again applying the triangle criterion.

Having three patch merging criteria for convex surface decomposition allows us to balance 

accuracy, speed, and robustness to noise. The spill-depth criterion is fast but potentially 

inaccurate, whereas the LOS criterion is relatively slow, but exact. The triangle criterion 

implements the short-cut rule,20 which biases merging towards certain types of convex 

decompositions. By adjusting the three merging parameters, users can control which criteria 

dominate in their analysis.
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Classification of morphological motifs

To classify each patch by morphological motif, we first performed feature selection on the 

geometric patch features listed in Supplementary Table 1. Implemented by the Matlab built-

in function sequentialfs(), our sequential feature selection randomly successively removed 

features as long as doing so reduced the misclassification rate. The misclassification rate was 

measured using 10-fold cross validation. The geometric features selected can vary 

considerably from dataset to dataset even for similar training sets, presumably because of 

correlations between features, randomness, and dataset differences. For example, 

Supplementary Table 6 shows the features selected for bleb detection models generated by 

three different users training on the same four cells. In this example, no feature was selected 

by all three models, and no two models shared more than two selected features. Once 

features were selected, features were normalized to have the same mean and standard 

deviation, and a linear support vector machine (SVM)44 was used to classify patches. Since 

SVM models vary from user to user, to analyze actin, Kras, and PIP2 localization, we had 

models created by three different users vote on the classification of each bleb.

We also validated our workflow with the linear SVM replaced with a radial SVM or a 

random forest.45 Supplementary Table 6 shows the precision, recall, and F1 score of these 

algorithms for various iterations of feature selection. For the radial SVM, we used the 

Gaussian kernel,

K xj, xk = e− xj − xk 2 . (7)

To implement the random forest, we used the treeBagger() function in Matlab. Measuring 

the out-of-bag classification error as a function of the number of trees grown, we observed 

that the error plateaued at approximately 10 trees, which is well below the 30 and 200 tree 

forests that we tested.

To compare our workflow, which employs a supervised machine-learning algorithm, to an 

unsupervised algorithm, we performed an agglomerative hierarchical clustering on all the 

patches and the patches classified by the supervised algorithm as motifs of interest 

(Supplementary Fig. 7), respectively. We used the correlation as a distance metric and 

measured the distance between a pair of clusters as the average distance between any two 

pairs of patches in these clusters. To avoiding biasing the algorithm, we only clustered on 

statistics defined at the patch scale, and did not include cell scale statistics, such as cell 

volume.

Characterization of patches

To classify patches by morphological motif, we calculated geometric descriptions of each 

patch. The full list of 23 features used by the SVM classifier is provided in Supplementary 

Table 1. In calculating these features, mean curvature was smoothed as described above, but 

Gaussian curvature was not. We defined the average patch position as the mean location of 

the faces in the patch, and we similarly defined the weighted average patch position as the 

mean location of the faces weighted by curvature. The feature ‘variation from a sphere’ was 
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defined by the standard deviation of the distances from a patch’s faces to the average patch 

position divided by the mean distance of those faces to the average patch position. We 

defined the closure surface area as described above. The closure center was also defined as 

the mean position of the mesh vertices at the patch edge. We defined the patch radius as the 

mean distance of the patch’s faces from the closure center.

The volume, V, was calculated using the equation

V = 1
6 ∑i

N v1, i · v2, i × v3, i , (8)

where N is the number of faces, and v1,i, v2,i, and v3,i are the vertices of face i. The vertices 

must be ordered such that the face normal extends outwards from the cell. To derive this 

equation, the mesh can be thought of as decomposed into tetrahedrons where the vertices of 

each tetrahedron are those of a face combined with the origin.46 The signed volumes of the 

tetrahedrons sum to the volume of the mesh. Patches were closed prior to calculating their 

volumes.

We calculated the shape diameter function similarly to Shapira et al.47 For each patch, we 

randomly picked 20 mesh faces on the patch and extended a ray inwards from the mesh face 

at a randomly chosen angle within π/3 of the direction opposite to the face’s normal. We 

calculated the distance each ray traveled before intersecting the opposite side of the mesh. 

The shape diameter function of the patch was then defined as the mean travel distance within 

one standard deviation of the median distance.

Features selected for patch classification

The feature selection algorithm selected different geometric features to detect the three 

morphologies. To determine which geometric features best distinguished morphologies, 

starting from no features, we successively added the most discriminative feature to the 

model (Supplementary Table 3). The features that best distinguished blebs from non-blebs 

were volume / (closure surface area)3/2 and mean curvature on the protrusion edge. Closure 

surface area is the minimum amount of additional surface area needed to create a closed 

polygon from the mesh of the patch. The features that best distinguished filopodia from non-

filopodia were the distance from the center of the closure surface area to the mean face 

position, a measure of morphological feature length, and patch surface area. This same 

measure of morphological feature length as well as patch volume were the best features for 

distinguishing lamellipodia from non-lamellipodia.

Optional merging of convex patches

Some morphological motifs, such as lamellipodia and flagella, are not convex but are 

composed of multiple convex regions. To detect such motifs, we optionally merge convex 

patches into patch composites. Since adjacent patches that compose a larger structure often 

have smooth curvature at their interface, we first merge patches using a modified line of 

sight criterion with line segment length capped at 10 pixels and a mutual visibility cutoff of 

0.7. The line of sight criterion is described above. This step is not required for convex patch 

merging and can be disabled by the user. We next employed a more versatile machine 
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learning based framework to merge adjacent patches. Using the geometric features for pairs 

of adjacent patches listed in Supplementary Table 2, as well as user provided training data, 

we trained an SVM to automatically merge patches. We used the same feature selection 

procedure and SVM parameters as for patch classification.

Characterization of adjacent patches

To merge adjacent patches into patch composites using an SVM, we calculated geometric 

characterizations of each pair of adjacent patches. The full list of 36 features used by the 

SVM is provided in Supplementary Table 2. Some measures of patch pairs incorporate 

individual patch measures, which are described above. Unless otherwise specified, mean 

curvature was smoothed as described above, but Gaussian curvature was not.

To better describe the surface geometry at patch-patch interfaces, we calculated the two 

principal curvatures, κ1 and κ2, everywhere on the cell surface,

κ1 = H + H2 − K, κ2 = H − H2 − K, (9, 10)

where H is the unsmoothed mean curvature and K is the unsmoothed Gaussian curvature. 

For various geometries defined by principal curvature values, we then calculated the fraction 

of the interface that had that geometry. As a noise threshold, we used the standard deviation 

of the smoothed mean curvature. Principal curvatures above this threshold or below the 

negative of this threshold were defined as large, and those more than four times above or 

below it as very large. We defined a ridged geometry as a large positive κ1 and a small κ2, a 

very ridged geometry as a very large positive κ1 and a small κ2, a valley-like geometry as a 

small κ1 and a large negative κ2, a very valley-like geometry as a small κ1 and a very large 

negative κ2, a domed geometry as a large positive κ1 and a large positive κ2, a cratered 

geometry as a large negative κ1 and a large negative κ2, a flat geometry as a small κ1 and a 

small κ2, and a saddle-like geometry as a large positive κ1 and a large negative κ2.

Generation of training data

We designed a graphical user interface to enable the collection of training data necessary for 

motif classification. Users are shown a surface rendering of a cell with surface patches 

outlined and can interact with the cell by rotating and moving it, and zooming in and out on 

regions of interest. To generate data for patch classification, we asked users to click on 

patches that are certainly the morphological motif of interest and then subsequently asked 

them to click on patches that are certainly not that motif. Similarly, to generate data for the 

optional step of convex patch merging, we asked users to click on pairs of patches that 

should certainly be merged and then asked them to click on pairs of patches that should 

certainly not be merged. Pairs of patches that were not adjacent were automatically excluded 

from the training set. We have successfully tested this interface in Matlab versions R2017b 

and R2013b. However, since in Matlab user interface functionality can vary from version to 

version, it may not work in some versions of Matlab.
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Validation

To validate the protrusion classification, we calculated the F1 score, which is the harmonic 

mean of precision and recall. Here, precision is defined as the ratio of patches correctly 

classified as protrusions to the total number of patches classified as protrusions, whereas 

recall is defined as the ratio of patches correctly classified as protrusions to the total number 

of patches that are protrusions. Unless otherwise specified, in calculating the F1 score, we 

only used patches selected by the trainer as certainly a protrusion or certainly not a 

protrusion.

Generation and analysis of synthetic images

For algorithm validation, we created synthetic spherical cells of radius 48 pixels. The cell 

size was chosen to mimic the pixel spacing on the meSPIM of 0.16 μm per pixel for a cell 

7.6 μm in radius. Placed randomly on the cells’ surfaces were spherical blebs that ranged in 

radius from 2 to 32 pixels and in number from 4 to 256 per cell. (See Supplementary Fig. 15 

for example synthetic cells). Since pixelation at the cell edge could hamper the cell surface 

extraction and subsequent analysis, edge pixels were subdivided into a finer 3D grid to 

calculate the percentage of the pixel occupied by the synthetic cell. The final synthetic 

images were saved with 32 grayscale intensity values. Synthetic cells were not deconvolved, 

but the remainder of the analysis workflow was identical to that used for microscopic data. 

The same surface extraction parameters were used as for bleb detection on tractin and 

cytosolically labeled cells.

An F1 score does not measure whether or not the workflow preferentially detects certain 

subtypes of protrusions. Since patch-merging algorithms could be sensitive to protrusion 

size, we used synthetic data to test the algorithm’s sensitivity to bleb size (Supplementary 

Fig. 15). On synthetic cells of radius 7.6 μm (48 pixels) we simulated blebs ranging in radius 

from 0.32 μm (2 pixels) and 0.64 μm (4 pixels) to 5.1 μm (32 pixels). Although only 70% of 

the smallest 0.32 μm radii blebs were decomposed as convex surface patches, almost all of 

the larger blebs were decomposed. A bleb detector trained on synthetic data correctly 

classified all blebs that were decomposed as convex surfaces.

Mapping fluorescence intensity to the cell surface

To measure the fluorescence intensity local to each mesh face, we used the raw, non-

deconvolved, fluorescence image. At each mesh face, we used a kd-tree to measure the 

average pixel intensity within the cell and within a sampling radius of the mesh face. To 

correct for surface curvature dependent artifacts, we depth normalized23 the image prior to 

measuring intensity localization by normalizing each pixel by the average pixel intensity at 

that distance interior to the cell surface. Prior to analysis, we also normalized each cell’s 

surface intensity localization to a mean of one.

Calculation of distance from a bleb edge

On the adjacency graph of faces, we calculated the distance from each face to the nearest 

bleb edge measured in number of faces traversed. To convert this distance to micrometers, 

we multiplied by the average distance between faces for each cell in each frame. Since the 
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distance in micrometers between adjacent faces varies, our calculation of distance is an 

estimate rather than exact.

Calculation of local bleb density

To calculate bleb density, we first assigned the value one to each mesh face on a bleb and the 

value zero to each mesh face not on a bleb (Supplementary Fig. 11a). We then diffused these 

values on the mesh surface using Eq. 4 over 600 iterations (Supplementary Fig. 11b). We 

choose the number of iterations such that the bleb density would be calculated over a short 

distance on the order of a bleb length. Eq. 4 does not allow an exact measurement of bleb 

density and may be unstable over distances on the order of many bleb lengths.

Spherical statistics

The von Mises-Fisher distribution is defined on an ℝd − 1 sphere within ℝd space.48 For d = 

2 dimensions it approximates a wrapped normal distribution on a circle, and, similar to the 

normal distribution, for any d is parameterized by a mean and an inverse spread. For d = 3 

dimensions, the von-Mises Fisher distribution is

p(x; μ, κ) = κ
2π(eκ − e−κ)

exp(κμ′x), (11)

where μ is the mean direction parameter and κ is the concentration parameter, which is 

inversely related to the data spread. The maximum likelihood estimate of the mean direction 

is simply

μ = ∑i
N xi

∑i
N xi

. (12)

A Newton’s Method approximation for κ, κ2, in three dimensions is

R =
∑i

N xi
N , A(κ) =

I3
2
(κ)

I1
2
(κ) , (13, 14)

κ = R(3 − R2)
1 − R2 , (15)

κ1 = κ − A κ − R
1 − A κ 2 − 2

κ A κ
, (16)

κ2 = κ1 − A κ1 − R
1 − A κ1

2 − 2
κ1

A(κ1)
, (17)
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where N is the number of data vectors and I are Bessel functions of the first kind.48

In Fig. 6c and j, we measured the magnitude of PIP2 and KrasV12 polarization by mapping 

the intensity values defined on each surface mesh onto a unit sphere and then using spherical 

statistics to calculate κ. To map the intensities onto the unit sphere, we calculated a set of 

unit vectors, xintensity that extended in the direction from the cell center to every mesh face. 

The cell center was defined as the location within the cell farthest from the cell edge,. Since 

we measured intensity at every mesh face over a radius of 2 μm, to avoid spatially 

oversampling, we used only every 1000th mesh face. We defined wintensity as the measured 

intensity value associated with each unit vector and then discretized the range of intensity 

values into 32 bins. Finally, we replaced every vector xintensity with w copies of that vector 

and calculated κ from this set of unit vectors. As a control, we also measured κ from a set of 

xintensity with randomized directions.

In Fig. 6d and k we computed the directional correlation of morphological motifs, here 

blebs, with intensity localization. In each frame, we defined the directional correlation as 

μblebs · μintensity. To measure μblebs, we calculated a set of unit vectors, xblebs, that extended 

in the direction from the cell center to each mesh face on a bleb. To measure μintensity, we 

calculated xintensity and in Eq. 12 we weighted xi by the intensity localization. Since the cell 

is not a sphere and most cells have polarized shapes, the surface itself is expected to have a 

nonrandom μ and a small κ. To account for this, we created a control distribution of 

directional correlations μblebsRand · μintensity, where μblebsRand was calculated from a set of 

vectors where the patch classification was randomly permuted. In each frame, we created 

200 such permutations by randomly assigning patches to be a bleb or not a bleb.

Measurement of boundary motion

To measure boundary motion, for each face we found the closest face in the previous frame 

using a kd-tree. We then defined the boundary motion as

mi = − sign di · ni di , (18)

where mi is the boundary motion at face i, di is the vector from face i to the closest point in 

the previous frame, and ni is the normal to the surface at face i.

This is not an ideal measure of boundary motion since the mapping vectors di may cluster on 

select faces of the previous frame’s surface, or even alter the topology among faces, in a 

physically unrealistic manner (see Machacek et al.49 for an illustration of these problems 

with 2D boundaries). As a control, we also calculated the boundary motion for each face by 

finding the closest point in the next frame. Supplementary Fig. 14b shows the protrusive and 

retractive motion of six cells using both definitions of boundary motion. Here, backwards 

motion is the mapping of points from each frame to the previous frame and is the definition 

used elsewhere, and forwards motion is the mapping of points from each frame to the 

subsequent frame. Even though the backwards and forwards motions of the cells are 

different, in both cases blebs are more protrusive than non-blebs. This measure is also not a 

subpixel measure of motion, and should not be used to measure subpixel motions. Because 

we map each face to the closest face rather than the closest surface point in the previous 
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frame, motions that are less than the average distance between faces will be undersampled in 

the motion distribution.

Statistical hypothesis testing

For each Kras and PIP2 labeled cell, we measured the mean intensity localization of faces on 

and off blebs and then performed a one-sided t-test on the differences of the means after 

testing for normality using a Kolmogorov-Smirnov test. The Cohen’s d effect size was 

measured.

Unless otherwise indicated, all errors and error bars show the standard error of the mean.

Surface rendering

The majority of triangle meshes were rendered in ChimeraX.39 Colored triangle meshes 

were exported from Matlab as Collada .dae files using custom-written code and were 

rendered using full lighting mode. Lighting intensity and ambient intensity were adjusted. 

Colormaps were modified from colorBrewer.50 The surfaces in Supplementary Figures 11, 

and 15 were rendered within Matlab. Our software is capable of rendering all meshes shown 

in the paper within Matlab, as well as creating Collada files for export to ChimeraX.

Data availability

Data are available from the corresponding author upon reasonable request.

Code availability

The latest version of the software described here, as well as a user’s guide, is available from 

https://github.com/DanuserLab/Motif3D.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cell morphology and signaling are coupled.
Surface renderings of (a) a dendritic cell expressing Lifeact-GFP, (b) an MV3 melanoma cell 

expressing tractin-GFP, and (c) a human bronchial epithelial cell (HBEC) expressing tractin-

GFP. (d-f) Maximum intensity projections (MIPs) of the cells shown in a-c, using an inverse 

look up table. Panels a-f are shown at the same scale. Additional views of these cells are 

shown in Supplementary Fig. 1. (g) A MIP of a branched MV3 cells expressing PLCΔ-PH-

GFP, a PIP2 translocation biosensor. (h) A surface rendering of the same cell. Surface 

regions with relatively high PIP2 localization are shown in red, whereas regions of relatively 

low localization are shown in blue. (i) A MIP and (j) a surface rendering of a blebbing MV3 

cell expressing PLCΔ-PH-GFP. The PLCΔ-PH-GFP images are representative of 23 cells 

from 3 experiments. (k) A MIP of an MV3 cell expressing GFP-KrasV12. (l) A surface 

rendering of k. Surface regions of relatively high Kras localization are shown in red, whereas 

regions of relatively low localization are shown in blue. The GFP-KrasV12 images are 

representative of 31 cells from 7 experiments. Scale bars, 10 μm.
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Figure 2. Morphological motif detection framework and example workflow.
To detect morphological motifs, (a) following image acquisition, (b) we extract the cell 

surface, (c) decompose that surface into convex patches, (d) optionally merge those patches, 

(e) and then finally classify the patches by morphological motif. Panels f-p show our 

detection framework applied to a blebbed cell. (f) MIP of a 3D image of an MV3 melanoma 

cell expressing tractin-GFP. (g) MIP of the deconvolved image of the same cell. (h) The 

surface of the cell extracted from the deconvolved image as a triangle mesh. (i) The mean 

surface curvature of the cell. Regions of large positive curvature are shown red, flat regions 

are shown white, and regions of large negative curvature are shown blue. (j) A watershed 

segmentation of mean surface curvature. Segmented patches are shown in different colors. 

(k) A spill-depth based merging of the segmented patches. (l) A triangle-rule based merging 

of the patches. (m) A line-of-sight (LOS) based merging of the patches. The triangle and 

LOS rules are applied iteratively. (n) User generated training data for two different cells. 

Patches identified as “certainly a bleb” are shown green, whereas patches identified as 

“certainly not a bleb” are shown purple. (o) A support vector machine (SVM) classifier 

trained on user data applied to the cell. Patches shown in green have high SVM scores and a 

high inferred likelihood of being a bleb, whereas patches shown in purple have low SVM 
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scores and a low inferred likelihood. (p) Detected blebs are shown randomly colored and 

non-blebs are shown gray. To detect non-convex motifs, such as lamellipodia, convex 

patches are merged as shown in q-u. (q) The mean surface curvature of a lamellipodial 

dendritic cell expressing Lifeact-GFP. (r) Convex surface patches for the same cell. (s) A 

local-LOS based merging of these patches. (t) An SVM based merging of the patches. The 

SVM was trained on user-supplied examples of adjacent patches that should certainly be 

merged and adjacent patches that should certainly not be merged. (u) Detected lamellipodia 

are shown randomly colored and non-lamellipodia are shown gray.

Driscoll et al. Page 26

Nat Methods. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Detected blebs, filopodia, and lamellipodia.
(a) Blebs detected on an MV3 melanoma cell (representative of 19 cells), (b) filopodia 

detected on an HBEC cell (representative of 13 cells), and (c) lamellipodia detected on a 

dendritic cell (representative of 13 cells). Additional example detections are shown in 

Supplementary Fig. 5.
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Figure 4. Validation and robustness of morphological motif detection.
(a) A multiclass detector applied to cells derived from a human melanoma xenograft 

cultured in mice (representative of 9 cells). Filopodia are shown blue, blebs are shown red, 

and areas with neither filopodia nor blebs are shown gray. (b) Validation measures for a bleb 

detector (left) trained on 19 MV3 melanoma cells, a filopodia detector (center) trained on 13 

HBEC cells, and a lamellipodia detector (right) trained on 13 dendritic cells. TP, TN, FP, and 

FN are abbreviations for true positive, true negative, false positive, and false negative 

respectively. (c) The F1 score as a function of the number of cells trained on. The red line 

indicates the mean F1 score averaged over a maximum of 100 sets of cells, whereas the gray 

dots show individual sets of cells. (d) A bleb detector trained on the MV3 melanoma cell 

line applied to cells derived from a human melanoma xenograft cultured in mice 

(representative of 24 cells). (e) A filopodia detector trained on xenograft-derived melanoma 

cells applied to HBEC cells (representative of 13 cells). A filopodia detector trained on 

HBECs applied to the cell on the left is shown in Supplementary Fig. 5 and applied to the 

cell on the right is shown in Fig. 3. (f) Blebs detected on wildtype, cofilin-1 knock out, and 

Wave2 knockout U2OS cells in 3D collagen. (g) For these three cell types, the percentage of 

the surface that is blebby. We analyzed 19 wildtype, 15 cofilin-1 knockout, and 14 Wave2 

knockout cells.
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Figure 5. Motif detection on images acquired via diverse microscopic techniques.
(a) A MIP, taken over the xz direction, of an MV3 cell expressing tractin-GFP imaged via 

laser scanning confocal microscopy (representative of 8 cells). (b) Blebs detected on the 

same cell using a model derived from 8 MV3 cells imaged with this microscope. (c) An xz-

MIP of a microglia inside a zebrafish embryo imaged using a commercial light-sheet 

microscope (representative of 8 cells). (d) Extensions detected on the same cell using a 

model derived from 8 microglia imaged with this microscope. (e) An xz-MIP of an MV3 

cell expressing cytosolic GFP imaged using ASLM, a high-resolution light-sheet 

microscopy modality (representative of 8 cells). (f) Blebs detected on the same cell using a 

model derived from 19 MV3 cells imaged via meSPIM. (g) An xz-MIP of a T cell 

expressing Lifeact-mEmerald imaged using lattice light-sheet microscopy.8 (h) Lamellipodia 

detected on the same cell using a model derived from 13 dendritic cells imaged via meSPIM. 

(i) Extensions detected on an MDA-MB-231 human breast cancer cell moving through the 

vasculature of a zebrafish embryo imaged via adaptive-optics lattice light-sheet microscopy.
22 The cell is shown as a surface rendering, whereas the vasculature is shown in gray as a 

MIP of the deconvolved image. Scale bars, 10 μm.
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Figure 6. Kras and PIP2 associate with blebs differently.
(a) An MV3 cell expressing GFP-KrasV12 shown as a MIP (left) and an xy-slice (right) 

(representative of 31 cells). (b) Kras localization, measured over 2 μm, near the surface of an 

MV3 cell expressing GFP-KrasV12. (c) For 13 cells, the cumulative polarization distribution 

of Kras intensity (solid line) compared to random (dashed line). (d) The directional 

correlation of blebs with Kras localization. The cumulative correlation distribution is shown 

solid, the control distribution is shown dashed, and the zero correlation distribution is shown 

dotted. The correlation and control populations are not statistically different (p-value: 0.3, 

ks-statistic: 0.3). (e) The differences between the mean Kras intensity on and off blebs (p-

value: 0.5, effect size: −0.006, t-statistic: −0.017). The error bar indicates the standard error 

of the mean. (f) Fluorescence localization vs. distance from a bleb edge for 13 GFP-KrasV12 

labeled cells and 35 GFP cytosolically labeled cells. (g) Distributions of Kras intensity for 

mesh faces on blebs of greater than average volume and on blebs of less than average 
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volume (p-value: 0.6, effect size: 0.05, ks-statistic: 0.05, num. blebs: 1425). (h) An MV3 cell 

expressing PLCΔ-PH-GFP shown as a MIP (left) and an xy-slice (right) (representative of 

23 cells). (i) PIP2 localization, measured over 2 μm, near the surface of an MV3 cells 

expressing PLCΔ-PH-GFP. (j) For 6 movies of distinct cells, the cumulative polarization 

distribution of PIP2 intensity (solid line) compared to random (dashed line). (k) The 

directional correlation of blebs with PIP2 localization. The correlation and control 

populations are statistically different (p-value: 42*10^−29, ks-statistic: 0.6). (l) The 

differences between the mean PIP2 intensity on and off blebs for 6 movies of cells (p-value: 

0.0005, effect size: 1.7, t-statistic: 6.9). The error bar indicates the standard error of the 

mean. (m) PIP2 and Kras localization, both on and off blebs, vs. distance from a bleb edge. 

(n) Distributions of PIP2 intensity for mesh faces on blebs of greater than average volume 

and on blebs of less than average volume (p-value: 2*10^−77, effect size: 0.5, ks-statistic: 

0.24, num. blebs: 10625). (o) Surface renderings of PIP2 localization, measured over 2 μm, 

near the surface of an MV3 cell expressing PLCΔ-PH-GFP. Cells were imaged every 37 sec. 

(p) Surface renderings of the boundary motion of this same cell. Purple indicates regions of 

high protrusive motion, whereas green indicates regions of high retractive motion. (q) For 6 

cells, the frequency of protrusive motion minus the frequency of retractive motion on and off 

blebs as a function of surface speed. (r) The same measure shown in f for mesh faces in the 

top and bottom deciles of PIP2 localization. Scale bars, 10 μm.
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